Tải bản đầy đủ (.pdf) (21 trang)

Giáo trình - Ô tô và ô nhiễm môi trường - chương 5 doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.37 MB, 21 trang )

57


Chương 5

CƠ CHẾ HÌNH THÀNH
B

HÓNG TRONG
QUÁ TRÌNH CHÁY C

A
ĐỘNG CƠ DIESEL



5.1. Giới thiệu:

Bồ hóng là chất ô nhiễm đặc biệt quan trọng trong khí xả động cơ Diesel. Tuy từ
lâu người ta đã nhận biết được tác hại của chúng nhưng việc nghiên cứu sự hình thành
chất ô nhiễm này trong khí xả động cơ Diesel chỉ mới thực sự phát triển từ những năm
1970 dựa vào những thành tựu của kỹ thuật quang học.

Sự nguy hiểm của bồ hóng đối với sức khỏe con người đã được đề cập đến ở
chương 1. Các HAP, kể cả các nitro-HAP và dinitro-HAP hấp thụ trong bồ hóng Diesel
đều có khả năng gây đột biến tế bào và gây ung thư đường hô hấp. Ngoài ra, bồ hóng cũng
có khả năng gây ung thư da nếu nạn nhân tiếp xúc thường xuyên với chúng và gây bệnh tụ
máu dẫn đến những tác động nguy hiểm đến hệ tim mạch.

Trong môi trường, các hạt bồ hóng trong không khí có tác dụng hấp thụ và khuếch
tán ánh sáng mặt trời, làm giảm độ trong suốt của khí quyển và do đó làm giảm tầm nhìn.


So với nông thôn, ở đô thị bức xạ mặt trời đo được trên mặt đất nhỏ hơn khoảng 15-20%.
Khi nồng độ bồ hóng trong không khí đạt khoảng 0,1mg/m
3
thì tầm nhìn xa chỉ còn 12km
(so với tầm nhìn xa cực đại 36km), nhất là trong các đô thị có độ phát tán tầm thấp yếu và
trên các trục lộ có sự tập trung phương tiện Diesel ở giờ cao điểm (nếu có khoảng 20% xe
vận tải Diesel trong luồng thì tầm nhìn giảm từ 25-30%). Điều này gây mất an toàn giao
thông. Ngoài ra, khi bồ hóng bám vào lá cây xanh thì khả năng quang hợp của lá cây bị
giảm, làm cây cối dễ bị héo chết. Bồ hóng bám vào các công trình xây dựng sẽ gây ra sự
ăn mòn kim loại

Quá trình cháy khuếch tán trong động cơ Diesel rất thuận lợi cho việc hình thành
bồ hóng. Thật vậy, sự cháy của hạt nhiên liệu lỏng trong khi chúng dịch chuyển trong
buồng cháy cũng như sự tập trung cục bộ hơi nhiên liệu ở những vùng có nhiệt độ cao là
nguyên nhân chính sản sinh bồ hóng. Bồ hóng trong khí xả là một trong những yếu tố
chính giới hạn khả năng ứng dụng của động cơ Diesel hiện nay. Mặc dù các nhà khoa học
và các nhà sản xuất ô tô đã quan tâm rất nhiều đến việc nghiên cứu vấn đề này nhưng đến
nay người ta vẫn chưa tìm ra được một giải pháp kỹ thuật nào hữu hiệu nhằm hạn chế
nồng độ bồ hóng trong giới hạn cho phép của các quy định về bảo vệ môi trường. Hai
hướng nghiên cứu chính hiện nay là:

1- Cải thiện và tổ chứ
c tốt quá trình cháy trong động cơ Diesel
Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

58
2- Lọc bồ hóng trên đường ống xả

Giải pháp xử lý bồ hóng trên đường ống xả gặp rất nhiều khó khăn trong thực tế,
nhất là giải quyết vấn đề tái sinh lõi lọc để giảm trở lực trên đường thải và việc nâng cao

tuổi thọ các bộ lọc. Vì vậy, giải pháp có tính cơ bản của vấn đề bồ hóng chỉ có thể rút ra
được trên cơ sở nghiên cứu tường tận quá trình hình thành chất ô nhiễm này để tìm cách
hạn chế chúng ngay từ trong buồng cháy động cơ. Nghiên cứu sự hình thành bồ hóng bằng
mô hình toán học hiện đang phát triển rất mạnh song song với các nghiên cứu về thực
nghiệm. Phương pháp mô hình hóa có nhiều ưu điểm hơn vì việc đo đạc cục bộ trong
buồng cháy rất phức tạp. Tất nhiên, kết quả của những nghiên cứu về thực nghiệm là
không thể thiếu để kiểm chứng mô hình toán học.

Động cơ Diesel cho tới nay vẫn là loại động cơ đốt trong được sử dụng rộng rãi
nhờ tính kinh tế của nó cao. Tuy nhiên, với sự cạnh tranh của các loại động cơ đánh lửa
cưỡng bức hiện đại, viễn ảnh áp dụng của loại động cơ này trên các phương tiện vận tải
trong tương lai phụ thuộc nhiều vào kỹ thuật làm giảm nồng độ bồ hóng trong khí xả.


5.2. Hình thành bồ hóng trong ngọn lửa khuếch tán

Quá trình cháy khuếch tác được áp dụng rộng rãi trong công nghiệp vì nó an toàn.
Tuy nhiên do đặc điểm phân bố nhiên liệu không đồng nhất, việc khống chế quá trình cháy
của nó gặp nhiều khó khăn hơn so với qua trình cháy của hỗn hợp đồng nhất. Cũng chính
vì sự phân bố hỗn hợp không đồng nhất mà trong sản phẩm cháy của ngọn lửa khuếch tán
luôn tồn tại những sản phẩm cháy không hoàn toàn mặc dù hỗn hợp tổng quát rất loãng.
Trong số những sản phẩm cháy không hoàn toàn này người ta đặc biệt quan tâm đến bồ
hóng.

Sự hình thành bồ hóng trong ngọn lửa khuếch tán trước tiên phụ thuộc vào nhiên
liệu. Nhiên liệu có thành phần C càng cao thì nồng độ bồ hóng càng lớn. Hình 5.1 so sánh
nồng độ bồ hóng đo trên trục ngọn lửa khuếch tán của 3 loại nhiên liệu khác nhau: butane,
propane và méthane với cùng điều kiện ban đầu (tốc độ phun 90m/s, đường kính lỗ phun
3mm). Nồng độ được biểu diễn thông qua bề dày đặc trưng của bồ hóng f
v

.L (L: chiều dài
quang trình). Chúng ta thấy nồng độ bồ hóng trong sản phẩm cháy của ngọn lửa butane
lớn nhất và nồng độ này thấp nhất trong ngọn lửa méthane.

Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

59
Yếu tố thứ hai ảnh hưởng đến nồng độ bồ hóng là nồng độ nhiên liệu và nồng độ
oxygène. Thật vậy, sự hình thành bồ hóng chủ yếu là do quá trình cháy không hoàn toàn
của nhiên liệu. Khi hỗn hợp nghèo và được phân bố đồng nhất thì nồng độ bồ hóng rất bé,
có thể bỏ qua. Nồng độ oxygène ảnh hưởng đến sự oxy hóa bồ hóng sau khi chúng được
hình thành do đó cũng ảnh hưởng đến nồng độ bồ hóng cuối cùng có mặt trong sản phẩm
cháy. Hình 5.2a, b biểu diễn biến thiên của nồng độ nhiên liệu và oxygène theo chiều cao
ngọn lửa propane có tốc độ phun ban đầu 90m/s và đường kính lỗ phun là 3mm.

Hình 5.1: Ảnh hưởng của nhiên liệu đến mức độ phát sinh bồ hóng trong ngọn lửa khuếch tán

a. b.
Hình 5.2: Biến thiên của nồng độ nhiên liệu (a) và oxygène (b) theo chiều cao
ngọn lửa khuếch tán propane


Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

60























Hình 5.3: Profil nhiệt độ trong ngọn lửa propane Hình 5.4: Phân bố f
v
.L
trong ngọn lửa propane

Yếu tố thứ ba ảnh hưởng đến sự hình thành bồ hóng là sự phân bố nhiệt độ trong
ngọn lửa. Nhiệt độ cao ở vùng giàu nhiên liệu sẽ thuận lợi cho việc hình thành bồ hóng.
Ngược lại nhiệt độ cao ở vùng thừa oxygène sẽ thuận lợi cho việc oxy hóa bồ hóng. Nồng
độ bồ hóng thoát ra khỏi ngọn lửa khuếch tán là hiệu số giữa lượng bồ hóng hình thành và
lượng bồ
hóng bị oxy hóa. Hình 5.3 giới thiệu profil nhiệt độ trong ngọn lửa khuếch tán
propane nghiên cứu.


Tóm lại, nồng độ bồ hóng có mặt trong khí cháy sau khi thoát ra khỏi ngọn lửa
khuếch tán phụ thuộc vào 4 yếu tố cơ bản: thành phần nhiên liệu, nồng độ nhiên liệu,
nồng độ oxygène và sự phân bố nhiệt độ trong ngọn lửa. Hình 5 trình bày sự phân bố nồng
độ bồ hóng trong ngọn lửa khuếch tán. Hình này cho thấy nồng
độ bồ hóng đạt cực đại ở
vùng nhiệt độ cao và giàu nhiên liệu. Ảnh hưởng của các yếu tố trên có thể được minh họa
thông qua nghiên cứu biến thiên đường kính hạt bồ hóng trong ngọn lửa propane. Hình
5.5 biểu diễn biến thiên đường kính hạt bồ hóng theo phương hướng kính của ngọn lửa.
Những hạt bồ hóng có đường kính bé tập trung ở những vùng có nhiệt độ và độ đậm đặc
đều cao. Khi tăng chiều cao ngọn lửa, vị trí hình thành bồ hóng dịch chuyển ra xa trục. Ở
độ cao x=400mm, điểm cực tiểu của đường kính biến mất và đường kính của hạt tăng đều
đặn từ trục ra ngoài rìa ngọn lửa. Kết quả phân tích khí trên hình 5.2a cho thấy ở khu vực
này, nồng độ nhiên liệu rất thấp không đủ điều kiện để hình thành các hạt bồ hóng mới.


Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

61
Hình 5.5: Biến thiên hướng kính của đường kính hạt bồ hóng


Hình 5.6: Biến thiên đường kính hạt bồ hóng trên trục ngọn lửa theo chiều cao

Do hiện tượng phát triển hạt bồ hóng sau khi hình thành nên những hạt có đường
kính lớn phân tán ra ngoài khu vực hình thành bồ hóng. Kết quả thực nghiệm này cho thấy
sự hình thành bồ hóng đòi hỏi phải có đồng thời hai điều kiện cơ bản đó là nhiệt độ cao và
hỗn hợp đậm đặc. Kết luận này được kiểm chứng bằng sự biến thiên đường kính hạt theo
chiều cao ngọn lửa cho trên hình 5.6. Thật vậy, chúng ta thấy đường kính hạt đầu tiên
giảm theo chiều cao cùng với sự gia tăng của nhiệt độ trên trục ngọn lửa đến độ cao
450mm. Khi qua khỏi độ cao này, nhiệt độ trong ngọn lửa vẫn còn cao nhưng nồng độ

Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

62
nhiên liệu bắt đầu giảm, quá trình hình thành bồ hóng chấm dứt, đường kính hạt gia tăng
do hiện tượng hấp thụ bề mặt và liên kết hạt.

5.3. Bồ hóng trong khí xả động cơ Diesel

Trong khí xả động cơ đốt trong, ngoài các chất khí độc như CO, NO
x
, H
n
C
m
, SO
x

còn có các hạt rắn tồn tại 3 dạng sau: các hạt chì của xăng pha chì, hạt sunphát của tạp
chất lưu huỳnh trong nhiên liệu và hạt bồ hóng. Khi hoạt động bình thường, trong khí xả
động cơ xăng có rất ít bồ hóng. Lượng bồ hóng chỉ đáng kể khi nó làm việc với hỗn hợp
đậm đặc. Còn ở động cơ Diesel, do quá trình cháy khuếch tán như đã phân tích trên đây,
bồ hóng là chất ô nhiễn đặc biệt quan trọng và là thành phần chủ yếu tồn tại dưới dạng hạt
rắn trong khí xả.

1. Thành phần hạt bồ hóng

Ngày nay, người ta đã biết rõ bồ hóng bao gồm các thành phần chính sau đây:

- Carbon: Thành phần này ít nhiều phụ thuộc vào nhiệt độ cháy và hệ số dư lượng
không khí trung bình, đặc biệt là khi động cơ hoạt động ở chế độ đầy tải hoặc quá tải.


- Dầu bôi trơn không cháy: Đối với động cơ cũ thành phần này chiếm tỉ lệ lớn.
Lượng dầu bôi trơn bị tiêu hao và lượng hạt bồ hóng có quan hệ với nhau.

- Nhiên liệu chưa cháy hoặc cháy không hoàn toàn: Thành phần này phụ thuộc vào
nhiệt độ và hệ số dư lượng không khí.

- Sun phát: do lưu huỳnh trong nhiên liệu bị oxy hóa và tạo thành SO
2
hoặc SO
4
.

- Các chất khác: lưu huỳnh, calci, sắt, silicon, chromium, phosphor, các hợp chất
calci từ dầu bôi trơn.

Thành phần hạt bồ hóng còn phụ thuộc vào tính chất nhiên liệu, đặc điểm của quá
trình cháy, dạng động cơ cũng như thời hạn sử dụng của động cơ (cũ hay mới). Thành
phần bồ hóng trong sản phẩm cháy của nhiên liệu có thành phần lưu huỳnh cao khác với
thành phần bồ hóng trong sản phẩm cháy của nhiên liệu có hàm lượng lưu huỳnh thấp.
Hình 5.7 so sánh thành phần bồ hóng của hai loại nhiên liệu Diesel có thành phần lưu
huỳnh 0.26% và 0.05%. Đối với động cơ đã qua sử dụng trên 10 năm, thành phần bồ hóng
có chứa đến 40% dầu bôi trơn không cháy hết như hình 5.8.


Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

63
Nhiên liŒu:US-2D
0.26w t%Sulfer. NÒng Ƕ bÒ hóng


t°ng c¶ng: 0.30g/HP_h
D Àu bôi
trÖn 0.10
Håt
C arbon

0
.11
HC
0.03
Sunphát
0.06

Nhiên liŒu:"L o w Sulfer Fuel"
0.05w t%Sulfer. NÒng Ƕ bÒ hóng

t°ng c¶ng: 0.075g/HP_h
Sunphát
0.008
HC
0.007
D Àu bô
i
trÖ n
0.017
Håt
C arbon
0.043



Hình 5.7: Thành phần hạt bồ hóng theo tính chất nhiên liệu



Sunphát
14%
C arbon
31%
C hÃt khác
8%
HC
7%
D Àu bôi trÖ n
40%


Hình 5.8: Thành phần hạt bồ hóng của động cơ đã sử dụng trên 10 năm

Kết quả nghiên cứu thực nghiệm về sự phân bố kích thước hạt cho thấy bồ hóng
trong khí xả tồn tại dưới hai dạng: dạng đơn và dạng tích tụ. Dạng đơn (gam kích thước
nhỏ) tồn tại ở nhiệt độ trên 500
0
C. Ở dạng này, các hạt bồ hóng là sự kết hợp của các hạt
sơ cấp hình cầu (mỗi một hạt sơ cấp hình cầu này chứa khoảng 10
5
-10
6
nguyên tử carbon).
Dạng đơn này còn được gọi là thành phần không hòa tan ISF (Insoluble Fraction) hay

thành phần rắn SOL (Solid). Dạng tích tụ (gam kích thước lớn) do các bồ hóng liên kết lại
với nhau và tồn tại ở nhiệt độ thấp hơn 500
0
C. Các hạt bồ hóng này được bao bọc bởi các
thành phần hữu cơ nặng ngưng tụ và hấp thụ trên bề mặt hạt: HC chưa cháy, HC bị oxy
hóa (keton, ester, ether, axít hữu cơ), và các hydrocarbure thơm đa nhân HAP
(Hydrocarbures Aromatiques Polynucléaires). Thể tích tụ này có thể còn có thêm các hạt
khác như SO
2
, NO
2
, SO
4
. Những hạt này còn được gọi là thành phần hữu cơ hòa tan SOF
Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

64
(Soluble Organic Fraction). Trong khí xả động cơ Diesel thành phần SOF có thể chiếm từ
5%-80%.





Hình 5.9: Cấu trúc chuỗi bồ hóng

Hình 5.10: Dạng những hạt sơ cấp
















Hình 5.11: Mô hình cấu trúc dạng hạt sơ cấp

Hình 5.12: Cấu trúc tinh thể graphit

2. Cấu trúc hạt bồ hóng

Hình 5.9 và 5.10 trình bày ảnh chụp khuếch đại của chuỗi và hạt sơ cấp tạo thành
hạt bồ hóng trong khí xả động cơ Diesel. Một cách tổng quát có thể nói hạt bồ hóng mà
người ta thường gọi hình thành do sự liên kết của nhiều hạt sơ cấp hình cầu thành từng
khối hoặc chuỗi. Mỗi hạt bồ hóng (khối hay chuỗi) có thể chứa đến 4000 hạt hình cầu sơ
cấp. Các hạt sơ cấp có đường kính từ 10 đến 80nm và đại bộ phận hạt nằm trong khoảng
15-30nm, đường kính trung bình của các hạt bồ hóng nằm trong khoảng 100-150nm, có
khi lên đến 500-1000nm.

Cấu trúc tinh thể của hạt bồ hóng trong khí xả động cơ Diesel có dạng tương tự
như graphit (hình 5.11) nhưng ít đều đặn hơn. Mỗi hạt sơ cấp hình cầu là một tập hợp
khoảng 1000 mầm tinh thể, có dạng phiến mỏng được xếp đồng tâm quanh tâm của mỗi
hạt cầu, tương tự như cấu trúc hạt carbon đen. Những nguyên tử carbon kết nối với nhau

0.67nm
0.335nm
a
c
b
Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

65
theo các phiến lục giác phẳng cách nhau 0,34-0,36nm (chỉ lớn hơn một chút so với
graphit: 0,33nm). Các phiến này kết hợp với nhau tạo thành các mầm tinh thể (từ 2-5
phiến) với cấu trúc giống như carbon đen. Những mầm tinh này lại sắp xếp lại theo các
hướng song song với mặt hạt cầu với kết cấu siêu tĩnh để tạo thành các hạt.



5.4. Tình hình nghiên cứu và các quy định về nồng độ
bồ hóng trong khí xả động cơ Diesel hiện nay


5.4.1. Tình hình nghiên cứu bồ hóng


Nghiên cứu bồ hóng trong khí xả động cơ Diesel hiện nay tập trung vào các hướng
chính sau đây:

1- Nghiên cứu sự hình thành bồ hóng bên trong buồng cháy động cơ

Trên cơ sở hiểu biết tường tận quá trình hình thành bồ hóng chúng ta có thể nghiên
cứu tổ chức quá trình cháy, xác định chế độ làm việc tối ưu của động cơ cũng như xác
định chất lượng nhiên liệu và các chất phụ gia chống ô nhiễm để đảm bảo cháy sạch nhiên

liệu, làm giảm nồng độ bồ hóng trong sản phẩm cháy. Việc nghiên cứu quá trình tạo bồ
hóng trong động cơ thường xuất phát từ các mô hình ngọn lửa khuếch tán bên ngoài động
cơ. Theo hướng này có rất nhiều công trình nghiên cứu về mô hình hóa quá trình cháy và
tạo bồ hóng trong các ngọn lửa khuếch tán một pha và hai pha. Đặc biệt, sự phát triển
đồng dạng toán học về quá trình cháy đã cho phép thiết lập mô hình tổng quát cho nhiều
hệ thống cháy khác nhau để từ đó có thể mô hình hóa quá trình tạo bồ hóng bên trong
buồng cháy động cơ Diesel. Tesner và Magnussen đã đưa ra mô hình tạo bồ hóng hai giai
đoạn. Các mô hình tạo bồ hóng khác cũng đã được tổng kết trong các tài liệu của Morel,
Kenedy, Lee Tính đúng đắn của mô hình của Morel và của Tesner-Magnussen đã được
Bùi Văn Ga kiểm nghiệm trên các ngọn lửa rối và khuếch tán một pha và hai pha.

Đối với động cơ Diesel, mô hình nhiều khu vực ("multi-zone") dựa trên quy luật
thực nghiệm của khí kéo theo vào tia nhiên liệu và sự phân bố nhiên liệu trong tia để tính
toán nhiệt độ trung bình trong mỗi khu vực và từ đó tính toán quá trình cháy và tạo bồ
hóng trong động cơ Diesel đã cho phép xây dựng các phần mềm đa phương chạy trên các
máy tính mini như KIVA2, KIVA3 và TURBO-KIVA.

2- Nghiên cứu xử lý bồ hóng trên đường xả động cơ

Hướng nghiên cứu này chủ yếu tập trung hoàn thiện 2 giải pháp:

- Xử lý bồ hóng bằng kỹ thuật lọc và tái sinh lọc

- Xử lý bồ hóng bằng bộ xúc tác oxy hóa

Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

66
Trong chương 7 chúng ta sẽ nghiên cứu các giải pháp này. Tuy các nhà khoa học
và công nghệ đã có nhiều cải tiến và hoàn thiện các bộ lọc nhưng cho đến nay vẫn chưa có

được một giải pháp tối ưu nào tỏ ra hữu hiệu cho vấn đề xử lý bồ hóng trên đường xả.


5.4.2. Các quy định về nồng độ bồ hóng trong khí xả động cơ Diesel

Hiện nay, quy trình kiểm tra tiêu chuẩn của mỗi nước phụ thuộc vào chế độ vận
hành của ô tô ở một thành phố mà nước đó chọn làm tiêu biểu. Các nước đang phát triển
thường chọn chế độ thử của những nước công nghiệp phát triển để áp dụng ở nước mình
vớI một ít điều chỉnh cho phù hợp với tình hình thực tế. Từ năm 1970, các nước trên thế
giới đã thiết lập tiêu chuẩn độ khói cho các loại xe tải và xe bus Diesel như các hình 5.13
(Cộng đồng Châu Âu, loại xe có trọng lượng toàn bộ trên 3500kg), hình 5.14 (Mĩ, loại xe
có trọng lượng toàn bộ trên 3850kg) và hình 5.15 (Nhật, loại xe có trọng lượng toàn bộ
trên 2500kg).

Ở Việt Nam, Nhà Nước đã ban hành các tiêu chuẩn TCVN 5418-91 và TCVN
6438-98 về độ khói trong khí xả động cơ Diesel (xem chương 2).

5.5. Cơ chế tạo bồ hóng trong buồng cháy động cơ Diesel

Các nghiên cứu cơ bản về quá trình hình thành bồ hóng trong các ngọn lửa và
trong buồng cháy động cơ Diesel đã được đề cập nhiều trong các tài liệu gần đây với 5 cơ
chế hình thành hạt bồ hóng điển hình:

1. Polyme hóa qua acétylène và polyacétylène
2. Khởi tạo các hydrocarbure thơm đa nhân (HAP)
3. Ngưng tụ và graphit hóa các cấu trúc HAP
4. Tạo hạt qua các tác nhân ion hóa và hợp thành các phân tử nặng
5. Tạo hạt qua các tác nhân trung tính và phát triển bề mặt hợp thành
các thành phần nặng.



0
0.2
0.4
0.6
0.8
1
1970 1974 1978 1982 1986 1990 1994 1998 2002
Næm dÜÖng lÎch
ñ¶ khói (g/HP/h)


Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

67
Hình 5.13: Tiêu chuẩn châu Âu về độ khói của ô tô Diesel ở các mốc thời gian khác nhau

0
0.2
0.4
0.6
0.8
1
1970 1974 1978 1982 1986 1990 1994 1998 2002
Næm dÜÖng lÎch
ñ¶ khói (g/HP/h)


Hình 5.14: Tiêu chuẩn của Mĩ về độ khói của ô tô Diesel ở các mốc thời gian khác nhau



0
0.2
0.4
0.6
0.8
1
1970 1974 1978 1982 1986 1990 1994 1998 2002
Næm dÜÖng lÎch
ñ¶ khói (g/HP/h)


Hình 5.15: Tiêu chuẩn Nhật Bản về độ khói của ô tô Diesel ở các mốc thời gian khác nhau

Hiện nay người ta thường mô tả sự hình thành bồ hóng qua 4 giai đoạn được tóm
tắt trên hình 5.16.


















Nhiên liệu+Không khí
Tạo hạt nhân
Phân hủy nhiệt
Axêtylen
Các hạt cơ bản
Phát triển bề
mặt
các hạt
cơ b
ản
Các hạt bồ hóng
ban đầu
Phát triển bề mặt
các hạt bồ hóng ban đầu
Các hạt
bồ hóng
Hợp dính
Ngưng tụ
Phát triển bề mặt
Liên kết hạt
Oxy hóa
Oxy hóa
Oxy hóa
Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

68














Hình 5.16: Quá trình tạo bồ hóng trong động cơ Diesel



5.5.1. Hình thành hạt bồ hóng


Vật chất của pha ngưng tụ đầu tiên phát triển từ những phân tử nhiên liệu thông
qua các sản phẩm của sự oxy hóa hoặc các sản phẩm phân hủy nhiệt (pyrolyse). Những
sản phẩn này gồm những hydrocarbure không bão hòa khác nhau, đặc biệt là acétylène và
các đồng vị bậc cao của nó, và những HAP. Hai dạng phần tử này được coi như là nhân tố
chính trong sự hình thành bồ hóng. Phản ứng ngưng tụ của những phân tử thể khí dẫn đến
sự hình thành các hạt nhân bồ hóng đầu tiên có đường kính rất bé (d<2nm), đây là các hạt
cơ sở được hợp thành bởi một lượng lớn các gốc tinh thể đơn lẻ có kích thước từ 20 -
30A
0
.


















Hình 5.17a: Cơ chế trung gian về động hóa học của sự tạo thành bồ hóng
từ các phân tử aromatics

.C
2
H+C
4
H
2

C
C
H
C

.C C
C
H
H
C
2
H
2

C
C
H
C
C
C
C
H
H
C
2
H
2
C
H
C
H
C
C
C
H

.
C
C
C
H

C
C
H
.
H
.
Hình 5.17b
+ C
2
H
2

Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

69


















Hình 5.17b: Mô hình cơ chế tạo hạt bồ hóng từ aromatics
và aliphatics

CH
x

C
2
H
x

C
3
H
x
A
romatics
Các phản ứng ngưng tụ
A
liphatic
Các phản ứng
phân nhánh

Trực tiếp
(h h)
Bồ hóng
Bồ hóng
Gián tiếp (chậm)
Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

70
Cơ chế tổng quát về sự tạo thành hạt nhân bồ hóng ở nhiệt độ thấp và trung bình
được trình bày trên hình 5.17a,b. Ở nhiệt độ thấp (<1700K), hydrocarbure thơm có thể
sinh ra bồ hóng một cách trực tiếp và nhanh chóng biến thành cấu trúc gần graphite. Khi
nhiệt độ cao hơn 1800K, một cơ chế hình thành bồ hóng khác diễn ra chậm hơn và ít trực
tiếp hơn, trước hết qua trung gian những thành phần HC có khối lượng phân tử nhỏ và sau
đó bị polymer hóa thành những phần tử kém bão hòa có khối lượng phân tử lớn hơn. Đây
là các mầm cơ bản để hình thành các hạt nhân bồ hóng.

Theo Borghi, sự hình thành bồ hóng qua trung gian các aromatics được viết như
sau:
Aromatic→(khử hydro) →Alcanes (CH
4
, C
2
H
6
) →Các gốc Alcolyles (CH
3
.
,
C
2

H
5
.
→Alcenes (C
2
H
4
)→Alcynes (C
2
H
2
) →(khử hydro) → Các gốc C
2
H
.
và sau đó :
C
2
H
.
+ C
2
H
2
→ C
4
H
2
+ H
.



C
2
H và Diacetylene C
4
H
2
lại tiếp tục tác dụng với nhau như hình 5.17a và cơ chế
tiếp tục kéo dài. Ở mỗi một chu trình đều có sự tham gia của C
2
H
2
.

5.5.2. Phát triển hạt bồ hóng

Quá trình phát triển của hạt bồ hóng bao gồm sự phát triển bề mặt, ngưng tụ và sự
liên kết hạt. Sự phát triển bề mặt diễn ra do các chất thể khí ngưng tụ trên hạt rắn và biến
thành một bộ phận của hạt. Các phản ứng phát triển bề mặt dẫn đến sự gia tăng nồng độ bồ
hóng f
v
nhưng không làm thay đổi số lượng hạt. Ngược lại sự phát triển bằng con đường
liên kết và hợp dính các hạt với nhau làm giảm số lượng hạt nhưng nồng độ bồ hóng
không thay đổi. Khi sự phát triển bề mặt hạt kết thúc, quá trình liên kết hạt thành chuỗi và
cụm vẫn có thể xảy ra. Khi đó lực tĩnh điện của chúng có vai trò quan trọng và là yếu tố
chính tạo ra sự h
ợp dính này.

Tóm lại, trong buồng cháy động cơ liên tục xảy ra qua trình tạo hạt nhân, phát triển

bề mặt và liên kết hạt. Ở mỗi giai đoạn, khi nhiệt độ đủ cao, hạt bồ hóng bị oxy hóa một
bộ phận hay toàn phần.


5.5.3. Quá trình oxy hóa hạt bồ hóng

Quá trình oxy hóa có thể diễn ra ngay lúc hình thành các phân tử hoạt tính, hạt
nhân và hạt bồ hóng (hình 5.16). Thực nghiệm cho thấy phần lớn bồ hóng bị oxy hóa
trong xy lanh trước khi quá trình thải bắt đầu. Tốc độ oxy hóa bồ hóng trong động cơ phụ
thuộc vào sự khuếch tán của các chất tham gia cũng như động học phản ứng.

Có rất nhiều chất bên trong sản phẩm cháy hay ở gần ngọn lửa có thể oxy hóa bồ
hóng như O
2
, O, OH, CO
2
, và H
2
O. Khi áp suất riêng của oxygène cao, sự oxy hóa bồ
hóng có thể tuân theo công thức gần đúng dựa trên các nghiên cứu về oxy hóa của
pyrographite. Sự oxy hóa bồ hóng bởi OH tác động trên bề mặt hạt. Trong khi đó, sự oxy
bồ hóng do oxygène tác động trên bề mặt hạt diễn ra chậm hơn nên nó có thời gian xuyên
Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

71
sâu vào bên trong để oxy hóa và phân hủy hạt bồ hóng. Theo những kết quả gần đây, trong
điều kiện áp suất môi trường và hỗn hợp giàu thì sự oxy hóa bồ hóng bởi gốc OH
quan trọng hơn so với sự oxy hóa của O hay O
2
.


Như vậy, rõ ràng hạt bồ hóng hình thành là sản phẩm của các quá trình: tạo hạt cơ
sở, hình thành hạt bồ hóng, phát triển và oxy hóa hạt bồ hóng. Tốc độ tạo bồ hóng
trong quá trình cháy là hiệu số giữa tốc độ sản sinh và tốc độ oxy hóa bồ hóng.
Cơ chế
hình thành bồ hóng phụ thuộc chủ yếu vào nồng độ nhiên liệu, oxygène và nhiệt độ quá
trình cháy.

5.6. Mô hình hóa quá trình tạo bồ hóng trong động cơ Diesel

5.6.1. Giới thiệu

Động học phản ứng hình thành bồ hóng khác với động học phản ứng hình thành các
chất khác trong sản phẩm cháy. Giả thuyết động học phản ứng nhanh không thể áp dụng
trong tính toán nồng độ bồ hóng. Trong quá trình cháy khuếch tán, sự phân bố nhiên liệu
không đồng đều và chính vùng tập trung nhiên liệu ở biên giới của các mặt tiếp giáp là khu
vực sản sinh bồ hóng. Tốc độ sản sinh bồ hóng phụ thuộc nồng độ nhiên li
ệu còn tốc độ
cháy bồ hóng phụ thuộc nồng độ oxygène.

Nồng độ bồ hóng tại một điểm trong ngọn lửa được xác định bởi sự tương tác của
hai hiện tượng lí hóa:
đối lưu-khuếch tán, khống chế sự dịch chuyển của các phần tử trong
dòng chảy và
sản sinh-tiêu tán, khống chế sự sinh ra hay mất đi của các phần tử trong quá
trình cháy. Nồng độ bồ hóng được xác định theo định luật bảo toàn phần tử trong dòng
chảy:


d

m
Y
dx
mYm
i
iioo
(
&
.)

&
.
&
'
,
'
<
>
=+
(5.1)

Trong trường hợp môi trường bên ngoài không chứa bồ hóng, Y
io
= 0. Do vậy ta có:



dm Y
dx
m

i
i
(
&
.)

&

'
<
>
= (5.2)

Trong đó tốc độ sản sinh trung bình của phần tử i được tính trên một đơn vị thể tích
và thời gian được xác định theo biểu thức:



&

'
max
mRR
ii
=
π
2
(5.3)

Mô hình hóa quá trình tạo bồ hóng chủ yếu là tìm mối quan hệ giữa tốc độ tạo bồ

hóng
m
i
.
'

với các thông số khác của dòng chảy rối để khép kín hệ phương trình. Theo
hướng này, hiện nay tồn tại nhiều mô hình tạo bồ hóng. Sau đây là một số mô hình tiêu
biểu.
Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

72

5.6.2 Mô hình hóa sự sản sinh bồ hóng

Những nghiên cứu thực nghiệm cho thấy sự hình thành bồ hóng được tiến hành
qua trung gian của những hydrocarbure thơm đa nhân (HAP) và sự phát triển của hạt bồ
hóng là do phản ứng giữa những phân tử hydrocarbure thơm và acétylène. Mô hình động
hóa học HAP mô tả sự hình thành bồ hóng theo cơ chế này do Frenklach thiết lập bao gồm
khoảng 1000 phản ứng thuận nghịch được khởi động bởi 18 phản ứng chính ban đầu.
Nghiệm số
hoàn chỉnh của mô hình này vì vậy rất phức tạp.

Theo Tesner-Magnussen, bồ hóng được hình thành trong quá trình cháy của
hydrocarbure được tiến hành qua hai giai đoạn, đầu tiên là việc hình thành các nhân cơ sở,
và giai đoạn sau là việc hình thành bồ hóng từ các nhân này. Tốc độ sản sinh các nhân cơ
sở được tính theo biểu thức:


(

)
RnfgngnN
nf o b o,
=+− − (hạt/m
3
/s) (5.4)
trong đó:

n
o
: Tốc độ sản sinh hạt cơ sở ban đầu:


nac
E
RT
oof
=−






exp (hạt/m
3
/s) (5.5)
a
o
: Hằng số

c
f
: Nồng độ nhiên liệu (kg/m
3
).
E : Năng lượng kích hoạt
R : Hằng số khí vạn năng
T : Nhiệt độ tuyệt đối của khí
f
b
: Hệ số tăng nhánh tuyến tính
g : Hệ số đứt nhánh tuyến tính
g
o
: Hệ số đứt nhánh của hạt bồ hóng
n : Nồng độ hạt cơ sở (hạt/m
3
)
N : Nồng độ hạt bồ hóng (hạt/m
3
)

Tốc độ sản sinh bồ hóng được viết như sau:


()
RmabNnkgms
sf p,
(/ /)=−
3

(5.6)

Với m
p
: Khối lượng một hạt bồ hóng (kg/ hạt).
a,b : Các hằng số

Ngoài ra còn có các mô hình mô tả sự sản sinh bồ hóng khác như:

- Mô hình Khan:


()
R
s,f
=−Kp T
ff
φ
3
20000exp / (5.7)
Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

73

f
f
: Độ đậm đặc của nhiên liệu trong vùng hình thành bồ hóng
p
f
: Áp suất cục bộ của nhiên liệu

T : Nhiệt độ khí cháy
K : Hằng số tỉ lệ

- Mô hình Hiroyasu và Kadota:



(
)
R
s,f
=−KP T
b
exp /10000 (5.8)

P : Áp suất khí
T
b
: Nhiệt độ khí cháy
K : Hằng số tỉ lệ

- Mô hình Morel:
(
)
R
s,f
=

+
AR

AT
Y
f
f
o
1
2
1476
2
exp /
,
(5.9)
A
1
, A
2
: Các hằng số
R
f
: Tốc độ cháy của nhiên liệu
T
f
: Nhiệt độ ngọn lửa
Y
O2
: Nồng độ oxy có mặt trong vùng cháy


5.6.3. Mô hình hóa sự oxy hóa bồ hóng


Thực nghiệm cho thấy rằng tốc độ cháy bề mặt của bồ hóng tương đương với tốc
độ cháy bề mặt của graphite. Do đó công thức thực nghiệm của Nagle và Stricland-
Constable thường được dùng trong tính toán tốc độ oxy hoá bề mặt graphite cũng được
dùng để tính toán sự oxy hóa bồ hóng. Theo đó, tốc độ oxy hoá bề mặt bồ hóng R
s,c
được
viết như sau:

R
c
d
kP
kP
kP
sc
s
ss
Ao
zo
Bo,

.
()=
+
+−









720
1
1
2
2
2
ρ
χ
χ
(kgm
-3
s
-1
) (5.10)

trong đó các hằng số được xác định như sau:


Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

74

kT)
kT)
kT)
kT)
A

B
T
Z
=−
=−
=−
=












20 15100
4 4610 7640
15110 48800
21 3 2060
3
5
exp( /

,. exp( /
,. exp( /
, exp( /

(5.11)

P
O2
là áp suất riêng của oxy tính bằng atm

χ =
+
1
1
2
k
k
P
T
B
o
(5.12)

Ngoài ra, còn có nhiều mô hình tính toán tốc độ oxy hóa bồ hóng như:

- Mô hình Lee:

RPT T
c
d
sc o
s
ss
,

/
, . . . exp( / ).=−

6 51 10 19800
512
2
ρ
(kgm
-3
s
-1
) (5.13)
- Mô hình Magnussen:


R
PT
PT
c
d
sc
o
o
s
ss
,

, . . exp( / )
, . . exp( / )
.=


+−
1 83 10 29000
1 3 10 10 29300
82
10 2
2
2
ρ
(kgm
-3
s
-1
) (5.14)

- Mô hình Jones:


RPPT T
sc O H O,
// /
. . exp( / )
=


2
14
2
12 12
19000 (kgm

-3
s
-1
) (5.15)

- Mô hình Hiroyasu và Kadota:

R
c
d
PT
sc
s
ss
O,
.exp( / )=−
6
20000
2
ρ
(kgm
-3
s
-1
) (5.16)

- Mô hình Morel:

RB
c

d
BTP
sc
s
ss
fO,
/
exp( / ).=−
12
12
2
ρ
(kgm
-3
s
-1
) (5.17)

B
1
, B
2
: Các hằng số

- Mô hình "eddy-dissipation" của Magnussen:

Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

75
Dựa trên cùng nguyên tắc mô tả quá trình cháy khuếch tán của nhiên liệu,

Magnussen đưa ra mô hình "eddy-dissipation" ứng dụng trong quá trình cháy của bồ hóng.
Theo mô hình này, tốc độ cháy bồ hóng được tính theo quan hệ sau đây:


RAc
k
sc s,
.=






ε
(kgm
-3
s
-1
) (5.18)

trong đó : A : Hằng số
c
s
: Nồng độ bồ hóng ( kg/m
3
)
k : Động năng rối (m
2
/s

2
)
e : Tốc độ tiêu tán động năng rối (m
2
/s
2
)

Quan hệ này được áp dụng trong vùng có thừa oxygène. Trong trường hợp thiếu
oxygène, Magnussen đề nghị tính tốc độ cháy bồ hóng theo công thức:


RA
c
rk
cr
cr cr
sc
o
s
ss
ss f f
,
.=







+






2
ε
(kgm
-3
s
-1
) (5.19)

r
s
, r
f

theo thứ tự là lượng oxygène cần thiết để đốt cháy hoàn toàn một kg bồ hóng
và một kg nhiên liệu (kg/kg) theo lí thuyết; c
O2
là nồng độ oxygène (kg/m
3
). Tốc độ cháy
bồ hóng là giá trị nhỏ nhất trong hai giá trị tính theo (5.18) và (5.19). Tốc độ hình thành bồ
hóng cuối cùng được xác định bởi biểu thức:



R
s
= R
s,f
- R
s,c
(kgm
-3
s
-1
) (5.20)

5.6.4. Xây dựng mô hình tạo bồ hóng trong buồng cháy động cơ Diesel

Việc tính toán và xây dựng mô hình tạo bồ hóng trong buồng cháy động cơ Diesel
cần được thực hiện đồng thời với mô hình quá trình cháy khuếch tán. Sơ đồ lôgic của mô
hình tính toán được trình bày như trên hình 5.18. Kết hợp với mô hình ngọn lửa khuếch
tán bên ngoài động cơ, chúng ta có thể xây dựng được mô hình quá trình cháy của ngọn
lửa bên trong động cơ theo các điều kiện ban đầu ở góc quay trục khuỷu α
i
. Như vậy, ở
mỗi bước góc quay trục khuỷu xác định, chúng ta có được nồng độ nhiên liệu, nồng độ
oxygène và nhiệt độ cục bộ. Từ đó nồng độ bồ hóng được xác định nhờ các mô hình vừa
trình bày trên đây.

Đối với quá trình cháy trong động cơ Diesel, hiện nay người ta có thể áp dụng
nhiều mô hình khác nhau để tính toán nồng độ bồ hóng. Tuy nhiên, trong các mô hình đó,
mô hình Tesner-Magnussen thể hiện được đầy đủ bả
n chất của quá trình lí hóa hình thành
bồ hóng trong ngọn lửa khuếch tán nhất.






Mô hình nhiệt động
học trong cylindre

Quy luật
phun nhiên liệu

Điều kiện ban đầu ở góc
quay trục khuỷu
α
i

Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

76


























Hình 5.18: Sơ đồ tính toán quá trình cháy và tạo bồ hóng
trong động cơ Diesel phun trực tiếp



Trong tính toán nồng độ bồ hóng theo mô hình Tesner-Magnussen, năng lượng
kích hoạt E (quyết định tốc độ sản sinh bồ hóng) và hệ số oxy hóa A (quyết định tốc độ
oxy hóa bồ hóng) sẽ được chọn tùy thuộc vào loại động cơ và loại buồng cháy. Hình 5.19
trình bày một số kết quả so sánh giữa tính toán và thực nghiệm nồng độ bồ hóng trong
buồng cháy động cơ Diesel transparent Lombardini LDA-100. Nồng độ bồ hóng trong
buồng cháy động cơ đượ
c đo bằng phương pháp hỏa kế lưỡng sắc. Sự hình thành bồ hóng
được tính theo mô hình Tesner-Magnussen và quá trình cháy được tính toán theo mô hình
ngọn lửa khuếch tán.

Sự phù hợp giữa mô hình và thực nghiệm ở đây cho thấy mô hình Tesner-

Magnussen có thể được áp dụng để tính toán sự hình thành bồ hóng trong buồng cháy
động cơ Diesel.


f
v
L.10
8

Tính toán
Thực nghiệm

n=1000 v/ph
p
a
=1,333 bar

Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel

77
1000 v/ph
pa=1.333bar
0
5
10
15
20
25
30
35

40
-20-10010203040506070
G óc quay trøc khu›u (Ƕ)
N °ng Ƕ th‹ tích bÒ hóng FvL
FvL[m]*E+8_Thí nghiêm
FvL[m]*E+8_Tính toán

Hình 5.19: So sánh biến thiên nồng độ bồ hóng theo mô hình và thực nghiệm
(động cơ transparent Lombardini LDA-100)




×