Tải bản đầy đủ (.pdf) (24 trang)

Orthogonal Frequency Division Multiplexing - Phân chia tần số trực giao potx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (432.04 KB, 24 trang )

Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Orthogonal Frequency Division Multiplexing
Kari Pietikäinen

Postgraduate Course in Radio Communications
30.11.
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Outline
• OFDM
– Subchannels
– Pilots
• System overview
– Coding / Interleaving
– Mapping
– IFFT / FFT
– Guard time / Cyclic prefix
• System planning example
• References
• Homework
Kari Pietikäinen
Communications Laboratory / HUT


S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
OFDM
• Multi-carrier modulation/multiplexing technique
• Available bandwidth is divided into several subchannels
• Data is serial-to-parallel converted
• Symbols are transmitted on different subcarriers
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
OFDM
• Signal processing made digitally in the frequency domain
– IFFT/FFT –pair
• Guard time is added to reduce effects caused by
multipath propagation
• Tolerant to frequency-selective fading
– Information lost in deep fades can be recovered using FEC
• Flexible data rates (IEEE 802.11a/g 6 – 54 Mbit/s)
– Different code rates
• Puncturing
– Different modulation methods (mapping)
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen

Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
OFDM
• Advantages
– Spectral efficiency
– Simple implementation
– Tolerant to ISI
• Disadvantages
– BW loss due guard time
– Prone to frequency and phase offset errors
– Peak to average power - problem
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Subchannels
• Frequency-selective channel is divided into flat fading
subchannels
• Fast serial data stream is transformed into slow parallel
data streams
– Longer symbol durations
frequency
magnitude
carrier
channel
subchannel
Kari Pietikäinen
Communications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Subchannels
single subchannel ofdm spectrum
• Subchannel spacings are
selected so, that they are
mathematically
orthogonal to each other
– FDM OFDM
• Subchannels overlap on
each other
– Sinc -shaped spectra
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Pilots
• Pilots are transmitted first in each burst
– 802.11a/g uses 4 subchannels as pilots
– Some ’timeslots’ can be used as pilots
• Data can be normalized by pilot components
• Pilots are designed for easy detection
• Pilots are used for channel estimation
– Frequency and phase offsets
– Can be used for synchronization
Kari Pietikäinen

Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
IFFT
S/P
Mapping
Interleaving
Coding
CP
Typical OFDM transmitter
• IEEE 802.11 a/g WLAN
• IEEE 802.16 WiMAX
• DAB
• DVB-T
• ADSL (DMT)
• PLC (DMT
• DMT uses bit loading –
algorithms
– High SNR subchannels carry
more bits
• DVB-T can use > 6800
subchannels
• WiMAX can divide
subchannels to different users
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen

Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
IFFT
S/P
Mapping
Interleaving
Coding
CP
Coding / Interleaving
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Coding / Interleaving
• Convolutional and/or Reed-Solomon coding
– Adds redundancy to the information
– Convolutional coding operates on bit streams
– Reed-Solomon coding is block coding
– Low implementation cost
– OFDM COFDM (Coded OFDM)
• DVB-T uses inner/outer coding and interleaving
• Convolutional coding studied in earlier presentations
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications

Coding / Interleaving
• Interleaving
– Scatters error bursts
– Can be done in time or in
frequency domain
• One of the simplest form
is block interleaving
– Write row-by-row
– Read column-by-column
(or another way around)
– Additional matrix
permutation is possible
E E E E E E
E E E
errors
w/o interleaving w/ interleaving
code word
1
0
10
0
1 1
0
0
1 1
1 1
1
1
11
1

1
0 0
0 0
0 0
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
IFFT
S/P
Mapping
Interleaving
Coding
CP
Mapping
101101011001
110000101111
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Mapping
• Data on OFDM
subcarriers is mapped
(modulated) using
common digital

modulation schemes
– IEEE 802.11a/g WLANs
uses BPSK, QPSK,
16-QAM, 64-QAM
• Serial binary data is
converted into complex
numbers representing
constellation points
– Constellation mappings
usually Gray-coded
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
IFFT
S/P
Mapping
Interleaving
Coding
CP
IFFT / FFT
1-7j 5+3j
101101011001
110000101111
Pilot insertion
Zero padding
Kari Pietikäinen
Communications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
IFFT / FFT
• IFFT / FFT pair is the key factor in OFDM
– IFFT: From frequency domain to time domain
– FFT: Vice versa
• All signal processing is made in frequency domain
• IFFT / FFT low implementation cost
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
IFFT
S/P
Mapping
Interleaving
Coding
CP
Guard time / Cyclic prefix
D/A converter
LNA/HPA
Antenna
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen

Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Guard time / Cyclic prefix
• Guard time is inserted between consecutive OFDM
symbols
– Helps to combat against ISI
– Guard time is larger than delay spread
– Multipath components fade away before information extraction
• Reduces BW effiency
No ISI
guard
time
FFT time
delay
spread
OFDM symbol time
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Guard time / Cyclic prefix
0 2 4 6 8 10 12
−2
−1.5
−1
−0.5
0
0.5

1
1.5
2
LOS
1. mp
2. mp
Sum
previous 1. mp
previous 2. mp
0 2 4 6 8 10 12
−2
−1.5
−1
−0.5
0
0.5
1
1.5
2
LOS
1. mp
2. mp
Sum
1. mp cp
2. mp cp
• Implemented with cyclic
extension
– Part of the signal is copied
to the front of the signal
– Orthogonality is maintained

• Every copy of the signal
has an integer number of
cycles in the FFT window
– Same phase signals sums
up
• Phase correction still
needed
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
IFFT
S/P
Mapping
Interleaving
Coding
CP
System planning example
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
System planning example
• Delay spread 200 ns
• Doppler spread 250 Hz (120 km/h)
• Assigned BW 15 MHz

• FFT time 4 s
• Guard time 1 s
• OFDM symbol 5 s (Guard time + FFT)
• Subchannel BW 1/T=200kHz
• Nrof subchannels75
– FFT limitation >>>> nrof subch. 64 (2
N
)
– 11 subchannels unused
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
• Subchannels are flat fading
– Symbol period >> delay spread
– Subch. BW << Coherence BW
• Data rates
– BPSK (1 bit / symbol) 12,8 Mbit/s
– QPSK (2 bits / symbol) 25,6 Mbit/s
– Coding reduces data rates
• 20% BW loss because of guard time
System planning example
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications

References
• Richard van Nee, Ramjee Prasad, OFDM for Wireless
Multimedia Communications. Artech House Publishing,
U.S.A., 2000
• Juha Heiskala, John Terry, OFDM Wireless LANs: A
Theoretical and Practical Guide, Sams Publishing,
U.S.A., 2002
• IEEE 802.11a Std, “Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
specifications”, ISO/IEC 8802-11, IEEE, 1999
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Kari Pietikäinen
Communications Laboratory / HUT
S-72.333 Postgraduate Course in Radio Communications
Homework
• Derive expression for OFDM-
signal
• Use 4 subchannels and 4QAM
• Input data sequence:
11 01 00 10
• Subcarrier frequencies are:
-2f
c
-1f
c
1f
c
2f

c
4QAM
ofdm signal
OFDM transmitter

×