Tải bản đầy đủ (.ppt) (28 trang)

Tài liệu chuyên nghành điện hạt nhân - 3 pptx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (779.8 KB, 28 trang )


Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
Safety   Regulation- 1
-Deterministicvs.Probabilistic/
Fukushima-
July26,ThirdPeriod
Hiroshi UJITA
Tokyo Institute of Technology
1

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
2
Quy chế và an toàn

Therearegrowingtendencyintheorganizationalproblemandalsotheimpactontheenvironment,
duetowidespreadandcomplextargetsystem.

ShiftfromprescriptiveRegulationtoNormativeRegulation.

Thelegalsystemchangesfromresultstheorytoacttheory(backgroundtheory,proceduretheory,
frameworktheory).

Theshiftfromthepunishmentduetoaccidentoccurtothepunishmentduetonottomakethe
mechanismtopreventtheaccident.

AsforthePerformanceStandardRegulationintheU.S.,Risk-InformedPerformance-Based
Regulationhasbeenadoptedbasedontherisktheory.

AsfortheRegulatoryorganization,SafetyandEnvironmentalRegulatoryAuthorityshouldbe


establishedasintheCabinetOffice,withunifiedlookthroughouttheorganizationand
independenttotheotherauthorities.CreateanInstituteforEnvironmentandSafetyand
EnvironmentandSafetyAdvisoryCommitteetodeveloppolicies.

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
3
LawandSafety

Recently,frequentoverstuffedcorporatescandalsandaccidents.

Responsiblepersonwillfulnegligence,thatisinactionbytheostrichfashion
“hadbeenpredictedwhiledidnotconsider,”istheworst.

Sincethelawhasbeendesignedfororganizationalaccidentprevention
primarily,itworksbycombiningbothtechnicalandlegalmeasurestoimprove
safetymeasures.

Inaddition,economicandsocialsanctionsandprocedureandframeworktheory,
etc.arealsorequired.

Asforthesocialandeconomicsanctionsagainstorganizationalaccidents,
punitivecompensationsystemshouldalsobeconsidered.

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.

Preventingdamage

Failureexpansionmitigation:autonomouscharacteristic,inherentsafety

(intrinsicallysafety)

Accidentprevention:afail-safe,fool-proof,redundancy,diversity

Accidentexpansionmitigation:confinement,controlrelease

Environmentaleffectsmitigation:evacuation

Focusonpreventingdamage,expansionmitigation,oraccident
preventiontotheforefront

Increasedattentiontoback-upsystems,ifithasalargeenoughimpact
ontheenvironment
4
DefenseinDepthforthesafetydesign

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.

Deterministicapproach:

Safetyassessmentforeachbarriertodefenseindepth

Themostsevereeventisassumedtorepresentthetypicalevent,whilethe
initiatingeventsareconsideredandclassifiedbybehavior(DesignBasis
Accident)

Inadditiontothis,assumingthatfailureofoneofthemostimportantsafety-
relatedequipment(SingleFailureCriteria),


Wemayguaranteethesafetybasedontheevaluationthatwecanstillhave
enoughsafetyonthatseverehypothesis.

SingleFailureCriterionfailure

LOCA,LossofCoolantAccident,therealitywillnothappen(NRC)

Transientisthemostlikelyevent(ReactorSafetyStudy1975,TMI
Accident1979)
5
SystemSafetyEvaluation1

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.

Probabilisticapproach:

Overallsystemsafetyassessmentbasedontheconceptofrisk

Easilysecuredcoverageofeventsintheprocessofconsideringtheprobability

Rationaldecisionsduetothepresenceofriskevaluationcriteria
-SafetyGoals:aquantitativediscussion“howsafeissafeenough”

Determinationofquantitativesafetytrendthroughoutthelifecycle

Evaluationofsafetymeasuresimplementedashardwareattheinitialsystem
construction

Evaluationofdailysafetyfromenteringthecommercialoperation


Determininginspectionfrequency,acceptablewaitingtime,etc.areinherently
risk-based

Chemicalplants:extensionoftimespanofperiodicinspection;1yearto2years

Eventsoflargeuncertaintiesanddifficulttopredictcanbequantifiedasanexpert
judge

Seismic(Tsunami)riskassessment,humanreliabilityassessment
6
SystemSafetyEvaluation2

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
7
Themethodologyforsafety
DeterministicApproachUseBothApproachesProbabilisticApproach
DesignMethod231
ManagementMethod122
EvaluationMethod243

 4:Excellent3:
Good2:Fair1:Poor

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.

(Successpathmethod–MissionCritical;Space,Missile)


PRA(ProbabilisticRiskAnalysis)SafetyCritical

ETA/FTA(EventTree/Faulttreeanalysis)

HRA (Human Reliability Analysis)

CMF (Common Mode Failure) Analysis

QRA(QuantitativeRiskAnalysis)

HSE(Health&SafetyExecutive)

ISO(InternationalStandardOrganizations)

FMEA(FailureMode&EffectAnalysis)

HAZOP(HazardousOperabilityStudy)
8
Methodologyofrisktheory

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
Study of
internal
initiating
event
Analysis of
the accident
sequences
leading to

core
damage
Analysis of
the
accident
sequences
leading to
loss of
containme
nt function
Analysis
of core
damage
accident
progressi
on
phenome
na
Core
Damage
Frequency
Source
term to
atmosphere
Analysis of
public
exposure to
atmospheric
dispersion
risk

Study of
external
initiating
events
Accident
mitigation system
reliability
analysis
Human
reliability
analysis
Occurrence
frequency of each
phenomenon
Frequency of
containment
function Loss
Level1 PSA
Level2 PSA
Level3 PSA
ProbabilisticRisk(Safety)Assessmentprocedure  
9
Fukushima Daiichi Accident

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
   Level1PSA  
Initiating
Event
Success

Criteria
Plant
Survey
HumanError
Dependent
Failure
Uncertainty
   study
Sensitivity
   analysis
ComponentFailureRate
Model
(Coredamage
frequency)
Accidentsequence
quantification
FaultTree
EventTree
Phenomenapropagationscenario
10

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
InitiatingSafety    SafetyConsequence   FrequencyRisk  
        
event   function1   function2
11
Eventtreeanalysis(LevelofDefenseinDepth)
Succes
s

Failur
e
Success
Failur
e
Small
Medium
Large
10 - 5
10 - 6
Small
Medium

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
Initiatin
g Event
Reactor
Shut
down
Core Cooling PCV Heat Removal Core Sate
Large
LOCA
Control
Rod
Drive
Hydrauli
c System
(CRDHS)
High

Pressur
e Core
Spray
System
(HPCS)
Low
Pressur
e Core
Spray
System
(LPCS)
Low
Pressur
e Core
Injection
System
(LPCI)
Residua
l Heat
Remova
l
System
(RHR)
PCV
Vent
(PCVS)
Intact
or
Damage
Intact

Intact
Intact
Intact
Intact
Intact
damage
damage
damage
damage
damage
Level1PSA:Eventtree(ET)
12

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
13
Faulttreeanalysis
(EachfunctionofDefenseinDepth)
SafetyFunctionSLoss
SafetyFunctionB2LossSafetyFunctionB1Loss
SafetyFunctionBLossSafetyFunctionALoss
ANDgate
ORgate
P(A+B+C)
=P(A)+P(B)+P(C)
-P(AB)-P(BC)-P(CA)
+P(ABC)
P(ABC)=P(A)P(B)P(C)
S=A*B
=A*B1+A*B2

(MinimalCutset)

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
Low Pressure Core Injection System (LPCI) Function Loss
Safety Function A Loss Safety Function C LossSafety Function B Loss
Pump FailureValve
Failure
Human Error
Recovery
Failure
Support System
(Electric Power,
Cooling Function,
etc.) Failure
Mechanical Failure
Common Mode
Failure
Electrical Failure
AND
OR
OR
Level1PSA:Faulttree(FT)
14

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
試験に関連するすべての
リスク寄与(RT)
試験により制限できる

リスク寄与(RD)
試験により引き起こされ
るリスク寄与(RC)
リスク
サーベランス試験間隔
15
Risk contribution due to Surveillance test
period
Risk
Surveillancetestperiod
Totalriskcontribution
duetoSurveillancetestperiod
Riskcontribution
inducedbySurveillancetest
(Humanerror,Fatigue,etc.)
Riskcontribution
reducedbySurveillancetest
(MechanicalFailure)

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
Level2PSA  
Level1PSA
Accident Sequence
Plant Degradation
Classification
Phenomena,
Accident
Mitigation
PCV Event Tree

Accident Propagation
Anaysis
PCV Event Tree
Quantification
Uncertainty
Analysis
Analysis
Propagation after
Core Damage
Typical
Accident
Scenario
Event Occurrence Time,
Accident Mitigation capability
PCVDamage
SourceTerm
16

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
SevereAccident
PhenomenainPCV
17
Insulation
Over Heat
Hydrogen
Burning
Steam
Explosion
Steam

Explosion
PCV Direct Heating
Melt Direct Contact
Incondensable Gas
Accumlation
Melt- Concrete Interaction

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
Group 1.
& Group 5.
Group 2.
Group 3.
& Group 5.
10
-7
10
-6
10
-5
10
-4
10
-3
10
-2
10
-1
10
0

-10 0 10 20 30
Source Terms (-)
Time to PCV Failure from Core Melt Initiation (h)
Group 3.&
Group 4.
Group 3.
Group 2. &
Group 4.


Failure location Xe CsI Sr
Drywell
× ● ○
Gas space in wetwell
+ ▲ △
Bottom of wetwell (liquid part)

■ □
FPreleaseandaccident
propagationare
categoraizedbysameway
FPreleasewilldecrease
duetonaturalfall,ifthe
timetoPCVfailuretocore
meltinitiationprolonged
RadioactiveRelease
toAtmosphere
18

Nuclear Power Engineering at Electric Power University

Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
Level3PSA  
Uncertainty
Analysis
Dominant Sequence Frequency
Level2 PS A
Source Term
Prome Model
Individual Risk
Societal Risk
Risk Evaluation
Atmosphere Data
Fission Product
Releace Analysis
Wind Data
Release tendency
Capital Data
19

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
20
Risksensitivityoftheforcontainmentleakage
0.1 1 10 100 1000
400
300
200
100
0
Publicexposureexpectation

(Man-Rem/year)
Containmentleakagerate(%/day)
Plant
GrandGulf
Oconee
PeachBottom
Surry

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
21
PrincipleofsafetygoalinUK
Regionwidelyaccepted
Regionnotaccepted
Negligiblerisk
Tolerable,
iftheriskreductioncostis
abovetheimprovementbenefit
Tolerable,
iftheriskreductionisnotpossibleor
ifthecostisnotworthimprovement
Riskisnotjustified
Safety
Limit
Safety
Goal
LargeRisk
Continuetoensurethat
riskismaintainedatthislevel
Risk

Benefit
Analysis
Tolerableregion
ALARPregion

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
10
-10
10
-9
10
-8
10
-7
10
-6
10
-5
10
-4
10
-3
10
-10
10
-9
10
-8
10

-7
10
-6
10
-5
10
-4
10
-3
BWR
PWR
CDF (1/(r.y))
Index2:ContainmentFailureFrequency
Index1:CoreDamageFrequency
PSAResultofInternalEventin
NormalOperationfor52Plants
showstobelessthan
performancegoal
NISA,PSAMethodologyAfterAccident
ManagemantPublished(Oct.2004)
CoreDamageandContainmentFailureFrequency
for52PlantsinJapan
22

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
23
FukushimaDaiichiaccidentissues

"Assumingwhilenotconsideringsuchevent!“


HumanFactor&CommonModeFailurearealwaysworthkeepinginmind

RareEventishighconsequencewithlowfrequency.

Lowconsequencewithhighfrequencyeventiseasytotreatbycommercialreason,whileitisvery
difficulttohandletherareeventeventheriskisjustthesame.

Unexpectedeventhasbeenusedfrequently,butitistherisk-benefitissuestoassumeornot.
TsunamiProbabilisticRiskAnalysishasbeencarriedout,andsafetyrelatedpersonnelknewthe
magnitudeoftheeffectwell.

Regardlessoftheinitiatingevent,lackofmeasuresto“CompleteLossofPower”istobeasked.

Anyway,rareeventoccurredononeoccasion,measureshadtobetaken.

FukushimaDaiichNuclearpowerplantsas“NationalPrivatization”destroyedbylarge-scale
disastersshouldbetakensameasinfrastructuresystemsasanationalpolicy.

TherearemanyCrisisManagementproblemsasfollows;

Delayininitialresponse

Delayindecisionmaking

Delayinexternalsupportrequest

Poorcollaborationamonggovernment(PrimeMinisterKan),bureaucrats(NISA,JNES),and
interestedparty(TEPCO)


Poorinformationdisclosureinemergencysituation

Afterall,itisamatteroforganizationalculture.

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
24
Energyissueandroleofnuclearenergyafterthe
FukushimaDaiichiAccident

Premisehereisthat"Globalwarmingisaninvariantproblem!“

"Energysecurityisalsoaninvariantproblem!".

Thelong-termenergydemandandsupplysimulationtominimizethetotalenergysystemcostwas
conductedforenergypredictionduringthe21stCenturyintheworld.

Takingtheeffortforenergy-savingasmajorpremise,carbon-sequestrationforfossilfuel,renewable
energyandnuclearenergyshouldbealtogetherdeveloped,whichmeansenergybestmixisachieved,
undertheCO2constraintaround450ppmatmosphere.

Nuclearphase-outscenario,inwhichnewnuclearplantconstructionisprohibited,ispossibleeven
consideringtheissueofglobalwarming,fromsimulationforthe21stCenturyenergypredictions

increaseenergycosts

littleroomforcountermeasureandlargeuncertaintiesoftechnology

Therefore,rationaluseofnuclearpowerisrequested,thatiseachcountryshouldmakedecision


JapanandseveralEuropeancountrieswillbealsophaseout

China,IndiaandASEANcountrieswillcontinuetobeintroduced

Iftheaccidenthappensagainanywherein,itwillbecometheglobalphase-out.

Intheworld,rationalunifiedsafetystandards(organizationalstructure,designandoperation,regulations)
shouldbereviewedbasedontheFukushimaDaiichiProblemworld-wideanalysisandestablished.

Nuclear Power Engineering at Electric Power University
Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.
25
LessonLearnedfromFukushima‐DaiichiNuclearAccident
May9th,2011,TechnicalAnalysisSubcommittee,CommitteeforNuclear
SafetyInvestigation,AtomicEnergySocietyofJapan
-SummaryofImportantLessons
a.Estimatedtsunamiwastoosmall.
b.SafetySystemandComponentsweredamagedbecauseofseawaterflooding,
resultinginsevereaccidents.
c.Long‐termstationblackoutcausedtheaccidentsprogression.
d.Reactorparametermonitoringwasdifficultwithoutelectricity.
e.Seawatercoolingsystemwasvulnerabletotsunami.
f.AccidentManagement(AM)forlong‐termstationblackoutmaybeinsufficient.
g.Hydrogenexplosionatoutsidethecontainmentvessel(CV)wasnotconsidered.
h.Enclosureofradioactivematerialsatspentfuelpoolisdifficultifreactorbuildingwas
damaged.
i.Insufficientsafetydesignforexternalevent.
j.Japanesesafetyregulationsystemisinsufficient.
k.Publicfeelsthattheinformationdisclosureisnotenough.
l.AMactivitiespreventsignificantdeteriorationoftheaccidents.

m.SeismicDesignfortheearthquakewasconsideredeffectiveinmanycases.

×