Tải bản đầy đủ (.pdf) (10 trang)

Giáo trình xử lý ảnh y tế Tập 1a P10 doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (234.42 KB, 10 trang )


76








1
0
¦)()(
N
n
nk
N
WkfnF
(6.6)
ở đây f(k) = f(kT) và W
N
= e
- j2 /N
.
W
N
được gọi là hạt nhân của phép biến đổi.
Tổng quát, F(n) có dạng

)(
)()(


nj
enAnF

 (6.7)
Ký hiệu A(n),

(n) gọi là phổ khuyếch đại và phổ pha của F(n).
6.2.1 Biến đổi ngược DFT
Hàm f(k) là biến đổi ngược DFT của F(n) cho bởi theo biểu thức





1
0
2
)(
1
)(
N
n
nk
N
j
enF
N
kf



(6.8)
Chứng minh: Từ định nghĩa của DFT

 
 




















1
0
1
0
)(

1
0
1
0
1
0
)(
1
)(
1
)(
1
N
m
N
n
mkn
N
kn
N
N
n
N
m
nm
N
N
n
nk
N

Wmf
N
WWmf
N
WnF
N
(6.9)
Đặt





1
0
)(
N
n
mkn
N
WS

Nếu (k = m) thì S = N.
Nếu (k

m), chúng ta có thể viết:
S = 1 + W
N

(k -m )

+ W
N

2(k -m )
+ + W
N

(N-1)(k -m )

hoặc

)(
2
))(2(
m)-(k
N
m)-N(k
N
1
1
W-1
W-1
mk
N
j
mkj
e
e
S










Khi e
j2

(k-m)
= 1 và e
j2

/N. (k-m)
 1 với (k  m), vì vậy S = 0 với (k  m ).

Vì vậy, biểu thức (6. 9) có thể rút gọn thành

77

f(k).N
1
)(
1
1
0
N
WnF

N
N
n
nk
N





Kết quả này giống như biểu thức (6.8).
Khi f(k) có thể rút ra từ F(n) và ngược lại, chúng gọi là cặp biến đổi. Cặp biến
đổi này có dạng
)()( nFkf


Chú ý từ biểu thức (6.8) ta có thể dễ dàng chứng minh:

)(
)(
1
)(
1
1
0
.
2
1
0
)(

2
kf
enF
N
enF
N
N
n
nk
N
j
N
n
Nkn
N
j












(6.10)
Mặc dù f(k) được xác định trên miền k


[0,N], nó vẫn là tín hiệu tuần hoàn
với chu kỳ NT. (T được bao hàm và rút ra từ biểu thức 6.5).
6.2.2 Một vài tính chất của DFT
Tuyến tính. Nếu ta có hai dãy tuần hoàn cùng f
1
(n) và f
2
(n), và cả hai dãy này
tuần hoàn với chu kỳ N, được dùng để tính
f
3
(k) = af
1
(k) + bf
2
(k) (6.11)
là kết quả của biến đổi DFT f
3
(n) cho bởi
F3(n) = aF1(n) + bF2(n) (6.12)
ở đây a, b là hằng số và
F
1
(n) = DFT của f
1
(k)
F2(n) = DFT của f2(k)

Tính đối xứng. Tính đối xứng của DFT rất hay được dùng.


nk
N
j
N
k
nk
N
j
N
k
N
N
j
N
k
nNk
N
eekf
eekf
WkfnNF



















2
1
0
2
1
0
2
1
0
)(
)(
)(
)()(

)( Nkf


78




Nếu f(k) là thực thì

















)()()(
1
0
.
2
nFekfnNF
N
k
nk
N
j


(6.13)
Dấu * có nghĩa là liên hợp phức.

Tích chập tuần hoàn. Coi f
1
(k) và f
2
(k) là hai dãy tuần hoàn có chu kỳ N, với
biến đổi Fourier rời rạc là F
1
(n) và F
2
(n). Xem xét tích F(n
1
).F(n
2
)
khi )()(
1
0
1111
1
11





N
k

kn
N
WkfnF
)()(
1
0
2222
2
22





N
k
kn
N
WkfnF
và tại các vị trí n
1
= n
2
= n

Đặt f
3
(k) = IDFT của F
1
(n).F

2
(n)
hay
 
nk
N
n
WnFnF
N
kf




1
0
213
)().(
1
)(

vì vậy





















  














1
0
)(

1
0
22
1
0
11
1
0
1
0
1
0
)(
2211
21
21
1 2
21
1
)()(
)()(
1
N
n
kkkn
N
N
k
N
k

nk
N
N
n
N
k
N
k
kkn
N
3
W
N
kfkf
WWkfkf
N
(k)f


W =
.=
2
n-
N
2
1
11
1
2
22

1
11
1
0
2211
1
0
1
0
12
1
0
111111
)()(
)()()().(
k
N
k
kn
N
N
n
N
k
kn
N
N
k
kn
N

Wkfkf
WkfWkfnFnF














79

Chú ý là









0
1

1
1
0
)(
21
N
n
kkkn
W
N


ở đây l là số nguyên. Vì vậy mà

)()()(
12
1
01
113
lNkkfkfkf
N
k




(6.14)
ở đây k = 0 đến 2N - 1.
Biểu thức trên biểu diễn tích chập của hai tín hiệu tuần hoàn. Chú ý rằng biêủ
thức này chỉ áp dụng cho hai dãy có chung một chu kỳ, và chiều dài của dãy tính

theo biểu thức trên là 2N - 1. Kết quả này chứng minh rằng trong DFT, tín hiệu có
số mẫu lớn hơn N sẽ được biến đổi thành dãy tuần hoàn có chu kỳ N. Khi dùng
DFT cho một tín hiệu không có chu kỳ, mà kết quả thu được từ tích hai dãy, ta sẽ
phạm một sai lầm gọi là lỗi wraparound. Đó là lý do ta phải làm cho cả hai dãy
có chu kỳ bằng nhau. Để sửa lỗi này, một số số 0 cần phải thêm vào cả hai dãy để
chiều dài hai dãy bằng nhau. Ví dụ, nếu một dãy có chiều dài A, một dãy có chiều
dài B, kết quả ta phải thêm các số 0 cho cả hai dãy có chiều dài ít nhất là A
+ B - 1.

Bài tập 6.1
Cho hai dãy sau





0
1
)(
1
kf







0
1

)(
2
kf


1. Tính bằng tay tích chập của hai dãy trên. Vẽ một lưu đồ biểu diễn thuật toán.
2. Làm lại phần 1, nhưng lần này sử dụng tích chập tuần hoàn.
3. Lập một chương trình C rút ra f
3
(k) từ biểu thức f
3
(k) = IDFTDFT[f
1
(k)].
DFT[f
1
(k)]. So sánh kết quả của phần 1 và phần hai.
4. Bây giờ thêm các số không vào f
1
(k) và f
2
(k) để chu kỳ của chúng = 5 + 6 -
1. Làm lại phần 3 và so sánh kết quả.
cho k = k
1
+ k
2
+ lN
các trường hợp còn lại.
0


k
1

4
các trường hợp còn lại.
0

k
1

5
các trường hợp còn lại.

80

6.3 Thuật toán biến đổi nhanh Fourier
Tính trực tiếp giá trị của DFT bao gồm N phép nhân phức và N - 1 phép cộng
phức cho mỗi giá trị của F(n). Khi N giá trị được tính toán thì N
2
phép nhân và
N(N - 1) phép cộng được tính toán. Cũng như vậy, cho N có giá trị rất lớn, tính
trực tiếp giá trị của DFT sẽ đòi hỏi một số phép tính lớn đến mức không thể chấp
nhận được. Để ví dụ, cho N = 1024 = 2
10
ta sẽ phải tính 2
20
= 1,048,576 phép
nhân số phức và một số gần bằng như vậy các phép cộng.
Hoàn thiện có nghĩa là phải giảm số phép tính trong biến đổi Fourier xuống.

Dưới đây chúng ta sẽ giới thiệu hai thuật toán hay dùng là thuật toán phân chia
thời gian và thuật toán phân chia tần số. DFT dùng các thuật toán trên gọi là Fast
Fourier transform (FFT).
6.3.1 Thuật toán phân chia thời gian
Xem xét tính toán của DFT cho bởi (5.6) với N= 2
r
(r là một số nguyên bất
kỳ). Cơ sở của thuật toán phân chia thời gian thì rõ ràng. Tuy nhiên, việc thiết kế
phần mềm cũng đòi hỏi một số phân tích chi tiết. Để làm rõ các bước của thuật
toán này chúng ta sẽ bắt đầu phân tích với N = 16 và sau đó mở rộng ra áp dụng
cho N bất kỳ.
Cơ sở của thuật toán phân chia thời gian dựa trên cơ sở chiến lược chia và
chiếm. Các bước sau sẽ làm sáng tỏ thuật toán. Vì trong trường hợp này N =16;
nên,






15
0
16
)()(
k
nk
WkfnF

Chia dãy f(k) thành hai dãy, một dãy được rút ra từ phần tử chẵn và một dãy từ
những phần tử lẻ. Đó là,









15
0
16
15
0
16
)()()(
k
nk
k
nk
WkfWkfnF

k chẵn k lẻ
Chúng có thể viết thành








7
0
)12(
16
7
0
)2(
16
)12()2()(
k
kn
k
kn
WkfWkfnF
(6.15)
Chú ý là

81


nk
nkjknj
kn
W
eeW






8
.
8
2
)2(.
16
2
)2(
16


vì thế






7
0
816
7
0
8
)12()2()(
k
nkn
k
nk
WkfWWkfnF


đặt
f(2k)(k)f
10

1)f(2k(k)f
11

Ta được







7
0
81116
7
0
810
)()()(
k
nkn
k
nk
WkfWWkfnF
(6. 16)
Đặt





7
0
81010
)()(
k
nk
WkfnF
(6.17)





7
0
81111
)()(
k
nk
WkfnF
(6.18)
Viết lại biểu thức (6.16) chúng ta được
(n)FW (n)F F(n)
11
-n
1610

 (6.19)
Cũng như vậy, phát triển cho một biểu thức
(n)FW -(n)F 8)F(n
11
-n
1610
 (6.20)
Biểu thức (6.19) và (6.20) định dạng những đơn vị tính toán gọi là bướm. Hình
6.1 là biểu đồ của phần tử bướm. Ký hiệu W
16
-n
thường gọi là trọng lượng hay hệ
số xoay. Hai biểu thức này biểu diễn bước cuối cùng trong lưu đồ tính toán của
hình 6.2.
Bây giờ xem xét biểu thức





7
0
81010
)()(
k
nk
WkfnF

Xử lý như trên chúng ta có








7
0
4108
3
0
41010
)12()2()(
k
nkn
k
nk
WkfWWkfnF


82

Dễ thấy

-2n
16
-n
8
WW 


đặt

1)(2kf(k)f
(2k)f(k)f
1021
1020












Hình 6.1 (a) Bướm; (b) Biểu diễn rút gọn.
F
10
(n) F(n)














F
11
(n) F(n+8)
F
10
(n) F(n)













F
11
(n) F(n+8)
1
W
16

-
n

n

83

Hình 6.2 Bước cuối cùng của thuật toán biến đổi FFT phân chia miền thời gian.
X(k) ký hiệu vector chứa giá trị được tính qua phép biến đổi FFT.
Vì vậy,






3
0
421
3
0
2
1642010
)()()(
k
nk
k
nnk
WkfWWkfnF
(n)FW (n)F (n)F

21
-2n
162010
 (6.21)
(n)FW - (n)F 4)(nF
21
-2n
162010
 (6.22)
ở đây




3
0
42020
)()(
k
nk
WkfnF (6.23)





3
0
42121
)()(

k
nk
WkfnF (6.24)
Tương tự

(n)FW (n)F (n)F
23
-2n
162211

(6.25)
(n)FW - (n)F 4)(nF
23
-2n
162211
 (6.26)
ở đây




3
0
42222
)()(
k
nk
WkfnF (6.27)
0
1

2
3
4
5
6
7
0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

15

F
10
(n)
F(n)
F
11
(n)
X(k)
X(k)

84






3
0
42323
)()(
k
nk
WkfnF
(6.28)
và (2k)f (k)f
11
22


1)(2kf (k)f
1123

Biểu thức (6.21), (6.22), (6.25) và (6.26) có thể biểu diễn bằng sơ đồ hình 6.3.
Biểu thức (6.23), (6.24), (6.27) và (6.28) có thể tiếp tục chia nhỏ ra như các bước
đã làm ở trên như sau:
(n)FW (n)F (n)F
31
-4n
163020
 (6.29)
(n)FW - (n)F 2)(nF
31
-4n
163020
 (6.30)
(n)FW (n)F (n)F
33
-4n
163221
 (6.31)
(n)FW - (n)F 2)(nF
33
-4n
163221
 (6.32)
(n)FW (n)F (n)F
35
-4n

163422
 (6.33)
(n)FW - (n)F 2)(nF
35
-4n
163422
 (6.34)

(n)FW (n)F (n)F
37
-4n
163623
 (6.35)
(n)FW - (n)F 2)(nF
37
-4n
163623
 (6.36)
ở đây
F n f k W
nk
k
30 30 2
0
1
( ) ( )



(6.37)

F n f k W
nk
k
31 31 2
0
3
( ) ( )



(6.38)
, vv.

Các biểu thức từ (6.29) đến (6.36) cho kết quả trong bước thứ ba của thuật toán
và biểu diễn trong lưu đồ hình 6.4.Mỗi phần tử từ F
30
(n) đến F
37
(n) có thể chia
tiếp thành hai phần tử nữa và bước này tạo thành sơ đồ cuối cùng (bước đầu tiên)
trong lưu đồ.



0
1
2
3
0
1

2

0
1
2
3
4
5
6

0
F
20
(n)
2
F
21
(n)
4
F
10
(n)
X(k)
X(k)
W
-
2n

Hệ số xoay
n=0 đến 3


85




















Hình 6.3 Bước thứ hai sau bước cuối cùng trong thuật toán FFT.




















0
0
0
0
0
0
0


















0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

0
F
30
(n)
F
31

(n)
F
32
(n)
F
33
(n)
F
34
(n)
F
35
(n)
F
36
(n)
F
37
(n)
X(k)
X(k)
Dãy
đầu
vào
đã
được

sắp
xếp
lại

×