Tải bản đầy đủ (.pdf) (6 trang)

ĐỀ KIỂM TRA GIỮA Môn : Toán - Lớp 9 Trường THCS Đồng Khởi ppt

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (203.44 KB, 6 trang )

Phòng GD Quận Tân Phú ĐỀ KIỂM TRA GIỮA
HK II ( 2007 – 2008 )
Trường THCS Đồng Khởi Môn : Toán - Lớp 9 : (
Ngày kiểm tra 12 – 03 – 2008 )
Đề A – Thời gian làm bài : 60 phút

A/ TRẮC NGHIỆM:
1) Phương trình 102


yx cĩ nghiệm tổng qut l:
a)


102;  xyRx .
b)


Ryx  ;5 .
c)


102;  xyRx .
d)









 Ry
y
x ;
2
10
.

2) Đồ thị hm số y = ax
2
đi qua điểm A(3;12) thì gi
trị của a bằng:
a)
4
3
b)
3
4
c)
3
2
d)
2
3


3) Cho đường trịn (O) biết AOB = 100
0
như hình
vẽ.


Khi đó, số đo cung AmB bằng:
a) 50
0

b) 100
0

c) 310
0

d) 260
0





4) Trong cc tứ gic sau đây, tứ gic no nội tiếp được
đường trịn:
a) Hình thang cn
b) Hình thang vuơng
c) Hình thoi
d) Hình bình hnh

B/ BI TỐN:
Bi 1: Giải hệ phương trình: (1đ)







623
752
yx
yx

Bi 2: (1,5đ)
Một khu vườn hình chữ nhật cĩ chiều di hơn chiều
rộng l 17m v chu vi khu vườn đó l 126m. Tính chiều di v
chiều rộng của khu vườn.

Bi 3: (2đ)
Cho parabol
 
2
4
1
: xyP  v đường thẳng


1:  xyd . Vẽ (P)
v (d) trn cng mặt phẳng tọa độ.

Bi 4: (3,5đ)
Từ điểm A nằm ngồi đường trịn (O) kẻ 2 tiếp tuyến AB
v AC đến đường trịn (O) (B v C l 2 tiếp điểm).
a) Chứng minh tứ gic ABOC nội tiếp. Xc định tm I của
đường trịn đi qua 4 điểm A, B, O, C. (1,5đ)

b) Gọi M l trung điểm AC. Đường thẳng MB cắt đường
trịn (O) tại E. Chứng minh MC
2
= ME . MB. (1đ)
c) Tia AE cắt đường trịn (O) tại F. Chứng minh BF//AC
(1đ).
( Hết )

Phòng GD Quận Tân Phú ĐỀ KIỂM TRA GIỮA
HK II (2007 – 2008)
Trường THCS Đồng Khởi Môn : Toán - Lớp 9 :
( Ngày kiểm tra 12 – 03 – 2008)
Đề B – Thời gian làm bài : 60 phút
A.Trắc Nghiệm(2đ):Chọn câu đúng nhất :
Câu 1: Biết điểm A( -4 ; 4) thuộc đồ thị hàm số y= ax
2
vậy
a bằng:
a) a =
4
1
b) a = -
4
1
c) a = 4 d) a = - 4
Câu 2: Tập nghiệm của phương trình 7x + 0y = 21 là:
a) x

R b) x


R c) x = 3 d) x = -
3
y = 3 y = -3 y

R
y

R
Câu 3: Cho AOB là góc ở tâm, ACB là góc nội tiếp (ACB
< 90
0
) cùng chắn cung AmB của đường tròn (O) thì:
a) AOB = ACB b) AOB =
2
1
ACB
c) AOB = 2 ACB d) Ba kết quả trên đều sai
Câu 4: Cho đường tròn (O) và dây cung AB sao cho sđ
cung AB = 120
0
. Hai tiếp tuyến tại A và B cắt nhau tại S,
số đo góc SAB là:
a) 120
0
b) 90
0
c) 60
0
d)
45

0

B.Tư luận:
Bài 1: Giải hệ phương trình: 3x – 2y = 5 (1đ)
4x – 3y = -2
Bài 2: Một hình chữ nhật có chu vi là 60m.Chiều rộng kém
chiều dài 8 m.Tính diện tích hình chữ nhật. (1,5đ)
Bài 3: Trên cùng hệ trục tọa độ vẽ đồ thị của các hàm số
hàm số
y =
4
1
 x
2
(P) và y = - x + 1 (D) (2đ)
Bài 4:(3,5đ)
Cho điểm M nằm ngoài đường tròn ( I ) , kẻ 2 tiếp tuyến
MA, MB đến đường tròn
( A,B là 2 tiếp điểm).
a) Chứng minh: Tứ giác MAIB nội tiếp đường tròn.
Xác định tâm (O) của đường tròn này.
b) Gọi H là trung điểm của MB.Đường thẳng HA cắt (I)
tại K.
Chứng minh: BH
2
= HK . HA.
c) Tia MK cắt (I) tại Q.Chứng minh: AQ // BM.

( Hết )




×