Tải bản đầy đủ (.ppt) (31 trang)

Automata and Formal Language (chapter 1) pot

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (113.09 KB, 31 trang )

Automata and Formal Language
Quan Thanh Tho

Course Overview

An introduction to the fundamental theories and algorithms
for computing on digital computer.

Automation: A model producing input from
acceptable output based on self-made
decision

Formal Language: An abstraction of
programming language syntax.
Course Outline

Chapter 1: Introduction

Chapter 2: Finite Automata

Chapter 3: Regular Language and Regular Grammar

Chapter 4: Properties of Regular Language

Chapter 5: Context-Free Grammar

Chapter 6: Simplification of Context-Free Grammar

Chapter 7: Pushdown Automata
Reading Materials


Giáo trình lý thuyết automat và ngôn ngữ hình thức.
Hồ Văn Quân

An introduction to formal languages and automata.
Peter Linz

Introduction to automata theory, languages, and computation.
John Hopcroft & Jeffrey Ullman
Assessment

Assignment: 30%

Final Exam: 70%
Related Issues

Digital Circuit Design

Compiler

Programming Languages
Required Background

Set and Graph Theory

Induction and Contradiction-based Methods
Three Basic Concepts

Languages

Grammars


Automata
Languages

Alphabet: a finite and nonempty set of symbols
Σ = {a, b}

Example 1.1

Roman Alphabet: A,B,C, ,Z.

Greek Alphabet: α,β,…
Language (cont’d)

String: finite sequence of symbols from Σ
λ: empty string
Σ*: the set of all strings on Σ (Σ+ = Σ* − {λ})

Example 1.2:
Given Σ = {a,b} =>
Σ* = {λ, a, b, aa, ab, ba, aaa, }
w = abaaa is a string of Σ
L = {anbn | n ≥ 0} = {λ, ab, aabb, } is a set of strings of Σ
Language (cont’d)

Language: a subset L of Σ*

Sentence: a string in L

Example 1.3: In Example 1.2, L is a language on Σ, w is a

string of Σ but not a sentence in L
Language Concatenation
L
1
L
2
= {xy | x∈L
1
, y∈L
2
}
Ln = L L L (n times)
L0 = {λ}
Language Concatenation (cont’d)

Example 1.4:
L = {anbn | n ≥ 0}
L2 = {anbnambm | n ≥ 0, m ≥ 0}
Closure Operators

Star-Closure: L* = L0

∪ L1 ∪ L2



Positive-Closure: L+ = L1 ∪ L2


Grammar


Grammar for a natural language: a set of rules to construct vocabulary and
sentences

Example 1.5: A simple English grammar
<sentence> → <noun-phrase><predicate>
<noun-phrase> → <article><noun>
<predicate> → <verb>
<article> → a | the
<noun> → boy | dog
<verb> → runs | walks
Hands-on Exercise 1.1:

Find all of possible sentences of the grammar given in
Example 1.5
Formal Grammar

Formal grammar:
G = (V, T, S, P)
V: finite set of variables
T: finite set of terminal symbols
S∈V: start variable
P: finite set of productions
Formal Grammar (cont’d)

Productions: x → y, x∈(V ∪T )+, y∈(V ∪T )*

Example 1.6:
G = ({S}, {a, b}, S, P)
P: S → aSb

S → λ

Directly Derive

w = uxv derives z = uyv if x y is a production
w ⇒ z
w
1
⇒* w
n
(w
1
⇒ w
2
⇒ ⇒ w
n
| w
1
= w
n
)
w
1
⇒+ w
n
Directly Derive (cont’d)

Example 1.7:
Take into consideration the grammar given in
Example 1.6:

S ⇒ aSb ⇒ aaSbb

⇒ aabb
S ⇒* aabb
Generated Language
G = (V, T, S, P)
L(G) = {w∈T* | S ⇒* w}

Example 1.8:
Take into consideration the grammar given in
Example 1.6:
L(G) = {a
n
b
n
| n ≥ 0}
Derivation

S ⇒ w
1
⇒ w
2
⇒ ⇒ w
n
⇒ w∈L(G)

Example 1.9: The sequence of directly deriving given in
Example 1.6 is a derivation
S ⇒ aSb ⇒ aaSbb


⇒ aabb
Sequential Forms

S
,
w
1
,
w
2
, ,
w
n

(containing variables) with
S

w
1

w
2

⇒ ⇒
w
n


w
is a derivation


Example 1.10: S ⇒ aSb ⇒ aaSbb

⇒ aabb
aabb: sentence aaSbb: sentential form
Automata

“An automaton (plural: automata) is a self-operating
machine. The word is sometimes used to describe a robot,
more specifically an autonomous robot. Used colloquially, it
refers to a mindless follower.” (Wiki)

An abstract model of digital computer:
Automaton Structure
Control unit
Input file
Output
Storage

×