Tải bản đầy đủ (.doc) (34 trang)

Bài tập về phép biến hình lớp 11

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (467.59 KB, 34 trang )

CHƯƠNG I : PHÉP BIẾN HÌNH
CHƯƠNG I : PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG
Vấn đề 1 : PHÉP DỜI HÌNH
A. KIẾN THỨC CƠ BẢN
′ ′
1 Phép biến hình .
ª ĐN : Phép biến hình là một quy tắc để với mỗi điểm M của mặt phẳng xác đònh được một điểm duy nhất
M của mặt phẳng , điểm M gọi là ảnh của M qua phé
′ ′
′ ′ ′
→ →
f
p biến hình đó .
ª Kí hiệu : f là một phép biến hình nào đó và M là ảnh của M qua phép f thì ta viết : M = f(M) hay
f(M) = M hay f : M M hay M M . Điểm M gọi là tạoI I
⇔ ∀ ∈
o
1 2 2 1
ª
ảnh .
f là phép biến hình đồng nhất f(M) = M , M H .
Điểm M gọi là điểm bất động , kép , bất biến .
f ,f là các phép biến hình thì f f là phép biến hình .
Nếu H l
′ ′


à một hình nào đó thì tập hợp các điểm M = f(M), với M H, tạo thành một hình H được gọi là
ảnh của H qua phép biến hình f và ta viết : H = f(H) .
′ ′


2 Phép dời hình .
ĐN : Phép dời hình là phép biến hình không làm thay đổi khoảng cách giữa hai điểm bất kì , tức là với
hai điểm bất kì M,N và ảnh M , N của chúng , ta luôn c

′ ′
g
ó M N = MN . ( Bảo toàn khoảng cách ) .
3 Tính chất : ( của phép dời hình ) .
ĐL : Phép dời hình biến ba điểm thẳng hàng thành ba điểm thẳng hàng , ba điểm không thẳng hàng


g

thành ba điểm không thẳng hàng .
HQ:Phép dời hình biến :
1. Đường thẳng thành đường thẳng .
2. Tia thành tia .
3. Đoạn thẳng thành đoạn thẳng bằng nó .
4. Tam giác thành t
→ →
→
′ ′
am giác bằng nó . ( Trực tâm trực tâm , trọng tâm trọng tâm )
5. Đường tròn thành đường tròn bằng nó . ( Tâm biến thành tâm : I I , R = R )
6. Góc thành góc
I I
I
bằng nó .
B . BÀI TẬP





→



− −


x = 2x 1
1 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = .
y = y + 3
Tìm ảnh của các điểm sau : a) A(1;2) b) B( 1;2) c) C(2; 4)
Giải :
a) A = f(A) = (1;5)
b) B =
I





− +

→





− −
f(B) = ( 7;6)
c) C = f(C) = (3; 1)
x = 2x y 1
2 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = .
y = x 2y + 3
Tìm ảnh của các điểm sau : a) A(2;1) b) B( 1;3) c) C( 2
I


− −

− −

→
;4)
Giải :
a) A = f(A) = (4;3)
b) B = f(B) = ( 4; 4)
c) C = f(C) = ( 7; 7)
3 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = (3x;y) . Đây có phải là phép dời
hình hay
I
không ?

→

→
1 1 2 2
1 1 1 1

2 2 2 2
Giải : Lấy hai điểm bất kì M(x ;y ),N(x ;y )
Khi đó f : M(x ;y ) M = f(M) = (3x ; y ) .
f : N(x ;y ) N = f(N) = (3x ; y )
I
I
- 1 -
CHƯƠNG I : PHÉP BIẾN HÌNH
′ ′
− + − − + −
′ ′
≠ ≠
2 2 2 2
2 1 2 1 2 1 2 1
1 2
Ta có : MN = (x x ) (y y ) , M N = 9(x x ) (y y )
Nếu x x thì M N MN . Vậy : f không phải là phép dời hình .
(Vì có 1 số điểm f không bảo toàn khoảng cách) .
{
{
{
{
′ ′
′ ′
′ ′
→ − →
y x
x y
4 Trong mpOxy cho 2 phép biến hình :
a) f : M(x;y) M = f(M) = ( y ; x 2) b) g : M(x;y) M = g(M) = ( 2x ; y+1) .

Phép biến hình nào trên đây là phép dời hình
I I
′ ′
≠ ≠

→ −
1 2
?
HD :
a) f là phép dời hình b) g không phải là phép dời hình ( vì x x thì M N MN )
5 Trong mpOxy cho 2 phép biến hình :
a) f : M(x;y) M = f(M) = (y + 1 ; x) I

→ b) g : M(x;y) M = g(M) = ( x ; 3y ) .
Phép biến hình nào trên đây là phép dời hình ?
Giải :
a) f là phép dời hình b) g không phải là phép dời hình (
I
′ ′
≠ ≠
1 2
vì y y thì M N MN )

→ − +
∆ − −
6 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = ( 2x ;y 1) . Tìm ảnh của đường
thẳng ( ) : x 3y 2 = 0 qua phép biến hình f .
Giải :
Cách 1: Dùng biểu thức toạ độ
I






− 
=

→ ⇔
 

= +



= −



′ ′ ′ ′ ′ ′ ′
∈ ∆ ⇔ − − − = ⇔ + − = ⇔ ∈ ∆ + − =
∈ ∆ ≠
g
x
x = 2x
x
Ta có f : M(x;y) M = f(M) =
2
y y 1
y y 1

x
Vì M(x;y) ( ) ( ) 3(y 1) 2 0 x 6y 2 0 M (x ;y ) ( ) : x 6y 2 0
2
Cách 2 : Lấy 2 điểm bất kì M,N ( ) : M N .
M
I

∈ ∆ → = = −

∈ ∆ − − → = =g
( ) : M(2;0) M f(M) ( 4;1)
N ( ) : N( 1; 1) N f(N) (2;0)
I
I




′ ′ ′ ′ ′
∆ ≡ → ∆ = → ∆ + − =

′ ′

= −

g
uuuuur
g
Qua M ( 4;1)
x+ 4 y 1

( ) (M N ): PTCtắc ( ) : PTTQ ( ):x 6y 2 0
6 1
VTCP : M N (6; 1)

→ + +

− →
2 2
7 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = (x 3;y 1) .
a) CMR f là phép dời hình .
b) Tìm ảnh của đường tròn (C) : (x + 1) + (y 2) = 4 . (C ) : (x
I
I − −
2 2
2) + (y 3) = 4

→ − +
∆ −
8 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = (x 3;y 1) .
a) CMR f là phép dời hình .
b) Tìm ảnh của đường thẳng ( ) : x + 2y 5 = 0 .
c) Tìm ảnh của đường tròn (C) : (x
I


→ − +
2 2
2 2
1 1 2 2
1 1 1 1

+ 1) + (y 2) = 2 .
x y
d ) Tìm ảnh của elip (E) : + = 1 .
3 2
Giải : a) Lấy hai điểm bất kì M(x ;y ),N(x ;y )
Khi đó f : M(x ;y ) M = f(M) = (x 3; y 1) .
f : N
I

→ − +
′ ′
− + −
2 2 2 2
2 2
2 1 2 1
(x ;y ) N = f(N) = (x 3; y 1)
Ta có : M N = (x x ) (y y ) = MN
Vậy : f là phép dời hình .
I
- 2 -
CHƯƠNG I : PHÉP BIẾN HÌNH
′ ′
 
− = +

→ ⇔
 
′ ′
= + = −
 

′ ′ ′ ′ ′ ′ ′
∈ ∆ ⇔ + + − − = ⇔ + − = ⇔ ∈
b) Cách 1: Dùng biểu thức toạ độ
x = x 3 x x 3
Ta có f : M(x;y) M = f(M) =
y y 1 y y 1
Vì M(x;y) ( ) (x 3) 2(y 1) 5 0 x 2y 4 0 M (x ;y ) (
I

∆ + − =) : x 2y 4 0
∈ ∆ ≠

∈ ∆ → = =

∈ ∆ → = =
g
g
Cách 2 : Lấy 2 điểm bất kì M,N ( ) : M N .
M ( ) : M(5 ;0) M f(M) (2;1)
N ( ) : N(3 ; 1) N f(N) (0;2)
I
I


− −
′ ′ ′ ′ ′
∆ ≡ → ∆ = → ∆ + − =

′ ′


= −


g
uuuuur
g
Qua M (2;1)
x 2 y 1
( ) (M N ): PTCtắc ( ) : PTTQ( ):x 2y 4 0
2 1
VTCP : M N ( 2;1)
Cách 3: Vì f là phép dời hình nên f biến đường thẳng ( ) thành đường thẳng

∆ ∆

∈ ∆ → = =
′ ′ ′ ′ ′
∆ ∆ ⇒ ∆ + ≠ − ∆ ∋ ⇒ − ⇒ ∆ + − =
g
g
( ) // ( ) .
Lấy M ( ) : M(5 ;0) M f(M) (2;1)
Vì ( ) // ( ) ( ): x + 2y m = 0 (m 5) . Do : ( ) M (2;1) m = 4 ( ): x 2y 4 0
c) Cách 1: Dùng biểu thức toạ độ
I
′ ′
 
− = +

→ ⇔

 
′ ′
= + = −
 
′ ′
∈ − ⇔ + + − = ⇔
′ ′ ′

2 2 2 2

x = x 3 x x 3
Ta có f : M(x;y) M = f(M) =
y y 1 y y 1
Vì M(x;y) (C) : (x + 1) + (y 2) = 2 (x 4) (y 3) 2
M (x ;y
I

∈ + + − =

 
− − = −
′ ′
→ → + + − =
 

+ +
 
2 2
f
2 2

) (C ) : (x 4) (y 3) 2
+ Tâm I( 1;2) + Tâm I = f[I( 1;2)] ( 4;3)
Cách 2 : (C) (C ) (C ) : (x 4) (y 3) 2
BK : R = 2 BK : R = R = 2
′ ′
 
− = +

→ ⇔
 
′ ′
= + = −
 
d) Dùng biểu thức toạ độ
x = x 3 x x 3
Ta có f : M(x;y) M = f(M) =
y y 1 y y 1
I
′ ′
− −
′ ′ ′ ′
∈ ⇔ ⇔ ∈
2 2 2 2 2 2
x y (x + 3) (y 1) (x + 3) (y 1)
Vì M(x;y) (E) : + = 1 + = 1 M (x ;y ) (E ) : + = 1
3 2 3 2 3 2

→ + −
∆ − +
9 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = (x 1;y 2) .

a) CMR f là phép dời hình .
b) Tìm ảnh của đường thẳng ( ) : x 2y 3
I

− − + −
2 2
2
2 2 2
= 0.
c) Tìm ảnh của đường tròn (C) : (x + 3) + (y 1) = 2 .
d) Tìm ảnh của parabol (P) : y = 4x .
ĐS : b) x 2y 2 = 0 c) (x + 2) + (y 1) = 2 d) (y + 2) = 4(x 1)

→ −10 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = ( x ;y) . Khẳng đònh nào sau đây
sai ?
I

A. f là 1 phép dời hình B. Nếu A(0 ; a) thì f(A) = A
C. M và f(M) đối xứng nhau qua trục hoành D. f[M(2;3)] đường thẳng 2x + y + 1 = 0
→ ĐS : Chọn C . Vì M và f(M) đối xứng nhau qua trục tung C sai .
′ ′
→ − → − −

1 1 2 2
1 2
12 Trong mpOxy cho 2 phép biến hình :
f : M(x;y) M = f (M) = (x + 2 ; y 4) ; f : M(x;y) M = f (M) = ( x ; y) .
Tìm toạ độ ảnh của A(4; 1) qua f rồi f , nghóa là tì
I I
′ ′′

− → − → −
1 2
2 1
f f
m f [f (A)] .
ĐS : A(4; 1) A (6; 5) A ( 6 ; 5 ) .I I

→ −

x
11 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = ( ; 3y) . Khẳng đònh nào sau đây sai ?
2
A. f (O) = O (O là điểm bất biến) B. Ảnh của A Ox thì
I


′ ′
∈ ∈ − −
ảnh A = f(A) Ox .
C. Ảnh của B Oy thì ảnh B = f(B) Oy . D. M = f[M(2 ; 3)] = (1; 9)

− ĐS : Chọn D . Vì M = f[M(2 ; 3)] = (1; 9)
- 3 -
CHƯƠNG I : PHÉP BIẾN HÌNH
Vấn đề 2 : PHÉP TỊNH TIẾN
A. KIẾN THỨC CƠ BẢN
′ ′
=
uuuuur
r r

1 ĐN : Phép tònh tiến theo vectơ u là một phép dời hình biến điểm M thành điểm M sao cho MM u.
′ ′
= ⇔ =
uuuuur
r
r r
g
Kí hiệu : T hay T .Khi đó : T (M) M MM u
u u
Phép tònh tiến hoàn toàn được xác đònh khi biết vectơ tònh tiến của nó .
Nếu T (M) M , M thì T là phép đồng nhất .
o o
2 Biểu thức tọa độ : Cho u = (a;b) và phép tònh tiến T
u
= ∀
r r
g
r
r



′ ′ ′
→ =



r
x = x + a
M(x;y) M =T (M) (x ;y ) thì

u
y = y + b
I
g
g
3 Tính chất :
ĐL : Phép tònh tiến bảo toàn khoảng cách giữa hai điểm bất kì .
HQ :
1. Bảo toàn tính thẳng hàng và thứ tự của các điểm tương ứng .
2. Biến một tia thành tia .
3. Bảo toàn tính thẳng hàng và thứ tự của các điểm tương ứng .
5. Biến một đoạn thẳng thành đoạn thẳng bằng nó .
6. Biến một đường thẳng thành một đường thẳng song song hoặc trùng với đường thẳng đã cho .
→ → Biến 7. tam giác thành tam giác bằng nó . (Trực tâm trực tâm , trọng tâm trọng tâm )I I
′ ′
→
8. Đường tròn thành đường tròn bằng nó .
(Tâm biến thành tâm : I I , R = R )I

 PHƯƠNG PHÁP TÌM ẢNH CỦA MỘT ĐIỂM


′ ′ ′
→ =



r
x = x + a
M(x;y) M =T (M) (x ;y ) thì

u
y = y + b
I
 PHƯƠNG PHÁP TÌM ẢNH CỦA MỘT HÌNH (H) .
′ ′
∈ → ∈

≡ → ≡
g
g
Cách 1 : Dùng tính chất (cùng phương của đthẳng , bán kính đường tròn : không đổi )
1. Lấy M (H) M (H )
2. (H) đường thẳng (H ) đường thẳng cùng phương

I

 
+ +
′ ′ ′
≡ → ≡
 

 
′ ′
Tâm I Tâm I
(H) (C) (H ) (C ) (cần tìm I ) .
+ bk : R + bk : R = R
Cách 2 : Dùng biểu thức tọa độ .
Tìm x theo x , tìm y theo y rồi thay vào biểu thức tọa độ .
Cách 3

II
′ ′ ′
∈ → ∈
: Lấy hai điểm phân biệt : M, N (H) M , N (H )I
B, BÀI TẬP


′ ′
 
− = =
′ ′ ′ ′
⇔ = ⇔ − + = ⇔ ⇔
 
′ ′
+ = = −
 
r
uuuuur
r
r
1 Trong mpOxy . Tìm ảnh của M của điểm M(3; 2) qua phép tònh tiến theo vectơ u = (2;1) .
Giải
x 3 2 x 5
Theo đònh nghóa ta có : M = T (M) MM u (x 3;y 2) (2;1)
u
y 2 1 y 1


⇒ −


r
r
M (5; 1)
2 Tìm ảnh các điểm chỉ ra qua phép tònh tiến theo vectơ u :
a) A( 1;1) , u = (3;1)



r
A (2;3)
b) B(2;1) , u = ( 3;2)

⇒ −

− − ⇒
r
B ( 1;3)
c) C(3; 2) , u = ( 1;3) C (2;1)
- 4 -
CHƯƠNG I : PHÉP BIẾN HÌNH
′ ′
′ ′
′ ′
= =
r
uuur uuuur
r r
3 Trong mpOxy . Tìm ảnh A ,B lần lượt của điểm A(2;3), B(1;1) qua phép tònh tiến theo vectơ u = (3;1) .
Tính độ dài AB , A B .
Giải

Ta có : A = T (A) (5;4) , B = T (B)
u u
′ ′ ′ ′
= =
= = =
= ⇔ = = ⇔ =
uuur uuuur
r r r
r r r
uuuuur uuuuuuur
r
r r
1 2
1 2
(4;2) , AB = |AB| 5 , A B = |A B | 5 .
4 Cho 2 vectơ u ;u . Gỉa sử M T (M),M T (M ). Tìm v để M T (M) .
1 2 1 u 2 u 1 2 v
Giải
Theo đề : M T (M) MM u , M T (M ) M M
1 u 1 1 2 u 1 1 2
= ⇔ = ⇒ = = + = =
r
uuuuuur uuuuuur uuuuur uuuuuuur
r r r r r r r
r
u .
2
Nếu : M T (M) MM v v MM MM M M u + u .Vậy : v u + u
2 v 2 2 1 1 2 1 2 1 2


∆ − ∆
∆ −
r
5 Đường thẳng cắt Ox tại A( 1;0) , cắt Oy tại B(0;2) . Hãy viết phương trình đường thẳng là ảnh
của qua phép tònh tiến theo vectơ u = (2; 1) .
′ ′
= = − = =




= +
′ ′ ′ ′ ′ ′
∆ = ∆ ⇒ ∆ ∆ ⇒ ∆
 
= − +
′ ′


r r
g
r
uuuuur
g
Giải Vì : A T (A) (1; 1) , B T (B) (2;1) .
u u
qua A (1; 1)
x 1 t
Mặt khác : T ( ) đi qua A ,B . Do đó : ptts :
u

y 1 2t
VTCP : A B = (1;2)

∆ ∆
∆ − −

= = −
r
r
6 Đường thẳng cắt Ox tại A(1;0) , cắt Oy tại B(0;3) . Hãy viết phương trình đường thẳng là ảnh
của qua phép tònh tiến theo vectơ u = ( 1; 2) .
Giải
Vì : A T (A) (0; 2) ,
u

= = −




= −
′ ′ ′ ′ ′ ′
∆ = ∆ ⇒ ∆ ∆ ⇒ ∆
 
= − +
′ ′



∆ − −

r
g
r
uuuuur
g
r
B T (B) ( 1;1) .
u
qua A (0; 2)
x t
Mặt khác : T ( ) đi qua A ,B . Do đó : ptts :
u
y 2 3t
VTCP : A B= ( 1;3)
7 Tương tự : a) : x 2y 4 = 0 , u = (0 ; 3)

⇒ ∆ − + =

∆ + − − − ⇒ ∆ + + =
r
: x 2y 2 0
b) : 3x y 3 = 0 , u = ( 1 ; 2) : 3x y 2 0
8 Tìm ảnh c
+ − = −
′ ′
 


 
′ ′


 

r
r
2 2
ủa đường tròn (C) : (x + 1) (y 2) 4 qua phép tònh tiến theo vectơ u = (1; 3) .
Giải
x = x + 1 x = x 1
Biểu thức toạ độ của phép tònh tiến T là :
u
y = y 3 y = y + 3
Vì : M(x;y) (
′ ′ ′ ′ ′ ′
+ − = ⇔ + + = ⇔ ∈ + + =

+ + =
2 2 2 2 2 2
C) : (x + 1) (y 2) 4 x (y 1) 4 M (x ;y ) (C ) : x (y 1) 4
2 2
Vậy : Ảnh của (C) là (C ) : x (y 1) 4

→ + −
∆ − +
9 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = (x 1;y 2) .
a) CMR f là phép dời hình .
b) Tìm ảnh của đường thẳng ( ) : x 2y 3
I

− − + −

2 2
2
2 2 2
= 0.
c) Tìm ảnh của đường tròn (C) : (x + 3) + (y 1) = 2 .
d) Tìm ảnh của parabol (P) : y = 4x .
ĐS : b) x 2y 2 = 0 c) (x + 2) + (y 1) = 2 d) (y + 2) = 4(x

→ −
1)
10 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = ( x ;y) . Khẳng đònh nào sau đây
sai ?
A. f là 1 phép dời hình B.
I

Nếu A(0 ; a) thì f(A) = A
C. M và f(M) đối xứng nhau qua trục hoành D. f[M(2;3)] đường thẳng 2x + y + 1 = 0
ĐS : Chọn C . Vì M và f(M) đối xứng nhau qua t →rục tung C sai .
− + + = −
′ ′
 


 
′ ′
+ −
 
r
r
2 2

9 Tìm ảnh của đường tròn (C) : (x 3) (y 2) 1 qua phép tònh tiến theo vectơ u = ( 2;4) .
x = x 2 x = x + 2
Giải : Biểu thức toạ độ của phép tònh tiến T là :
u
y = y 4 y = y 4
′ ′ ′ ′ ′ ′ ′ ′
∈ − + + = ⇔ − + − = ⇔ ∈ − + − =

− + − =
2 2 2 2 2 2
Vì : M(x;y) (C) : (x 3) (y 2) 1 (x 1) (y 2) 1 M (x ;y ) (C ) : (x 1) (y 2) 1
2 2
Vậy : Ảnh của (C) là (C ) : (x 1) (y 2) 1
- 5 -
CHƯƠNG I : PHÉP BIẾN HÌNH

− + + = ⇒ − + − =

+ − + − = −
r
r
2 2 2 2
BT Tương tự : a) (C) : (x 2) (y 3) 1, u = (3;1) (C ) : (x 1) (y 2) 1
2 2
b) (C) : x y 2x 4y 4 0, u = ( 2;3) (C )
+ + − − =
− −
g
2 2
: x y 2x 2y 7 0

10 Trong hệ trục toạ độ Oxy , xác đònh toạ độ các đỉnh C và D của hình bình hành ABCD biết đỉnh
A( 2;0), đỉnh B( 1;0) và giao điểm các đường chéo là I(1;2) .
Giải
= − − = = −
 
− = =
⇔ = ⇔ ⇔ ⇒
 
− = =
 
uur uur uur
g
uur uur
uur
g
Gọi C(x;y) .Ta có : IC (x 1;y 2),AI (3;2),BI (2; 1)
Vì I là trung điểm của AC nên :
x 1 3 x 4
C = T (I) IC AI C(4;4)
AI
y 2 2 y 4
Vì I là trung điểm của AC nên :
D =
 
− = =
 
⇔ = ⇔ ⇔ ⇒
 
− = =
 

 
− ⇒ −

uur uur
uur
x 1 2 x 3
D D
T (I) ID BI D(3;4)
BI
y 2 2 y 4
D D
Bài tập tương tự : A( 1;0),B(0;4),I(1;1) C(3;2),D(2; 2) .
11 Cho 2 đường thẳng song song nhau d và d . Hãy chỉ ra một

′ ′
∈ ∈
′ ′
∈ ⇔ =
uuuuur uuur
uuur
phép tònh tiến
biến d thành d . Hỏi có bao nhiêu phép tònh tiến như thế ?
Giải : Chọn 2 điểm cố đònh A d , A d
Lấy điểm tuỳ ý M d . Gỉa sử : M = T (M) MM AB
AB

′ ′ ′ ′ ′
⇒ = ⇒ ⇒ ∈ ⇒

′ ′

uuuur uuuur
uuur
MA M B M B/ /MA M d d = T (d)
AB
Nhận xét : Có vô số phép tònh tiến biến d thành d .
12 Cho 2 đường tròn (I,R) và (I ,R ) .Hãy chỉ ra một phép tònh tiến biến (I,R)
′ ′
′ ′ ′
⇔ =

′ ′ ′ ′ ′ ′ ′ ′ ′
⇒ = ⇒ = = ⇒ ∈ ⇒

uuuuur uur
uur
uuur uuuur
uur
thành (I ,R ) .
Giải : Lấy điểm M tuỳ ý trên (I,R) . Gỉa sử : M = T (M) MM II
II
IM I M I M IM R M (I ,R ) (I ,R ) = T [(I,R)]
II
13 Cho hình bình hành ABCD , hai đỉnh A,B cố đònh , tâm I thay đổi di động
trên đường tròn (C) .Tìm quỹ tích trung điểm M của cạnh BC.
Giải
Gọi J là trung điểm cạnh AB . Khi đó d =
uuur uur
uur
uur
ễ thấy J cố đònh và IM JB .

Vậy M là ảnh của I qua phép tònh tiến T . Suy ra : Quỹ tích của M là
JB
ảnh của đường tròn (C) trong phép tònh tiến theo vectơ JB

r
2
14 Trong hệ trục toạ độ Oxy , cho parabol (P) : y = ax . Gọi T là phép tònh tiến theo vectơ u = (m,n)
và (P ) là ảnh của (P) qua phép tònh tiến đó . Hãy viết phương trình của

′ ′ ′ ′ ′ ′ ′
→ − −
′ ′
 
− −

⇔ ⇔
 
′ ′
− −
 
′ ′ ′
∈ = ⇔ − − ⇔
r
uuuuur uuuuur
r
g
uuuuur
r
u
(P ) .

Giải :
T
M(x;y) M (x ;y ) , ta có : MM = u , với MM = (x x ; y y)
x x = m x = x m
Vì MM = u
y y = n y = y n
2 2
Mà : M(x;y) (P): y ax y n = a(x m) y =
I
′ ′ ′ ′ ′
− + ⇔ ∈ − +

− + ⇔ − + +
∆ − ≠ ∆ ∆
r
r
r
r
2 2
a(x m) n M (x ;y ) (P ) : y = a(x m) n
2 2 2
Vậy : Ảnh của (P) qua phép tònh tiến T là (P ) : y = a(x m) n y = ax 2amx am n .
u
15 Cho đt : 6x + 2y 1= 0 . Tìm vectơ u 0 để = T ( ) .
u
Gi ∆ − ∆ ∆ ⇔ − = −
⇒ −
− −
r r r r
r

r
ải : VTCP của là a = (2; 6) . Để : = T ( ) u cùng phương a . Khi đó : a = (2; 6) 2(1; 3)
u
chọn u = (1; 3) .
16 Trong hệ trục toạ độ Oxy , cho 2 điểm A( 5;2) , C( 1;0) . Bi
r r
r r
ết : B = T (A) , C = T (B) . Tìm u và v
u v
để có thể thực hiện phép biến đổi A thành C ?
Giải
- 6 -
T
u+v
r r
CHƯƠNG I : PHÉP BIẾN HÌNH

− → → −
r r
u v
T T
A( 5;2) B C( 1;0)I I
.
Ta có : AB u,BC v AC AB BC u v (4; 2)= = ⇒ = + = + = −
uuur uuur uuur uuur uuur
r r r r

− − −
→  →
r r

r r
r r
u v
17 Trong hệ trục toạ độ Oxy , cho 3 điểm K(1;2) , M(3; 1),N(2; 3) và 2 vectơ u = (2;3) ,v = ( 1;2) .
Tìm ảnh của K,M,N qua phép tònh tiến T rồi T .
u v
T T
HD :Gỉa sử : A(x;y) BI I
′ ′
 = = ⇒ = + = + =
′ ′
 
− = =
′ ′ ′
⇔ = ⇔ ⇔ ⇒
 
+
′ ′
− = =
 
′ ′
uuur uuur uuur uuur uuur
r r r r
uuuur
r r
C(x ;y ) . Ta có : AB u,BC v AC AB BC u v (1;5)
x 1 1 x 2
Do đó : K =T (K) KK (1;5) K (2;7) .
u v
y 2 5 y 7

Tương tự : M (4;4) , N (3;2) .
18 Trong hệ trụ
∆ − − ∆


′ ′ ′
→ − →
r r
r
r
r
u u
c toạ độ Oxy , cho ABC : A(3;0) , B( 2;4) , C( 4;5) . G là trọng tâm ABC và phép
tònh tiến theo vectơ u 0 biến A thành G . Tìm G = T (G) .
u
Giải
T T
A(3;0) G( 1;3) G (x ;yI I
′ ′
 
+ = − = −
′ ′
= − = = ⇔ ⇔ ⇒ −
 
′ ′
− = =
 

− + + = + − + + =
uuur uuuur

r r
)
x 1 4 x 5
Vì AG ( 4;3) u . Theo đề : GG u G ( 5;6).
y 3 3 y 6
2 2 2 2
19 Trong mặt phẳng Oxy , cho 2 đường tròn (C) : (x 1) (y 3) 2,(C ): x y 10x 4y 25 0.
Có hay không phe

′ ′ ′
− −

r
r
ùp tònh tiến vectơ u biến (C) thành (C ) .
HD : (C) có tâm I(1; 3), bán kính R = 2 ; (C ) có tâm I (5; 2), bán kính R = 2 .
Ta thấy : R = R = 2 nên có phép tònh tiến theo vectơ u

− ∈∆ − −
=
uuur
g
= (4;1) biến (C) thành (C ) .
20 Trong hệ trục toạ độ Oxy , cho hình bình hành OABC với A( 2;1) và B :2x y 5 = 0 . Tìm tập
hợp đỉnh C ?
Giải
Vì OABC là hình bình hành nên : BC
= − ⇒ = −
′ ′
 

− = = −
′ ′
→ = ⇔ ⇔
 
′ ′
− = − = +
 
′ ′ ′ ′ ′
∈∆ ⇔ − − ⇔ − − ⇔ ∈∆ − −

r
uuur
r
r
uuur
r
g
g
u
AO (2; 1) C T (B) với u = (2; 1)
u
T
x x 2 x x 2
B(x;y) C(x ;y ) . Do : BC u
y y 1 y y 1
B(x;y) 2x y 5 = 0 2x y 10 = 0 C(x ;y ) :2x y 10 = 0
21 Cho ABC . Gọi A ,B ,C
1 1 1
I
lần lượt là trung điểm các cạnh BC,CA,AB. Gọi O ,O ,O và I ,I ,I

1 2 3 1 2 3
tương ứng là các tâm đường tròn ngoại tiếp và các tâm đường tròn nội tiếp của ba tam giác AB C ,
1 1
BC A
1
∆ = ∆
→ → →
⇒ ∆ →∆ → →

uuur uuur uuur
uuur
1 1 1
AB AB AB
2 2 2
, và CA B . Chứng minh rằng : O O O I I I .
1 1 1 1 2 3 1 2 3
HD :
Xét phép tònh tiến : T biến A C,C B,B A .
1 1 1 1
AB
2
T T T
AB C C BA ;O O ;I I .
1 1 1 1 1 2 1 2

I I I
I I I
w

= ⇒ =

= = ⇒ = = ⇒ ∆ = ∆
uuuuuur uuuur
uuur uuur
uuuuuur uuuur uuuuuur uuuur
O O I I O O I I .
1 2 1 2 1 2 1 2
Lý luận tương tự : Xét các phép tònh tiến T ,T suy ra :
1 1
BC CA
2 2
O O I I và O O I I O O I I ,O O I I O O O I I I (
2 3 2 3 3 1 3 1 2 3 2 3 3 1 3 1 1 2 3 1 2 3
w
c.c.c).
µ
µ
µ
·
= = = =
→ ⇔ = =
uuur
o o o
uuuur uuur
BC
22 Trong tứ giác ABCD có AB = 6 3cm ,CD 12cm , A 60 ,B 150 và D 90 .
Tính độ dài các cạnh BC và DA .
HD :
T
Xét : A M AM BC.Ta có : ABCM là hình bình hành và BCM 3Iw
µ

=
o o
0 (vì B 150 )
- 7 -
CHƯƠNG I : PHÉP BIẾN HÌNH
·
·
= − + + = ⇒ =

= + − = + − =

⇒ ∆
o o o o o
o
o
Lại có : BCD 360 (90 60 150 ) 60 MCD 30 .
Đònh lý hàm cos trong MCD :
3
2 2 2 2 2
MD MC DC 2MC.DC.cos30 (6 3) (12) 2.6 3.12. 36
2
MD = 6cm .
1
Ta có : MD = CD và MC = MD 3 MDC là tam giác
2
·
·
·
·
·

⇒ ∆ ⇒ = =
= = = ⇒ ∆
o o
o
đều
MCD là nửa tam giác đều DMC 90 và MDA 30 .
Vậy : MDA MAD MAB 30 AMD là tam giác cân tại M .
⊥ ⇒ ⇒ = ⇒ =
o
6 3
Dựng MK AD K là trung điểm của AD KD=MDcos30 cm AD 6 3cm
2
Tóm lại : BC = AM = MD = 6cm , AD = AB = 6 3cm
Vấn đề 3 : PHÉP ĐỐI XỨNG TRỤC
A , KIẾN THỨC CƠ BẢN


1 ĐN1: Điểm M gọi là đối xứng với điểm M qua đường thẳng a nếu a là đường trung trực của đoạn
MM .
Phép đối xứng qua đường thẳng còn gọi là phép đối xứn

g trục . Đường thẳng a gọi là trục đối xứng.
ĐN2 : Phép đối xứng qua đường thẳng a là phép biến hình biến mỗi điểm M thành điểm M đối xứng
với M qua đường tha
′ ′
= ⇔ = −
uuuuuur uuuuuur
a o o o
úng a .
Kí hiệu : Đ (M) M M M M M , với M là hình chiếu của M trên đường thẳng a .

Khi đó :

∈ =g
a
Nếu M a thì Đ (M) M : xem M là đối xứng với chính nó qua a . ( M còn gọi là điểm bất động )

′ ′
∉ = ⇔
g
a
M a thì Đ (M) M a là đường trung trực của MM

a a
Đ (M) M thì Đ (M ) M
′ ′
= =g

a a
Đ (H) H thì Đ (H ) H , H là ảnh của hình H .
′ ′ ′
= =g

⇔ =g
g
d
ĐN : d là trục đối xứng của hình H Đ (H) H .
Phép đối xứng trục hoàn toàn xác đònh khi biết trục đối xứng của nó .
Chú ý : Một hình có thể không có trục đối xứng ,có thể có một hay nhiều trục đối xứng .
′ ′ ′
→ = =

′ ′
 

≡ ≡
 
′ ′

 
d
2 Biểu thức tọa độ : M(x;y) M Đ (M) (x ;y )
x = x x = x
ª d Ox : ª d Oy :
y = y y = y
I
g
3 ĐL : Phép đối xứng trục là một phép dời hình .

1.Phép đối xứng trục biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự của các
điểm tương ứ
HQ :

→
ng .
2. Đường thẳng thành đường thẳng .
3. Tia thành tia .
4. Đoạn thẳng thành đoạn thẳng bằng nó .
5. Tam giác thành tam giác bằng nó . (Trực tâm trực tâm , trọn

I →
′ ′

→
g tâm trọng tâm )
6. Đường tròn thành đường tròn bằng nó . (Tâm biến thành tâm : I I , R = R )
7. Góc thành góc bằng nó .
I
I
a
PP : Tìm ảnh M = Đ (M)
1. (d) M , d a
2. H = d a
3. H là trung điểm của MM M ?


∋ ⊥

′ ′

- 8 -
CHƯƠNG I : PHÉP BIẾN HÌNH

∆ ∆

∈ ∆ ≠

′ ′ ′ ′
∆ ∋ ∆ → ∆
a
a
ª PP : Tìm ảnh của đường thẳng : = Đ ( )
TH1:( )// (a)

1. Lấy A,B ( ) : A B
2. Tìm ảnh A = Đ (A)
3. A , // (a)
w

∆ ∩
∈∆ ≠

∆ ≡
a
TH2 : // a
1. Tìm K = a
2. Lấy P : P K .Tìm Q = Đ (P)
3. (KQ)
w

ª
PP :
∈ ∆
min
Tìm M ( ) : (MA + MB) .
∈ ∆



′ ′
∀ ∈ ∆ = ≥
′ ′
⇔ ∩ ∆
min

min
Tìm M ( ) : (MA+ MB)
Loại 1 : A, B nằm cùng phía đối với ( ) :
1) gọi A là đối xứng của A qua ( )
2) M ( ), thì MA + MB MA + MB A B
Do đó: (MA+MB) = A B M = (A B) ( )
w

∀ ∈ ∆ ≥
⇔ ∩ ∆
min
Loại 2 : A, B nằm khác phía đối với ( ) :
M ( ), thì MA + MB AB
Ta có: (MA+MB) = AB M = (AB) ( )
w
B . BÀI TẬP
′ ′′
→ − → − −
Đ
Đ
Oy
Ox
1 Trong mpOxy . Tìm ảnh của M(2;1) đối xứng qua Ox , rồi đối xứng qua Oy .
HD : M(2;1) M (2; 1) M ( 2; 1)
2 Trong mpOxy . Tìm ảnh của M(a;b) đối xứng qua Oy , rồi đối xứ
I I
′ ′′
→ − → − −
′ ′′
− − → →

′ ′′
− → →
Đ
Đ
Oy
Ox
Đ Đ
a b
Đ Đ
a b
ng qua Ox .
HD : M(a;b) M ( a;b) M ( a; b)
3 Cho 2 đường thẳng (a) : x 2 = 0 , (b) : y + 1 = 0 và điểm M( 1;2) . Tìm : M M M .
HD : M( 1;2) M (5;2)
I I
I I
I I −

′′ ′ ′ ′ ′′ ′′ ′′
→ →


= −

→


=

Đ Đ

a b
Đ Đ
a b
tđ(m;y) tđ(
M (5; 4) [ vẽ hình ] .
4 Cho 2 đường thẳng (a) : x m = 0 (m > 0) , (b) : y + n = 0 (n > 0).
Tìm M : M(x;y) M (x ;y ) M (x ;y ).
x 2m x
HD : M(x;y) M
y y
I I
− −
′′

= −
′′
→

′′
= − −


′ ′
− ∩ → − → − −

2m x; n)
x 2m x
M
y 2n y
5 Cho điểm M( 1;2) và đường thẳng (a) : x + 2y + 2 = 0 .

HD : (d) : 2x y + 4 = 0 , H = d a H( 2;0) , H là trung điểm của MM M ( 3; 2)
6 Cho điểm M( 4;

⇒ = −

∆ − − ∆ ∆

≠g
a
a
1) và đường thẳng (a) : x + y = 0 . M = Đ (M) ( 1;4)
7 Cho 2 đường thẳng ( ) : 4x y + 9 = 0 , (a) : x y + 3 = 0 . Tìm ảnh = Đ ( ) .
HD :
4 1

1
⇒ ∆ → = ∆ ∩ → −

′ ′
− ∈∆ → ∋ ⊥ → + − = → → = =
′ ′
∆ ≡ −
g
g
a
cắt a K a K( 2;1)
1
M( 1;5) d M, a d : x y 4 0 H(1/ 2;7/ 2): tđiểm của MM M Đ (M) (2;2)
KM : x 4y + 6 = 0
∩ −


≡ ∈ − −

≡ +
g
g
g
a
a
a
8 Tìm b = Đ (Ox) với đường thẳng (a) : x + 3y + 3 = 0 .
HD : a Ox = K( 3;0) .
3 9
M O(0;0) Ox : M = Đ (M) = ( ; ) .
5 5
b KM : 3x + 4y 9 = 0 .
9 Tìm b = Đ (Ox) với đườ −ng thẳng (a) : x + 3y 3 = 0 .
- 9 -
CHƯƠNG I : PHÉP BIẾN HÌNH

≡ ∈

∆ → ∆ − =



∩ ∆ → →
≡ −
g
g

g
g
g
HD : a Ox = K(3;0) .
P O(0;0) Ox .
+ Qua O(0;0)
:3x y 0
+ a
3 9 3 9
E = a E( ; ) là trung điểm OQ Q( ; ) .
10 10 5 5
b KQ : 3x + 4y 9 = 0 .
1

∩ →
∈ ⇒ −
g
g
Ox
Ox
0 Tìm b = Đ (a) với đường thẳng (a) : x + 3y 3 = 0 .
Giải :
Cách 1: Dùng biểu thức toạ độ (rất hay)
Cách 2 : K= a Ox K(3;0)
P(0;1) a Q = Đ (P) = (0; 1)

≡ − −
g b KQ : x 3y 3 = 0 .

∆ − − − ∆ ∆


′ ′ ′ ′ ′ ′
∈∆ → ∈∆ ⇒ ∆ ≡
′ ′ ′ ′ ′
∈∆ → ∈∆ ⇒ ∆ ∆ ∆ ∋
a
11 Cho 2 đường thẳng ( ) : x 2y + 2 = 0 , (a) : x 2y 3 = 0 . Tìm ảnh = Đ ( ) .
PP : / /a
Cách 1 : Tìm A,B A ,B A B
Cách 2 : Tìm A A / / , A

∈∆ → = = −
′ ′ ′ ′
∆ ∋ ∆ ∆ ⇒ ∆ − − =

+ − = −

− + =
g
g
a
2 2
a
2 2
Giải : A(0;1) A Đ (A) (2; 3)
A , / / : x 2y 8 0
12 Cho đường tròn (C) : (x+3) (y 2) 1 , đường thẳng (a) : 3x y + 1= 0 . Tìm (C ) = Đ [(C)]
HD : (C ) : (x 3) y 1 .
∆ −
∆ ∆

∆ = ∆
Ox
13 Trong mpOxy cho ABC : A( 1;6),B(0;1) và C(1;6) . Khẳng đònh nào sau đây sai ?
A. ABC cân ở B B. ABC có 1 trục đối xứng
C. ABC Đ ( ABC)
Oy
D. Trọng tâm : G = Đ (G)
HD : Chọn D
− ∆ − + + =
∆ −

2 2
14 Trong mpOxy cho điểm M( 3;2), đường thẳng ( ) : x + 3y 8 = 0, đường tròn (C) : (x+3) (y 2) 4.
Tìm ảnh của M, ( ) và (C) qua phép đối xứng trục (a) : x 2y + 2 = 0 .
Giải : Gọi M ,
′ ′
∆ ∆






⊥ → + ∋ − ⇒ ⇒ +
g
g
( ) và (C ) là ảnh của M, ( ) và (C) qua phép đối xứng trục a .
Qua M( 3;2)
a) Tìm ảnh M : Gọi đường thẳng (d) :
a

+ (d) (a) (d) : 2x y + m = 0 . Vì (d) M( 3;2) m = 4 (d):2x y
+
4 = 0







= +


∩ ⇒ − ⇒ ⇔


= +


− = − +


=−

⇔ ⇔ ⇒ − −
 
=−


= +




≠ ⇒ ∆

g
H M M
H M M
M
M
M
M
1
x (x x )
2
+ H = (d) (a) H( 2;0) H là trung điểm của M,M H
1
y (y y )
2
1
2 ( 3 x )
x 1
2
M ( 1; 2)
1 y 2
0 (2 y )
2
b) Tìm ảnh ( ) :
1 3
Vì ( ) cắt (a

1 2
⇒ ∆ ∩


⇒ ⇔



) K= ( ) (a)
x + 3y 8 = 0
Toạ độ của K là nghiệm của hệ : K(2;2)
x 2y + 2 = 0
≠ ⇒ − −





g
g
g
a
Lấy P K Q = Đ [P( 1;3)] = (1; 1) . ( Làm tương tự như câu a) )
Qua P( 1;3)
Gọi đường thẳng (b) :
a
- 10 -
CHƯƠNG I : PHÉP BIẾN HÌNH
⊥ → + ∋ − ⇒ − ⇒ + −
∩ ⇒ ⇒ ⇔

 
= + = − +
 
 
⇔ ⇔ ⇔
 
 
= + = +
 
 
E P Q Q
E P Q Q
+ (b) (a) (b) : 2x y + m = 0 . Vì (b) P( 1;3) m = 1 (b):2x y 1 = 0
+ E = (b) (a) E(0;1) E là trung điểm của P,Q
1 1
x (x x ) 0 ( 1 x )
x
2 2
E
1 1
y (y y ) 1 (3 y )
2 2

=

⇒ −

= −




− −
′ ′
∆ ≡ ⇒ ∆ = ⇔ − − =

= − − = −

g
uuur
g
Q
Q
1
Q(1; 1)
y 1
Qua K(2;2)
x 2 y 2
+ ( ) (KQ) : ( ): 3x y 4 0
1 3
VTCP :KQ ( 1; 3) (1;3)
{ {


′ ′
→ →

= = =

+
g g

g g
Đ Đ
a a
c) + Tìm ảnh của tâm I( 3;2) như câu a) .
Tâm I Tâm I
+ Vì phép đối xứng trục là phép dời hình nên (C): (C ): .Tìm I I
R 2 R R 2
+ Tâm I( 3;2)
Vậy : (C)
BK :
I I
{



− − = −

→



+


→ + + − =
Đ
a
a
2 2
2 2

+ Tâm I = Đ [I( 3; 2)] ( ; )
(C )
5 5
R = 2
BK : R = R = 2
2 2
(C ) : (x ) (y ) 4
5 5
I
− ∆ − + − =
∆ −

2 2
15 Trong mpOxy cho điểm M(3; 5), đường thẳng ( ) : 3x + 2y 6 = 0, đường tròn (C) : (x+1) (y 2) 9.
Tìm ảnh của M, ( ) và (C) qua phép đối xứng trục (a) : 2x y + 1 = 0 .
HD :
a) M(3; 5) I

→ − − + + = − −
∆ ∩ →

∈ ∆ ≠ − ⇒ ∆ ≡ − + =

Đ
a
a
33 1 9 13
M ( ; ),(d): x 2y 7 0,tđiểm H( ; )
5 5 5 5
4 15

b) + K= (a) K( ; )
7 7
+ P ( ) : P(2;0) K , Q = Đ [P(2;0)] = ( 2;2) ( ) (KQ) : x 18y 38 0
c) + I(1; 2)
′ ′ ′
→ − ⇒ + − =
Đ
2 2
a
9 8 9 8
I ( ; ) , R = R = 3 (C ) : (x + ) (y ) 9
5 5 5 5
I
− ∆ − + − + + =



=

→


= −

2 2
Đ
Ox
16 Cho điểm M(2; 3), đường thẳng ( ) : 2x + y 4 = 0, đường tròn (C) : x y 2x 4y 2 0.
Tìm ảnh của M, ( ) và (C) qua phép đối xứng qua Ox .
x x

HD : Ta có : M(x;y) M (
y y


=



= −


− →
g
Đ
Ox
x x
1) (2)
y y
Thay vào (2) : M(2; 3) M (2;3)
′ ′ ′ ′ ′ ′
∈ ∆ ⇔ − − ⇔ ∈ ∆ − −
′ ′ ′ ′
∈ + − + + = ⇔ + − − + =
′ ′ ′ ′ ′ ′
⇔ − + − = ⇔ ∈ − + − =
g
g
2 2 2 2
2 2 2 2
M(x;y) ( ) 2x y 4 = 0 M (x ;y ) ( ) : 2x y 4 = 0 .

M(x;y) (C) : x y 2x 4y 2 0 x y 2x 4y 2 0
(x 1) (y 2) 3 M (x ;y ) (C ) : (x 1) (y 2) 3

′ ′
 
= =

→ ⇒
 
′ ′
= − = −
 
′ ′ ′ ′ ′
∈ − ⇔ − − ⇔ + ⇔
Ox
Đ
Ox
17 Trong mpOxy cho đường thẳng (a) : 2x y+3 = 0 . Tìm ảnh của a qua Đ .
x x x x
Giải : Ta có : M(x;y) M
y y y y
Vì M(x;y) (a) : 2x y+3 = 0 2(x ) ( y )+3 = 0 2x y +3 = 0 M (
I
′ ′ ′
∈ +

→ +
Đ
Oy
x ;y ) (a ) : 2x y + 3 = 0

Vậy : (a) (a ) : 2x y + 3 = 0 I
+ − −
′ ′
 
= − = −

→ ⇒
 
′ ′
= =
 
′ ′ ′ ′ ′
∈ + − − ⇔ − + − − ⇔ +
2 2
Oy
Đ
Oy
2 2 2 2 2
18 Trong mpOxy cho đường tròn (C) : x y 4y 5 = 0 . Tìm ảnh của a qua Đ .
x x x x
Giải : Ta có : M(x;y) M
y y y y
Vì M(x;y) (C) : x y 4y 5 = 0 ( x ) y 4(y ) 5 = 0 x
I
− −
′ ′ ′ ′
⇔ ∈ + − −

→ + − −
2

2 2
Đ
Oy
2 2
y 4y 5 = 0
M (x ;y ) (C ) : x y 4y 5 = 0
Vậy : (C) (C ) : x y 4y 5 = 0I
- 11 -
CHƯƠNG I : PHÉP BIẾN HÌNH
− − ∆ − + + − − +

2 2
a
a
19 Trong mpOxy cho đthẳng (a) : 2x y 3 = 0 , ( ) : x 3y 11 = 0 , (C) : x y 10x 4y 27 = 0 .
a) Viết biểu thức giải tích của phép đối xứng trục Đ .
b) Tìm ảnh của điểm M(4; 1) qua Đ .
′ ′
∆ ∆ =
+ ≠
′ ′ ′ ′ ′ ′ ′
→ = − − ⇒ =


uuuuur uuuuur
r r
a a
2 2
Đ
a

c) Tìm ảnh : ( ) = Đ ( ),(C ) Đ (C) .
Giải
a) Tổng quát (a) : Ax + By + C=0 , A B 0
Gọi M(x;y) M (x ;y ) , ta có : MM (x x;y y) cùng phương VTPT n = (A;B) MM tn
x

I
′ ′

+ +
 
− = = +

⇒ ∀ ∈ ∈
 
′ ′
− = = +
 
′ ′
+ + + + + +
⇔ + + = ⇔ + + =

⇔ + = − ⇔ =
¡
2 2
x x y y
x At x x At
( t ) . Gọi I là trung điểm của MM nên I( ; ) (a)
y y Bt y y Bt
2 2

x x y y x x At y y Bt
A( ) B( ) C 0 A( ) B( ) C 0
2 2 2 2
2(Ax + By + C)
(A B )t 2(Ax + By + C) t
A +


′ ′
⇒ = − = −


 + +
 
− −
′ ′
= − = − + +
 
 

 
− −
 
′ ′
= + = + −
 
 

− → −
2 2

2 2 2 2
Đ
a
B
2A(Ax + By + C) 2B(Ax + By + C)
x x ;y y
A B A B
4(2x y 3) 3 4 12
x x x x y
5 5 5 5
Áp dụng kết quả trên ta có :
2(2x y 3) 4 3 6
y y y y y
5 5 5 5
4 7
b) M(4; 1) M ( ;
5
I

∆ → ∆ + − =

→ − + − =
Đ
a
Đ
2 2
a
)
5
c) :3x y 17 0

d) (C) (C ):(x 1) (y 4) 2
I
I
20 Trong mpOxy cho đường thẳng ( ) : x 5y 7 = 0 và ( ) : 5x y 13 = 0 . Tìm phép đối xứng qua
trục biến ( ) thành ( ) .

∆ − + ∆ − −

∆ ∆
Giải
1 5
Vì ( ) và ( ) cắt nhau . Do đó trục đối xứng (a) của phép đối xứng biến ( ) thành ( ) chính
5 1
là đường phân giác của góc tạo bởi ( ) và ( ) .

′ ′
≠ ⇒ ∆ ∆ ∆ ∆


∆ ∆
1
2
1 2
x y 5 0 (a )
| x 5y 7 | | 5x y 13|
Từ đó suy ra (a) :
x y 1 0 (a )
1 25 25 + 1
Vậy có 2 phép đối xứng qua các trục ( ) : x y 5 0 , ( ): x y 1 0


+ − =
− + − −
= ⇔

− − =
+

∆ + − = ∆ − − =

a
21 Qua phép đối xứng trục Đ :
1. Những tam giác nào biến thành chính nó ?
2. Những đường tròn nào biến thành chính nó ?
HD :
1. Tam giác có 1 đỉnh trục a , hai đỉnh còn lại đ

− + − =

→ + + −
2 2
2
ối xứng qua trục a .
2. Đường tròn có tâm a .
22 Tìm ảnh của đường tròn (C) : (x 1) (y 2) 4 qua phép đối xứng trục Oy.
PP : Dùng biểu thức toạ độ ĐS : (C ) : (x 1) (y 2 =
′ ′ ′
∆ ∆
′ ′ ′
− −
2

) 4
23 Hai ABC và A B C cùng nằm trong mặt phẳng toạ độ và đối xứng nhau qua trục Oy .
Biết A( 1;5),B( 4;6),C (3;1) . Hãy tìm toạ độ các đỉnh A , B và C .

′ ′
− ĐS : A (1;5), B (4;6) và C( 3;1)
24 Xét các hình vuông , ngũ giác đều và lục giác đều . Cho biết số trục đối xứng tương ứng của mỗi
loại đa giác đều đó và chỉ ra cách vẽ các trục đối xứng đó .
- 12 -
CHƯƠNG I : PHÉP BIẾN HÌNH
g
g
ĐS :
Hình vuông có 4 trục đối xứng , đó là các đường thẳng đi qua 2 đỉnh đối diện và các đường thẳng
đi qua trung điểm của các cặp cạnh đối diện .
Ngũ giác đều co
g
ù 5 trục đối xứng ,đó là các đường thẳng đi qua đỉnh đối diện và tâm của ngũ giác đều .
Lục giác đều có 6 trục đối xứng , đó là các đường thẳng đi qua 2 đỉnh đối diện và các đường thẳng đi
qua trung điểm của các cặp cạnh đối diện .



d
25 Gọi d là phân giác trong tại A của ABC , B là ảnh của B qua phép đối xứng trục Đ . Khẳng đònh
nào sau đây sai ?
A. Nếu AB < AC thì B ở trên cạnh AC .





′ ′

d

B. B là trung điểm cạnh AC .
C. Nếu AB = AC thì B C .
D. Nếu B là trung điểm cạnh AC thì AC = 2AB .
ĐS : Nếu B = Đ (B) thì B AC .
′ ′ ′

′ ′ ′
⇒ ≡
g
g
g
A đúng . Vì AB < AC mà AB = AB nên AB < AC B ở trên cạnh AC .
1
B sai . Vì giả thiết bài toán không đủ khẳng đònh AB = AC.
2
C đúng . Vì AB = AB mà AB = AC nên AB = AC B C .

′ ′ ′
→ →
g
a b
Đ Đ
a b
D đúng . Vì Nếu B là trung điểm cạnh AC thì AC=2AB mà AB =AB nên AC=2AB .
26 Cho 2 đường thẳng a và b cắt nhau tại O . Xét 2 phép đối xứng trục Đ và Đ :

A B CI I



. Khẳng đònh nào sau đây không sai ?
A. A,B,C đường tròn (O, R = OC) .
B. Tứ giác OABC nội tiếp .
C. ABC cân ở B
D. ABC vuông ở B

⇒ ⇒ ⇒ ∈
g
g
1 2
HD : A. Không sai . Vì d là trung trực của AB OA = OB , d là trung trực
của BC OB = OC OA = OB = OC A,B,C đường tròn (O, R = OC) .
Các câu B,C,D có thể sai .

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
27 Cho ABC có hai trục đối xứng . Khẳng đònh nào sau đây đúng ?
A. ABC là vuông B. ABC là vuông cân C. ABC là đều D. ABC là cân .



⇒ ⇒ = = ⇒ ∆


HD: Gỉa sử ABC có 2trục đối xứng là AC và BC
AB = AC
AB AB BC ABC đều .

BC = BA
µ
µ
µ
µ
µ
µ
µ
µ
µ
µ
µ
∆ = ∆
= = = =
o
o o o o o o o
28 Cho ABC có A 110 . Tính B và C để ABC
có trục đối xứng .
A. B = 50 và C 20 B. B = 45 và C 25 C. B = 40 và C 30 D. B = C 35


µ
µ
µ
µ
o o
o o o
o
HD : Chọn D . Vì : ABC có trục đối xứng khi ABC cân hoặc đều
Vì A 110 90 ABC cân tại A , khi đó :

180 A 180 110
B C 35
2 2
∆ ∆
= > ⇒ ∆
− −
= = = =

29 Trong các hình sau , hình nào có nhiều trục đối xứng nhất ?
A. Hình chữ nhật B. Hình vuông C. Hình thoi D. Hình thang cân .
ĐS : Chọn B. Vì : Hình vuông có 4 trục đối xứng .
30 Trong các hình sau , hình nào có ít trục đối xứng nhất ?
A. Hình chữ nhật B. Hình vuông C. Hình thoi D. Hình thang cân .
ĐS : Chọn D. Vì : Hình thang cân có 1 trục đối xứng .
- 13 -
CHƯƠNG I : PHÉP BIẾN HÌNH
∆ ∆
31 Trong các hình sau , hình nào có 3 trục đối xứng ?
A. Hình thoi B. Hình vuông C. đều D. vuông cân .


ĐS : Chọn C. Vì : đều có 3 trục đối xứng .
32 Trong các hình sau , hình nào có nhiều hơn 4 trục đối xứng ?
A. Hình vuông B. Hình thoi C. Hình tròn D. Hình thang cân .
ĐS : Chọn C. Vì : Hình tròn có vô số trục đối xứng .
33 Trong các hình sau , hình nào không có trục đối xứng ?
A. Hình bình hà
∆ ∆
nh B. đều C. cân D. Hình thoi .
ĐS : Chọn A. Vì : Hình bình hành không có trục đối xứng .

34 Cho hai hình vuô
′ ′ ′
′ ′ ′
′ ′

ng ABCD và AB C D có cạnh đều bằng a và có đỉnh A chung .
Chứng minh : Có thể thực hiện một phép đối xứng trục biến hình vuông ABCD thànhø AB C D .
HD : Gỉa sử : BC B C = E .
µ
µ
′ ′
= =


′ ′
⇒ ∆ ∆ ⇒ ⇒ →



o
Đ
AE
Ta có : AB = AB , B B 90 ,AE chung .
EB = EB
ABE = AB F B B
biết AB = AB
I

·
·

·



⇒ →




′ ′
= = −
′ ′ ′ ′
⇒ → ⇒ →
o
Đ
AE
Đ Đ
A AE
EC = EC
Mặt khác : C C
AC = AC = a 2
BAB
Ngoài ra : AD = AD và D AE DAE 90
2
D D ABCD AB C D
I
I I


35 Gọi H là trực tâm ABC . CMR : Bốn tam giác ABC , HBC , HAC , HAC có

đường tròn ngoại tiếp bằng nhau .




»

¶ ¶

⊥ ⇒
⇒ ∆ ⇒
→ →
1 2
1 1 1 2
Đ Đ
BC BC
HD :
Ta có : A = C (cùng chắn cung BK )
A = C (góc có cạnh tương ứng ) C = C
CHK cân K đối xứng với H qua BC .
Xét phép đối xứng trục BC .
Ta có : K H ; B B ;I I →
∆ → ∆
Đ
BC
Đ
BC
C C
Vậy : Đường tròn ngoại tiếp KBC Đường tròn ngoại tiếp HBC
I

I




a
36 Cho ABC và đường thẳng a đi qua đỉnh A nhưng không đi qua B,C .
a) Tìm ảnh ABC qua phép đối xứng Đ .
b) Gọi G là trọng tâm ABC , Xác đònh G là ảnh của G qua phép đối xứng Đ
a
.
a
a
a
a
Giải
a) Vì a là trục của phép đối xứng Đ nên :
A a A Đ (A) .
B,C a nên Đ :B B,C C sao cho a là trung trực của BB ,CC
b) Vì G a nên Đ :G G sao cho a là trung trực
∈ ⇒ =
′ ′ ′ ′
∉ → →

∉ →
g
g I I
I của GG .



→

∀ ∈
37 Cho đường thẳng a và hai điểm A,B nằm cùng phía đối với a . Tìm trên đường
thẳng a điểm M sao cho MA+MB ngắn nhất .
Giải : Xét phép đối xứng Đ :A A .
a
M a thì MA = MA . Ta c
I
′ ′


ó : MA + MB = MA + MB A B
Để MA + MB ngắn nhất thì chọn M,A,B thẳng hàng
Vậy : M là giao điểm của a và A B .
- 14 -
CHƯƠNG I : PHÉP BIẾN HÌNH

38 (SGK-P13)) Cho góc nhọn xOy và M là một điểm bên trong góc đó . Hãy
tìm điểm A trên Ox và điểm B trên Oy sao cho MBA có chu vi nhỏ nhất .
Giải
Gọi N = Đ (M) và P = Đ (M) . Khi
Ox Ox


đó : AM=AN , BM=BP
Từ đó : CVi = MA+AB+MB = NA+AB+BP NP
( đường gấp khúc đường thẳng )
MinCVi = NP Khi A,B lần lượt là giao điểm của NP với Ox,Oy .



39 Cho ABC cân tại A với đường cao AH . Biết A và H cố đònh . Tìm tập hợp
điểm C trong mỗi trường hợp sau :
a) B di động trên đường thẳng .
b) B di động trên đường trò
′ ′
∈∆ ∈∆ ∆ ∆


n tâm I, bán kính R .
Giải
a) Vì : C = Đ (B) , mà B nên C với = Đ ( )
AH AH
Vậy : Tập hợp các điểm C là đường thẳng
b) Tương tự : Tập hợp các điểm C là đường tròn tâm J , bán kính R là ảnh của
đường tròn (I) qua Đ .
AH
Vấn đề 4 : PHÉP ĐỐI XỨNG TÂM

1 ĐN : Phép đối xứng tâm I là một phép dời hình biến mỗi điểm M thành điểm M đối xứng với M qua I.
Phép đối xứng qua một điểm còn gọi là phép đối tâm .
Điểm I gọi là tâm của của phép đối xứng hay đơn giản là tâm đối xứng .

Kí hiệu : Đ (M) M IM IM .
I
′ ′
= ⇔ = −
uuur uuur



≡ ≡
′ ′
≠ = ⇔
⇔ =
g
g
g
Nếu M I thì M I
Nếu M I thì M Đ (M) I là trung trực của MM .
I
ĐN :Điểm I là tâm đối xứng của hình H Đ (H) H.
I
Chú ý : Một hình có thể không có tâm đối xứng .

′ ′ ′
→ = =






= −


I
Đ
2 Biểu thức tọa độ : Cho I(x ;y ) và phép đối xứng tâm I : M(x;y) M Đ (M) (x ;y ) thì
o o I
x = 2x x

o

y 2y y
o
3 Tính chất :
1. Phép đối xứng tâm bảo toàn khoảng cách giư
I
õa hai điểm bất kì .
2. Biến một tia thành tia .
3. Bảo toàn tính thẳng hàng và thứ tự của các điểm tương ứng .


4. Biến một đoạn thẳng thành đoạn thẳng bằng nó .
5. Biến một đường thẳng thành một đường thẳng song song hoặc trùng với đường thẳng đã cho .
6. Biến một góc thành góc có
→ →

số đo bằng nó .
7. Biến tam giác thành tam giác bằng nó . ( Trực tâm trực tâm , trọng tâm trọng tâm )

′ ′
→ 8. Đường tròn thành đường tròn bằng nó . ( Tâm biến thành tâm : I I , R = R )I
B . BÀI TẬP

− ⇒
1 Tìm ảnh của các điểm sau qua phép đối xứng tâm I :
1) A( 2;3) , I(1;2) A (4;1)

− ⇒ − 2) B(3;1) , I( 1;2) B( 5;3)
3) C(2;4) , I(3;1)


⇒ − C (4; 2)
{ {
Giải :
x 1 3 x 4
a) Gỉa sử : A Đ (A) IA IA (x 1;y 2) ( 3;1) A (4;1)
I
y 2 1 y 1
Cách : Dùng biểu thức toạ độ
′ ′
− = =
′ ′ ′ ′
= ⇔ = − ⇔ − − = − − ⇔ ⇔ ⇒
′ ′
− = − =

uur uur
- 15 -
CHƯƠNG I : PHÉP BIẾN HÌNH

∆ + + = − ⇒ ∆ + − =

2 Tìm ảnh của các đường thẳng sau qua phép đối xứng tâm I :
1) ( ): x 2y 5 0,I(2; 1) ( ): x 2y 5 0
2) ( )

− − = ⇒ ∆ − + =
∆ + − = −
: x 2y 3 0,I(1;0) ( ): x 2y 1 0
3) ( ):3x 2y 1 0,I(2; 3)


⇒ ∆ + + = ( ):3x 2y 1 0
′ ′ ′
∆ ∆ ∆ ∆ → ∆
′ ′ ′ ′
∈∆ ∈∆ ⇒
Giải
PP : Có 3 cách
Cách 1:Dùng biểu thức toạ độ
Cách 2 : Xác đònh dạng // , rồi dùng công thức tính khoảng cách d( ; ) .
Cách 3: Lấy bất kỳ A,B , rồi tìm ảnh A ,B
′ ′
∆ ≡
′ ′
 
= − = −

→ ⇒
 
′ ′
= − − = − −
 
I
A B
Đ
x 4 x x 4 x
1) Cách 1:Ta có : M(x;y) M
y 2 y y 2 y
I
′ ′ ′ ′

∈∆ ⇔ + + = ⇔ − + − − + = ⇔ + − =
′ ′ ′ ′
⇔ ∈∆ + − =

∆ → ∆ + − =
′ ′
∆ ∆ ⇒ ∆ ∆
I
Vì M(x;y) x 2y 5 0 (4 x ) 2( 2 y ) 5 0 x 2y 5 0
M (x ;y ) :x 2y 5 0
Đ
Vậy : ( ) ( ) :x 2y 5 0
Cách 2 : Gọi = Đ ( ) song song
I
I

⇒ ∆ ≠

=

∆ ∆ ⇔ = ⇔ = − ⇔

= −

+ +
: x + 2y + m = 0 (m 5) .
|5| | m |
m 5 (loại)
Theo đề : d(I; ) = d(I; ) 5 | m |
m 5

2 2 2 2
1 2 1 2


→ ∆ + − =
′ ′ ′ ′ ′
− − − ∈∆ ⇒ − ⇒ ∆ ≡ + − =
( ): x 2y 5 0
Cách 3: Lấy : A( 5;0),B( 1; 2) A (9; 2),B (5;0) A B : x 2y 5 0

+ − = ⇒ − + =
3 Tìm ảnh của các đường tròn sau qua phép đối xứng tâm I :
2 2 2 2
1) (C): x (y 2) 1,E(2;1) (C ):(x 4) y 1
2
2) (C): x

+ + + = ⇒ + − − + =
− + →
2 2 2
y 4x 2y 0,F(1;0) (C ): x y 8x 2y 12 0
đ / nghiã hay biểu thức toạ độ
2
3) (P) : y = 2x x 3 , tâm O(0;0) .

− − −
′ ′
→ = =
E
2

(P ):y = 2x x 3
HD :a) Co ù 2 cách giải :
Cách 1: Dùng biểu thức toạ độ .
Đ
Cách 2 : Tìm tâm I I ,R R (đa õ cho) .
b) Tương tự .
4 Cho hai điểm A và B .Cho biết phép biến đổi M thàn
I
′ ′
h M sao cho AMBM là một hình bình hành .


 =




=


′ ′
= + = +
= −

⇒ =
uuuur uuuur
uuur uuuur
uuuuur uuuur uuuur uuuur uuur
uur uur
uuuuur u r

HD :
MA BM
Nếu AMBM là hình bình hành
MB AM
Vì : MM MA AM MA MB (1)
Gọi I là trung điểm của AB . Ta có : IA IB
Từ (1) MM MI

+ + + ⇒ =
′ ′
⇔ = ⇔ =
uu uur uuur uur uuuuur uuur
uuur uuur
IA MI IB MM 2MI
MI IM M Đ (M) .
I
5 Cho ba đường tròn bằng nhau (I ;R),(I ;R),(I ;R) từng đôi tiếp
1 2 3
xúc nhau tại A,B,C . Gỉa sử M là một điểm trên
→ → → →
I
C
A B 1
(I ;R) , ngoài ra :
1
Đ
Đ
Đ Đ
M N ; N P ; P Q . CMR : M Q .I I I I


→ → ⇒ → ⇔ = −
uuuur uuuur
A A A
HD :
Do (I ;R) tiếp xúc với (I ;R) tại A , nên :
1 2
Đ Đ Đ
M N ;I I MI NI MI NI (1)
1 2 1 2 1 2
I I I
- 16 -
CHƯƠNG I : PHÉP BIẾN HÌNH


→ → ⇒ → ⇔ = −

→ → ⇒  →
uuuur uuur
B B B
C C C
Do (I ;R) tiếp xúc với (I ;R) tại B , nên :
2 3
Đ Đ Đ
N P ;I I NI PI NI PI (2)
2 3 2 3 2 3
Do (I ;R) tiếp xúc với (I ;R) tại C , nên :
3 1
Đ Đ Đ
P Q ;I I PI
3 1 3

I I I
I I I  ⇔ = −
= − ⇔ =

uuur uuur
uuuur uuur
1
QI PI QI (3)
1 3 1
Từ (1),(2),(3) suy ra : MI QI M Đ (Q) .
1 1 I
5 Cho ABC là tam giác vuông tại A . Kẻ đường cao AH . Vẽ phía


{ }
ngoài tam giác hai hình vuông ABDE và ACFG .
a) Chứng minh tập hợp 6 điểm B,C,F,G,E,D co ù một trục đối xứng .
b) Gọi K là trung điểm của EG . Chứng minh K ở trên đường thẳn

⊥ ⊥
g AH .
c) Gọi P = DE FG . Chứng minh P ở trên đường thẳng AH .
d) Chứng minh : CD BP, BF CP .
e) Chứng minh : AH,CD,BF đồng qui .
·
·
= =
• → → → →
→
o o

DF DF DF DF
DF
HD :
a) Do : BAD 45 và CAF 45 nên ba điểm D,A,F thẳng hàng .
Đ Đ Đ Đ
Ta có : A A ; D D ; F F ; C G ;
Đ
B E (Tính chất hình vuông ).
Vậy : Tập
l l l l
l
{ }
·
·
· ·
∆ ∆ =
= ∆
hợp 6 điểm B,C,F,G,E,D co ù trục đối xứng chính là đường thẳng DAF .
b) Qua phép đối xứng trục DAF ta có : ABC = AEG nên BAC AEG.
Nhưng : BCA AGE ( 2 đối xứng = )

·



= ∆ = ⇒ ⇒ AGE A (do KAG cân tại K) . Suy ra : A A K,A,H thẳng hàng K ở trên AH .
2 1 2
c) Tứ giác AFPG là một hình chữ nhật nên : A,K,P thẳng hàng . (Hơn nữa K là trung điểm của AP )

·

·
• ∆ ∆


• ⇒ ∆ = ∆ ⇒ = ⇒ =



⊥ ⇒
Vậy : P ở trên PH .
d) Do EDC = DBP nên DC = BP .
DC = BP
Ta có : DB = AB BDC ABP CD BP BCD APB nhưng hai góc này có cặp
BC = AP
cạnh : BC AP cặp cạnh cò ⊥

∆ ∆
n lại : DC BP.
Lý luận tương tự , ta có : BF CP.
e) Ta có : BCP . Các đường thẳng AH, CD và BF chính là ba đường cao của BCP nên đồng qui .

=
uuur
o
o
2AB
6 Cho hai điểm A và B và gọi Đ và Đ lần lượt là hai phép đối xứng tâm A và B .
A B
a) CMR : Đ Đ T .
B A

b) Xác đònh Đ Đ .
A B
HD : a) Gọi M là một điểm bất kỳ , ta có :
M
w
′ ′
→ =
′ ′′ ′′ ′′
→ = ∀
uuuur uuuur
uuur uuuuur
o
A
B
Đ
M : MA AM
Đ
M M : MB BM . Nghóa là : M = Đ Đ (M), M (1)
B A
I
I
′′
→
′′ ′ ′ ′′
= +
′ ′ ′′ ′
= =
′′ ′ ′
= + = + +
=

o
uuuuur uuuuur uuuuuur
uuuuur uuuur uuuuuur uuuur
uuuuur uuuur uuuur uuuur uuuur uuur
uuuur
B A
Đ Đ
Ta chứng minh : M M :
Biết : MM MM M M
Mà : MM 2MA và M M 2M B
Vậy : MM 2MA 2M B 2MA 2M A 2AB
Vì : MA
Iw
′ ′ ′′ ′′
+ = = ⇔ = ∀
uuur
uuuur uuuur uuuur uuuuur uuur
r
2AB
AM nên MA M A 0 . Suy ra : MM 2AB M T (M), M (2)
- 17 -
CHƯƠNG I : PHÉP BIẾN HÌNH

=
=
uuur
uuur
o
o
2AB

2BA
Từ (1) và (2) , suy ra : Đ Đ T .
B A
b) Chứng minh tương tự : Đ Đ T .
A B
7 Chứng minh rằng nếu hình (H) có hai trục đối xứng vuông góc với nhau thì
(H) có tâm đối xứng .
HD : Dùng hình thoi
Gỉa sử hình (H) có hai trục đối xứng vuông góc với nhau
·
·
= =

∩ =
.
Lấy điểm M bất kỳ thuộc (H) và M Đ (M) , M Đ (M ) . Khi đó , theo
1 a 2 b 1
đònh nghóa M ,M (H) .
1 2
Gọi O = a b , ta có : OM = OM và MOM 2AOM
1 1 1
OM = OM và M
1 2
·
·
·
·
·
·
·

=
+ =
= × =
= ∀ ∈ ∈ ⇔
o o
OM 2M OB
1 2 1
Suy ra : OM = OM và MOM M OM 2(AOM +M OB)
2 1 1 2 1 1
hay MOM 2 90 180
1
Vậy : O là trung điểm của M và M .
2
Do đó : M Đ (M), M (H),M (H) O là tâm đối xứng của (H) .
2 O 2
8 Cho
·
·
·
·
·
·
∆ = ∆
= = = =
→ ⇒
o
o o
N
ABC có AM và CN là các trung tuyến . CMR : Nếu BAM BCN = 30 thì ABC đều .
HD :

Tứ giác ACMN có NAM NCM 30 nên nội tiếp đtròn tâm O, bkính R=AC và MON 2NAM 60 .
Đ
Xét : A B (O)I I
·
→ ∈ ∈
→ ⇒ → ∈ ∈

= =

⇒ ∆

=


+ = + = =
o
N
M M
Đ
(O ) thì B (O ) vì A (O) .
1 1
Đ Đ
C B (O) (O ) thì B (O ) vì C (O) .
2 2
OO OO 2R
1 2
Khi đó , ta có : OO O là tam giác đều .
1 2
MON 60
Vì O B O B R R 2R O O nên B là trung điể

1 2 1 2
I I
∆ ∆ ∆
∆ ∆
;
m O O .
1 2
Suy ra : ABC OO O (Vì cùng đồng dạng với BMN) .
1 2
Vì OO O là tam giác đều nên ABC là tam giác đều .
1 2
Vấn đề 5 : PHÉP QUAY
A. KIẾN THỨC CƠ BẢN
ϕ
′ ′ ′
ϕ
1 ĐN : Trong mặt phẳng cho một điểm O cố đònh và góc lượng giác . Phép biến hình biến mỗi điểm
M thành điểm M sao cho OM = OM và (OM;OM ) = được gọi là phép quay tâm O với
ϕ
ϕ
g
g
Phép quay hoàn toàn xác đònh khi biết tâm và góc quay
Kí hiệu : Q .
O
góc quay .

π
≡ ∀ ∈
π

≡ ∀ ∈
g ¢
g ¢
g
Chú ý : Chiều dương của phép quay chiều dương của đường tròn lựơng giác .
2k
Q phép đồng nhất , k
(2k+1)
Q phép đối xứng tâm I , k
2 Tính chất :
ĐL : Phép quay
g
là một phép dời hình .
HQ :
1.Phép quay biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự của các điểm tương
ứng .
2. Đường thẳng thành đường th


ẳng .
3. Tia thành tia .
4. Đoạn thẳng thành đoạn thẳng bằng nó .
- 18 -
CHƯƠNG I : PHÉP BIẾN HÌNH
ϕ
→ →
′ ′
→
(O ; )
Q Q

5. Tam giác thành tam giác bằng nó . (Trực tâm trực tâm , trọng tâm trọng tâm )
Q
6. Đường tròn thành đường tròn bằng nó . ( Tâm biến thành tâm : I I , R
I I
I = R )
7. Góc thành góc bằng nó .
B. BÀI TẬP
ϕ
ϕ

α
α

α

′ ′
→
(O ; )
/
1 Trong mặt phẳng Oxy cho điểm M(x;y) . Tìm M = Q (M) .
(O; )
HD :
x = rcos
Gọi M(x;y) . Đặt : OM = r , góc lượng giác (Ox;OM) = thì M
y = rsin
Q
/ /
Vì : M M . Gọi M (x ;y ) thì đoI α ϕ

α ϕ α ϕ − α ϕ = ϕ − ϕ


α ϕ α ϕ + α ϕ = ϕ + ϕ

ϕ− ϕ

ϕ+ ϕ
/ /
ä dài OM = r và (Ox;OM ) = + .
Ta có :
x = rcos( + ) = acos .cos asin .sin xcos ysin .
y = rsin( + ) = asin .cos acos .sin xsin ycos .
x = xcos ysin
/
Vậy : M
y = xsin ycos



−ϕ
ϕ
−ϕ
′′

ϕ + ϕ
→

′′
− ϕ + ϕ




− − ϕ− − ϕ

→


− − ϕ + − ϕ


 →
(O ; )
(I ; )
o o
(I ; )
o o
Đặc biệt :
Q
x = xcos ysin
//
M M
y = xsin ycos
Q
x x = (x x )cos (y y )sin
/
o o o
M M
y y = (x x )sin (y y )cos
I(x ;y )
o o o
Q

M
I(x ;y )
I
I
I
w
w
w
′′

− − ϕ− − ϕ



′′
− − − ϕ + − ϕ


x x = (x x )cos (y y )sin
//
o o o
M
y y = (x x )sin (y y )cos
o o o

→
o
o
(O ; 45 )
2 Trong mpOxy cho phép quay Q . Tìm ảnh của :

(O;45 )
2 2
a) Điểm M(2;2) b) Đường tròn (C) : (x 1) + y = 4
Q
/ / /
Giải . Gọi : M(x;y) M (x ;y ) . Ta có : OM = 2 2, (Ox; OM) I α


 α = α − α = −



α = α + α = +

o o o o o
o o o o o
=
x = rcos( +45 ) rcos .cos45 rsin .sin45 x.cos45 y.sin45
/
Thì M
y = rsin( +45 ) rsin .cos45 r cos .sin45 y.cos45 x.sin45










+


2 2
x = x y
/
2 2
M
2 2
y = x y
2 2
→




→
 





→ − −
o
o
o
g
g
g

g
(O ; 45 )
(O ; 45 )
(O ; 45 )
Q
/
a) A(2;2) A (0 ;2 2)
Q
/
Tâm I(1;0)
Tâm I ?
b) Vì (C) : (C ) :
Bk : R = 2
Bk : R = R = 2
Q
2 2 2 2
/ 2 2
I(1;0) I ( ; ) . Vậy : (C ) : (x ) + (y ) =
2 2 2 2
I
I 4








+



1 3
x = x y
2 2
3 Trong mpOxy cho phép biến hình f : . Hỏi f là phép gì ?
3 1
y = x y
2 2
- 19 -
CHƯƠNG I : PHÉP BIẾN HÌNH

π π




′ ′ ′
→ ⇒

π
π π


+


Giải
x = xcos ysin
3 3

Ta có f : M(x;y) M (x ;y ) với f là phép quay Q
(O; )
y = xsin ycos
3
3 3
I
4 Trong mpOxy cho đường thẳng ( ) : 2x y+1= 0 . Tìm ảnh của đường thẳng qua :
a) Phép đối xứng tâm I(1; 2). b) Phép quay Q .
(O;90 )
Giải
a) Ta có : M (x ;y ) = Đ (M) thì biểu thức
I
∆ −

′ ′ ′
o
x 2 x x 2 x
tọa độ M
y 4 y y 4 y
Vì M(x;y) ( ) : 2x y+1= 0 2(2 x ) ( 4 y ) 1 0 2x y 9 0
M (x ;y ) ( ): 2x y 9 0

′ ′
 
= − = −


 
′ ′
= − − = − −

 
′ ′ ′ ′
∈ ∆ − ⇔ − − − − + = ⇔ − + + =
′ ′ ′ ′
⇔ ∈ ∆ − − =
I
(O;90 )
Đ
Vậy : ( ) ( ) : 2x y 9 0
Q
b) Cách 1 : Gọi M(x;y) M (x ;y ) . Đặt (Ox ; OM) = , OM = r ,
Ta có (Ox ; OM ) = + 90 ,OM r .
x = rcos
Khi đó : M
y

∆ → ∆ − − =
′ ′ ′
→ α
′ ′
α =
α
o
o
I
I
(O;90 )
(
Q
x r cos( 90 ) rsin y x y

M
= rsin y x
y rsin( 90 ) rcos x
Vì M(x;y) ( ) : 2(y ) ( x ) + 1 = 0 x 2y + 1 = 0 M (x ;y ) ( ): x 2y 1 0
Q
Vậy : ( )

′ ′

 
= α + = − α = − =

→ ⇒
  

α = −
 

= α + = α =


′ ′ ′ ′ ′ ′ ′ ′
∈ ∆ − − ⇔ + ⇔ ∈ ∆ + + =

o
o
o
I
I
O;90 )

( ): x 2y 1 0

→ ∆ + + =
o
′ ′
• ∈ ∆ → − ∈ ∆

′ ′
• − ∈ ∆ → ∈ ∆
′ ′ ′
• ∆ → ∆ ≡ + + =
o
o
o
(O;90 )
(O;90 )
(O;90 )
Q
Cách 2 : Lấy : M(0;1) ( ) M ( 1;0) ( )
Q
1 1
N( ;0) ( ) N (0; ) ( )
2 2
Q
( ) ( ) M N : x 2y 1 0
I
I
I
′ ′
• ∆ → ∆ ⇒ ∆ ⊥ ∆ = ⇒ = −


∆ ∆
′ ′
• ∈ ∆ → ∈ ∆



′ ′
• ∆ ⇒ ∆




o
o
g
g
(O;90 )
(O;90 )
Q
1
Cách 3 : Vì ( ) ( ) ( ) ( ) mà hệ số góc : k 2 k
2
Q
M(0;1) ( ) M (1;0) ( )
Qua M (1;0)
( ) : ( )
1
hsg ; k =
2

I
I
+ + = : x 2y 1 0

5 Trong mặt phẳng toạ độ Oxy cho A(3;4) . Hãy tìm toạ độ điểm A là ảnh
o
của A qua phép quay tâm O góc 90 .
HD :
Gọi B(3;0),C(0;4) lần lượt là hình chiếu của A lên các trục Ox,
′ ′ ′
′ ′ ′
− −
Oy . Phép
o
quay tâm O góc 90 biến hình chữ nhật OABC thành hình chữ nhật OC A B .
Khi đó : C (0;3),B ( 4;0). Suy ra : A ( 4;3).



= =
= − = ⇒

= ⇒ ⊥



uuur uuur
uuur uuur
6 Trong mặt phẳng toạ độ Oxy . Tìm phép quay Q biến điểm A( 1;5)
thành điểm B(5;1) .

OA OB 26
HD : Ta có : OA ( 1;5) và OB (5;1)
OA.OB 0 OA OB
B = Q
(
o
(A) .
O ; 90 )
- 20 -
CHƯƠNG I : PHÉP BIẾN HÌNH
⇒ = ⇒ ⇔ ⇔ −
= ⇒ + = + =
o
o
uuuur uuur
o
7 Trong mặt phẳng toạ độ Oxy , cho điểm M(4;1) . Tìm N = Q (M) .
(O ; 90 )
HD :
Vì N = Q (M) (OM;ON) 90 OM.ON = 0 4x+y = 0 y= 4x (1)
(O ; 90 )
2 2
Do : OM ON x y 16 1 17 (2) .
Giải (1) và
− −
= −
o
(2) , ta có : N(1; 4) hay N( 1;4) .
Thử lại : Điều kiện (OM;ON) 90 ta thấy N( 1;4) thoả mãn .w


∈ ∈ =


= >
+ = ⇒

= =

o
o
8 a)Trong mặt phẳng toạ độ Oxy , cho điểm A(0;3) . Tìm B = Q (A) .
(O ; 45 )
HD : Phép quay Q biến điểm A Oy thành điểm B đt :y x,ta có :
(O ; 45 )
x y 0
2 2
B B
. Mà OB = x y 3 x
B B
OA OB 3
= ⇒
− +
→
o
3 3 3
B( ; ).
B
2 2 2
4 3 3 3 4 3
b) Cho A(4;3) . Tìm B = Q (A) B ( ; )

(O;60 )
2 2

− + − =
′ ′
= − ⇒ + + − =

− + − =
o
o
2 2
9 Cho đường tròn (C) : (x 3) (y 2) 4 . Tìm (C ) = Q (C) .
(O ; 90 )
2 2
HD : Tìm ảnh của tâm I : Q (I) I ( 2;3) (C ):(x 2) (y 3) 4 .
(O ; 90 )
2 2
10 Cho đường tròn (C) : (x 2) (y 2 3) 5 . Tìm (C ) =
′ ′
= − ⇒ + + − =
o
o
Q (C) .
(O ; 60 )
2 2
HD : Tìm ảnh của tâm I : Q (I) I ( 2;2 3) (C ):(x 2) (y 2 3) 5 .
(O ; 60 )

− + − =
′ ′

= − + ⇒ − + + − − =
o
o
2 2
11 Cho đường tròn (C) : (x 2) (y 2) 3 . Tìm (C ) = Q (C) .
(O ; 45 )
2 2
HD : Tìm ảnh của tâm I : Q (I) I (1 2;1 2) (C ):(x 1 2) (y 1 2) 3 .
(O ; 45 )


o
o
12 [CB-P19] Trong mặt phẳng toạ độ Oxy , cho điểm A(2;0) và đường thẳng (d) : x + y 2 = 0.
Tìm ảnh của A và (d) qua phép quay Q .
(O ; 90 )
HD :
Ta có : A(2;0) Ox . Gọi B = Q (
(O ; 90 )
w ∈
− ∈

⇒ + = ⇔ +

o o
o
A) thì B Oy và OA = OB .
Vì toạ độ A,B thoả mãn pt (d) : x + y 2 = 0 nên A,B (d) .
Do B = Q (A) và tương tự Q (A) = C( 2;0)
(O ; 90 ) (O ; 90 )

x y x y
nên Q (d) = BC (BC) : 1
(O ; 90 )
x y 2 2
C C
w
= ⇔ − + =1 x y 2 0
− − ∆ ⇒ ∆ + − =
+ − ∆
′ ′
∩ ∩ → −
⇒ ∆ −
o
o
13 Cho (d) : x 3y 1 = 0 . Tìm = Q (d) . ( ) : 3x y 1 0
(O ; 90 )
14 Cho (d) : 2x y 2 = 0 . Tìm = Q (d) .
(O ; 60 )
1 3
ảnh
HD : d Ox = A(1;0) , d Oy = B(0;2) A ( ; ),B( 3;1)
2 2
( ) : ( 3 2
− + + =
)x (2 3 1)y 4 0

o
o
15 Cho tam giác đều ABC có tâm O và phép quay Q .
(O;120 )

a) Xác đònh ảnh của các đỉnh A,B,C .
b) Tìm ảnh của ABC qua phép quay Q
(O;120 )
- 21 -
CHƯƠNG I : PHÉP BIẾN HÌNH
·
·
·
= = = → → →
∆ → ∆
o
o
o
Giải
a) Vì OA = OB = OC và AOC BOC COA 120 nên Q : A B,B C,C A
(O;120 )
b) Q : ABC ABC
(O;120 )
I I I
16 [CB-P19] Cho hình vuông ABCD tâm O .
a) Tìm ảnh của điểm C qua phép quay Q .
(A ; 90 )
b) Tìm ảnh của đường thẳng BC qua phép quay Q
(O ; 90 )
HD : a) Gọi E = Q (C) thì AE=AC va
(A ; 90 )
o
o
o
·

ø CAE 90 nên AEC
vuông cân đỉnh A , có đường cao AD . Do đó : D là trung điểm của EC .
b) Ta có : Q (B) C và Q (B) C Q (BC) CD.
(O ; 90 ) (O ; 90 ) (A ; 90 )
= ∆
= = ⇒ =
o o o
o


= =
o
o o
17 Cho hình vuông ABCD tâm O . M là trung điểm của AB , N là trung điểm
của OA . Tìm ảnh của AMN qua phép quay Q .
(O;90 )
HD : Q (A) D , Q (M) M là trung điểm của A
(O;90 ) (O;90 )
w
′ ′ ′
= ∆ = ∆
o o
D .
Q (N) N là trung điểm của OD . Do đó : Q ( AMN) DM N
(O;90 ) (O;90 )

18 [ CB-1.15 ] Cho hình lục giác đều ABCDEF , O là tâm đường tròn ngoại tiếp của nó . Tìm ảnh của
OAB qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O
= = =
= = =

uuur
uuur
o
o o o
uuur uuur uuur
o
o
OE
OE
(O;60 )
(O;60 ) (O;60 ) (O;60 )
OE OE OE
, góc 60 và phép
tònh tiến T .
HD :
Gọi F = T Q . Xét :
Q (O) O,Q (A) B,Q (B) C .
T (O) E,T (B) O,T (C) D
Vậy : F(O) = E , F(A) = O ,
w
w
w ⇒ ∆ ∆F(B) = D F( OAB) = EOD

o
19 Cho hình lục giác đều ABCDEF theo chiều dương , O là tâm đường tròn ngoại tiếp của nó . I là
trung điểm của AB .
a) Tìm ảnh của AIF qua phép quay Q .
(O ; 120 )
b) Tìm ả


∆ = ∆
o
o
o
o
nh của AOF qua phép quay Q .
(E ; 60 )
HD :
a) Q biến F,A,B lần lượt thành B,C,D , trung điểm I
(O ; 120 )
thành trung điểm J của CD nên Q ( AIF) CJB .
(O ; 120 )
b) Q biến
(E ; 60 )
w
w A,O,F lần lượt thành C,D,O .
15 Cho ba điểm A,B,C theo thứ tự trên thẳng hàng . Vẽ cùng một phía dựng hai tam giác đều ABE và
BCF . Gọi M và N tương ứng là hai trung điểm của AF và CE . Chứng minh rằng : BMN là tam giác đều .
HD :
Xét phép quay Q .Ta có : Q (A) E , Q (F) C
(B; 60 ) (B; 60 ) (B; 60 )
Q (AF) EC .
(B; 60 )
Do M là trung điểm của AF , N là trung điểm của EC , nên :
Q (M) N BM
(B; 60 )
= =
− − −
⇒ =


= ⇒

o o o
o
o
·
= BN và MBN 60 BMN là tam giác đều .

= ⇒ ∆
o
- 22 -
CHƯƠNG I : PHÉP BIẾN HÌNH

21 [ CB-1.17 ] Cho nửa đường tròn tâm O đường kính BC . Điểm A chạy trên nửa đường tròn đó .
Dựng về phía ngoài của ABC hình vuông ABEF . Chứng minh rằng : E chạy
trên nửa đ

o
o
ường cố đònh .
HD : Gọi E = Q (A) . Khi A chạy trên nửa đường tròn (O) ,
(B;90 )
E sẽ chạy trên nửa đường tròn (O ) = Q [(O)] .
(B;90 )




o
22 Cho đường (O;R) và đường thẳng không cắt đường tròn . Hãy

dựng ảnh của ( ) qua phép quay Q .
(O ; 30 )
Giải
Từ O hạ đường vuông góc OH với . Dựng điểm H sao cho
(OH
′ ′ ′


o
;OH ) = 30 và OH = OH . Dựng đường tròn qua 3 điểm O,H,H ;
đường tròn này cắt tại điểm L . Khi đó LH là đường thẳng phải dựng .
·

∆ ⇒ = =
o
23 Cho đường thẳng d và điểm O cố đònh không thuộc d , M là điểm
di động trên d . Hãy tìm tập hợp các điểm N sao cho OMN đều .
Giải : OMN đều OM ON và NOM 60 . Vì vậy khi M chạ

′′

o
o
g
g
y trên d thì :
N chạy trên d là ảnh của d qua phép quay Q .
(O;60 )
N chạy trên d là ảnh của d qua phép quay Q
(O; 60 )


′ ′ ′ ′
24 Cho hai đường tròn (O) và (O ) bằng nhau và cắt nhau ở A và B .
Từ điểm I cố đònh kẻ cát tuyến di động IMN với (O) , MB và NB cắt
(O ) tại M và N . Chứng minh đường thẳng

′ ′
ϕ
′ ′ ′ ′ ′
M N luôn luôn đi qua một
điểm cố đònh.
Giải
Xét phép quay tâm A , góc quay (AO; AO ) = biến (O) thành (O ) .
Vì MM và NN qua B nên (AO;AO ) = (AM;AM ) = (AN;AN ) .
Qua phép quay Q : MI
ϕ
′ ′
→ →
′ ′
→
′ ′

ϕ
(A; )
M , N N và do đó
Q
MN M N
Đường thẳng MN qua điểm cố đònh I nên đường thẳng M N qua
điểm cố đònh I là ảnh của I qua Q
(A; )

I
I



=
o
25 Cho hai hình vuông ABCD và BEFG
a) Tìm ảnh của ABG trong phép quay Q .
(B; 90 )
b) Gọi M,N lần lượt là trung điểm của AG và CE .
Chứng minh BMN vuông cân .
Giải
BA BC
a) Vì
(BA;
 
=
 
 
= − = −
 
 
⇒ → → ⇒ ∆ → ∆
− −
→ ⇒ → ⇒ = −
− −
⇒ ∆
o o
o o

o o
o
BG BE

BC) 90 (BG;BE) 90
Q : A C,G E Q : ABG CBE
(B; 90 ) (B; 90 )
b) Q : AG CE Q : M N BM BN và (BM;BN) = 90
(B; 90 ) (B; 90 )
BMN vuông cân tại B .
I I
I

∩ ∆
26 Cho ABC . Qua điểm A dựng hai tam giác vuông cân ABE và ACF . Gọi M là trung điểm của BC
và giả sử AM FE = H . Chứng minh : AH là đường cao của AEF .
- 23 -
CHƯƠNG I : PHÉP BIẾN HÌNH

o
o
o
HD :
Xét phép quay Q : Kéo dài FA một đoạn AD = AF .
(A;90 )
Vì AF = AC AC = AD nên suy ra : Q biến B , C lần lượt thành E , D
(A;90 )
Đ/nghó
nên gọi trung điểm K của DE thì K= Q (M)
(A;90 )

→ ⊥

⊥ ⇒ ∆
a
MA AK (1) .
Trong DEF , vì AK là đường trung bình nên AK // FE (2)
Từ (1),(2) suy ra : AM FE AH là đường cao của AEF .
uur uur
27 Cho hình vuông ABCD có cạnh bằng 2 và có các đỉnh vẽ theo chiều
dương . Các đường chéo cắt nhau tại I. Trên cạnh BC lấy BJ = 1 . Xác đònh
phép biến đổi AI thành BJ .
HD
·
= = ⇒ = =
⇒ ∩

o
o
o
o
uur uur
AB 2
: Ta có : AI= 1 AI BJ . Lại có : (AI,BJ) 45 .
2 2
BJ = Q (AI) . Tâm O = ttrực của AB cung chứa góc 45 đi
(O;45 )
qua A,B BJ = Q (AI)
(O;45 )
∆28 [CB-1.18] Cho ABC . Dựng về phía ngoài của tam giác các hình vuông BCIJ,ACMN,ABEF
và gọi O,P,Q lần lượt là tâm đối xứng của chúng .

a) Gọi D là trung điểm của AB . Chư ∆

⇒ ⊥
o
ùng minh rằng : DOP vuông cân tại D .
b) Chứng minh rằng : AO PQ và AO = PQ .
HD :
a) Vì : AI = Q (MB) MB = AI và MB AI .
(C;90 )
w

Mặt khác : DP
1
BM , DO
2
AI

⇒ ⊥DP = và DO

DOP vuông cân tại D .⇒ ∆

→ → ⇒ = ⊥
o o
(D;90 ) (D;90 )
b) Từ câu a) suy ra :
Q Q
O P,A Q OA và PQ.I I
∆29 Cho ABC có các đỉnh kí hiệu theo hướng âm . Dựng
về phía ngoài tam giác đó các hình vuông ABDE và BCKF .
Gọi P là trung điểm của AC , H là điểm đối xứng của D qua B ,

M là tr



o
uuur uuur
o
ung điểm của đoạn FH .
a) Xác đònh ảnh ủa hai vectơ BA và BP trong phép quay Q .
(B;90 )
b) Chứng minh rằng : DF BP và DF = 2BP .
HD :
BA = BH (cùng bằng BD)
a) Ta có :
(BA;BH) = 90



⇒ = ⇒ =
= = ⇒ =
= =
o o
o o o
o o
uuur uuur
uuur uuur
uuur u
90 90
H Q (A) BH Q (BA)
B B

90 90 90
Vì : Q (A) H,Q (C) F Q (AC) HF .
B B B
90 90
Mà : F là trung điểm của AC , Q (F) M là trung điểm của HF . Do đó : Q (BP) BM
B B
= ⇒ = ⊥
∆ ⊥
o
uuur
uuur uuuur
.
90
b) Vì : Q (BP) BM BP BM,BP BM .
B
1 1
Mà : BM = DF và BM // DF (Đường trung bình của HDF ). Do đó : BP = DF , DF BP .
2 2
- 24 -
CHƯƠNG I : PHÉP BIẾN HÌNH
30 Cho tứ giác lồi ABCD . Về phía ngoài tứ giác dựng các tam giác đều ABM , CDP . Về phía trong
tứ giác, dựng hai tam giác đều BCN và ADK . Chứng minh : MNPK là hình bình hành .
H
→ →
⇒ → ⇒ =
→ →
⇒ → ⇒ =
o
o
o

o
(B;90 )
(D;90 )
60
D : Xét phép quay Q : M A , N C
B
Q
MN AC MN AC (1)
60
Xét phép quay Q : P C , K A
D
Q
PK CA PK CA (2)
Từ (1) , (2) suy ra : MN = PK .
Lí luận , tươ
I I
I
I I
I

ng tự : MK = PN MKNP là hình bình hành .

∩ = → →

o o
(B;60 ) (B;60 )
31 Cho ABC . Về phía ngoài tam giác , dựng ba tam giác đều
BCA ,ACB ,ABC . Chứng minh rằng : AA ,BB ,CC đồng quy .
1 1 1 1 1 1
HD :

Q Q
Gỉa sử AA CC I . Xét : A C,A C
1 1 1 1
A A
1
I I
I
·
·
·
→ ⇒ = ⇒ =
= ⇒ ∆
o
o o
o
(B;60 )
Q
CC (A A;CC ) 60 AJC 60 (1)
1 1 1 1
Lấy trên CC điểm E sao cho : IE = IA . Vì EIA 60 EIA đều .
1
→ → →

o o o
(A;60 ) (A;60 ) (A;60 )
Q Q Q
Xét : B C ,I E , B C
1 1
Vì : C ,B,C thẳng hàng nên B,I,B thẳng hàng
1 1

AA ,BB ,CC đồng quy .
1 1 1
I I I
32 Chứng minh rằng các đoạn thẳng nối tâm các hình vuông dựng
trên các cạnh của một hình bình hành về phía ngoài , hợp thành
một hình vuông .
HD : Gọi I ,I ,I ,I là tâm của
1 2 3 4
·
·
→ ∆ = ∆
⇒ = = = ⇒ ⊥
→ ⇒ = ⊥
o
o
o
(I;90 )
hình vuông cạnh AB,BC,CD,DA .
Dùng phép quay Q(I;90 ): B C . Vì I BA I CD
1 3
CI BI và DCI ABI 45 . Mà DC // AB CI BI
3 1 3 1 3 1
Q
Vậy : I I I I I I và I I I I .
3 1 2 1 2 3 2 1 2 3
Lý luận tương t
I
I
ự , ta có : I I I I là một hình vuông .
1 2 3 4

Vấn đề 6 : HAI HÌNH BẰNG NHAU
A. KIẾN THỨC CƠ BẢN
′ ′ ′ ′ ′ ′
∆ ∆1 ĐL : Nếu ABC và A B C là hai tam giác bằng nhau thì có phép dời hình biến ABC thành A B C .
2 Tính chất :
1. Nếu thực hiện liên tiếp hai phép dời hình thì được một phép dời hình .
2. Hai hình gọi là bằng nhau nếu có phép dời hình biến hình này thành hình kia .
B. BÀI TẬP
∆ ∆
1 Cho hình chữ nhật ABCD . Gọi E,F,H,I theo thứ tự là trung điểm của các cạnh
AB,CD,BC,EF. Hãy tìm một phép dời hình biến AEI thành FCH .
HD :
Thực hiện liên tiếp phép tònh tie
→ → → ⇒ ∆ = ∆
uuur
uuur uuur
án theo AE và phép đối xứng qua đường thẳng IH
T : A E,E B,I H T ( AEI) EBH
AE AE
I I Iw
- 25 -

×