Tải bản đầy đủ (.pdf) (10 trang)

Báo cáo khoa học: "Một số tính chất của họ CF và cs-ánh xạ phủ compac" doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (252.6 KB, 10 trang )

CF CS
(1)
CF
CF,HCF HCP, CP
CF W HCP
k cs
cs ¨o
k k k
1.
T
1
X P
X
P x ∈ X U x
P ∈ P x ∈ P ⊂ U
P k K U
K X F ⊂ P K ⊂ ∪F ⊂ U
X P
X
1
2
P
K X K P
P cs A
A P
P CF K X {K ∩ P : P ∈ P}
P = {P
α
: α ∈ Λ} HCF Γ ⊂ Λ A
α
⊂ P


α
α ∈ Γ {A
α
: α ∈ Γ} CF
X P = {P
α
: α ∈ Λ}
X
P CP I ⊂ Λ

{P
α
: α ∈ I} =

{P
α
: α ∈ I}.
P HCP
I ⊂ Λ Q
α
⊂ P
α
, α ∈ I

{Q
α
: α ∈ I} =

{Q
α

: α ∈ I}.
P W HCP
I ⊂ Λ x
α
∈ P
α
, α ∈ I

{x
α
: α ∈ I} =

{x
α
: α ∈ I}.
P x ∈ X
U
x
x U
x
P
P x ∈ X
⇒ cs
⇒ HCF ⇒ CF ⇒
CF ⇒ HCP ⇒ CP WHCP
X P
X
X P U ⊂ X X
U ∩ P P P ∈ P
X A ⊂ X A X

A A X
X k X
f : X → Y
f f(A) Y A
X
f U Y
f
−1
(U) X
f K Y
L X f(L) = K
f s f
−1
(y) X y ∈ Y
f cs f
−1
(K) X
K Y
f ¨o f
−1
(y) ¨o X
y ∈ Y
f ¨o f
−1
(L) ¨o
X ¨o L Y
cs ⇒ s ¨o ⇒
¨o ⇒

2.

W HCP CF
X k P X
P
P
P cs cs
P

P K
X x ∈ K P
U
x
x U
x
P {U
x
: x ∈ K} K
{U
x
1
, U
x
2
, . . . , U
x
n
} {U
x
: x ∈ K} K ⊂

n

i=1
U
x
i
U
x
i
P i = 1, 2, . . . , n K
P P
⇒ ⇒
⇒ P
x ∈ X U x U
P P
x
= {P ∈ P : x ∈ P } P
P
x
F = P\P
x
x /∈ ∪F U
P U ∩ ∪F = ∅ x ∈ ∪F\∪F ∪F
X k K X
K ∩ ∪F K P F ⊂ P
{K ∩ P : P ∈ F} = {F
1
, F
2
, . . . , F
k
} K ∩ ∪F = F

1
∪ F
2
∪ . . . ∪ F
k
i = 1, 2, . . . , n F
i
= K ∩ P
i
P
i
P P
i
X F
i
X K ∩ ∪F X K ∩ ∪F
K P 
X k P X P
P
P ⇒
P
P
CF P CF P CF k X
P P

P X
P
P CP

⇒ P CP P

x ∈ X U x
P P
x
= {P ∈ P : x ∈ P } P
P
x
F = P\P
x
x /∈ ∪F U
P U ∩ ∪F = ∅ x ∈ ∪F\∪F ∪F
P CP F ⊂ P

P ∈F
P =

P ∈F
P
∪F P

P X P
P
P k X P
P
P X
P
P
P
P
P
P

P
⇒ ⇒


⇔ k


k
⇔ k

P
X CP WHCP HCP HCF CF
P
P X
P k
P

⇒ P K X U
K P

= {P ∈ P : P ⊂ U} P x ∈ K P ∈ P
x ∈ P ⊂ U P ∈ P

x K K ⊂ ∪P

P

K P

K

P

K P
0
∈ P

{P
0
}
K x
1
∈ K\P
0
P

K P
1
∈ P

x
1
∈ P
1
{P
0
, P
1
} K x
2
∈ K\(P

0
∪ P
1
)
{x
n
: n ∈ N} x
n
∈ K\

n−1
i=1
P
i
x
n
∈ P
n
x
n
= x
m
n = m
x
n
∈ P
n
P WHCP {x
n
: k ∈ N} K

{x
n
} K {x
n
: n ∈ N}
{x
n
} F ⊂ P

K ⊂ ∪F F ⊂ P

⊂ P K ⊂ ∪F ⊂ U F P
P k X 
3. CS
¨o
cs ¨o
¨o σ
X ¨o σ P =

{P
n
:
n ∈ N} P
n
⊂ P
n+1
P
n
n n ∈ N
A

n
= {x ∈ X : P
n
x}
{P \A
n
: P ∈ P
n
} A
n
X {P \A
n
: P ∈ P
n
}
{P
α
: α ∈ Λ} ⊂ P
n
P \A
n
β ∈ Λ x
β
∈ P
β
\A
n
x
β
/∈ A

n
P
n
x
β
{P
α
: α ∈ Λ} P
γ
∈ {P
α
: α ∈ Λ}\{P
β
}
x
γ
∈ P
γ
\A
n
P
η
∈ {P
α
: α ∈ Λ}\{P
γ
, P
β
}
x

η
∈ P
η
\A
n
{x
α
: α ∈ Λ} x
α
∈ P
α
\A
n
P
α
\A
n
P
n
{x
α
: α ∈ Λ} X
¨o {x
α
: α ∈ Λ}
I ⊂ Λ x /∈ A
n
x
α
= x

α ∈ I P
n
x
x /∈ A
n
{P \A
n
: P ∈ P
n
} A
n
A
n
{z
h
∈ A
n
: h ∈ Γ}
A
n
P
n
z
h
h ∈ Γ {P
h
: h ∈ Γ} P
n
P
h

z
h
∈ P
h
h ∈ Γ} P
n
W HCP {z
h
∈ A
n
: h ∈ Γ}
A
n
X ¨o A
n
P
n

= {P \A
n
: P ∈ P
n
} ∪ {{x} : x ∈ A
n
}
P

=

{P

n

: n ∈ N} P
n

P

P

X x ∈ X U
x n ∈ N x ∈ A
n
x ∈ {x} ⊂ U
n x /∈ A
n
P k ∈ N P ∈ P
k
x ∈ P ⊂ U x /∈ A
n
P \A
n
∈ P
k

x ∈ P\A
n
⊂ U P

P


= {F
1
, F
2
, . . . , F
n
, . . .} n ∈ N y
n
∈ F
n
D = {y
n
: n ∈ N} D x ∈ X V
x k ∈ N x ∈ F
k
⊂ V V ∩ D = {y
k
} x ∈ D x
D ⊂ X D = X D X 
f : X → Y ¨o X σ
f s
f : X → Y ¨o P σ W HCP X
f ¨o y ∈ Y f
−1
(y) ¨o X
P

= {P ∩ f
−1
(y) : P ∈ P} P


σ W HCP ¨o
f
−1
(y) f
−1
(y) X f s

X P P
X k P k
P
P
P
⇒ P P ∈ P P
P P P
⇒ P
X P P X
F ⊂ X F ∩ P P P ∈ P F X
X k K X F ∩ K
X P k F ⊂ P K ⊂ ∪F ⊂ X
F ∩ K = ∪{(F ∩ P ) ∩ K : P ∈ F} F ⊂ P F ∩ P P P ∈ F
K P ∈ P P X T
2
K P X (F ∩ P) ∩ K
X ∪{(F ∩ P ) ∩ K : P ∈ F} X F ∩ K X
X P
P
⇒ P K
K P x ∈ K P
U

x
x U
x
P {U
x
: x ∈ K}
K {U
x
1
, U
x
2
, . . . , U
x
n
} {U
x
: x ∈ K}
K ⊂

n
i=1
U
x
i
U
x
i
P
i = 1, 2, . . . , n K P

P 
¨o
X ¨o P
X x ∈ X U
x
x U
x
P {U
x
: x ∈ X}
¨o X {U
x
1
, U
x
2
, . . . , U
x
n
, . . .}
{U
x
: x ∈ X} X =


n=1
U
x
n
U

x
n
P n = 1, 2, . . . X
P P X P

k k
X k k
f : X → Y
Y k
f ¨o
f cs
f ¨o P k
k X f(P) k
Y f(P) Y K
Y U K f
L X f(L) = K f f
−1
(U) L
X P k X F ⊂ P L ⊂ ∪F ⊂ f
−1
(U)
K ⊂ ∪f (F) ⊂ U f (F) f(P) f(P) k
Y f(P) Y
K Y K ¨o Y f ¨o
f
−1
(K) ¨o X P k k
X P
P


= {P ∩ f
−1
(K) : P ∈ P} ¨o
f
−1
(K) P

= {P ∩ f
−1
(K) : P ∈ P}
{f(P) : f(P ) ∩ K = ∅ : P ∈ P} K
f(P) f(P) k
Y
f cs P k k
X f(P) k Y
K Y
f(P) P k
k X P
k X k
X Y T
2
K
K f f
−1
(K) X f
−1
(K)
X f cs f
−1
(K)

¨o f
−1
(K) ¨o P
P

= {P ∩ f
−1
(K) : P ∈ P}
¨o f
−1
(K) {P ∩ f
−1
(K) : P ∈ P}
{f(P) : f(P) ∩ K = ∅ : P ∈ P} K
Y f(P)

cs ¨o
k k
k k
k k
X k k
f : X → Y cs ¨o
k k Y
k X k k
X k k
X
f cs
¨o Y k
Y k k


23 1
35
76
18
99
σ k
, 35 (2A) (2005), 5 - 15.
CF CS

×