1
Chương 3 Mô hình không gian tín hiệu
3.1 Mô hình hệ truyền tin số băng thông dải
3.2 Qui trình trực giao hóa Gram-Schmidt
3.3 Ý nghĩa hình học của biểu diễn tín hiệu
3.4 Đáp ứng của dãy các bộ tương quan lối vào
3.5 Tách tín hiệu đồng bộ trong ồn
3.6 Bộ thu tương quan
3.7 Xác suất lỗi
3.8 Tách tín hiệu không biết pha trong ồn
Trong truyền tin số băng cơ sở, dữ liệu chuyển thành các tín hiệu PAM rời rạc truyền
trực tiếp trên kênh thông thấp. Vấn
đề chính là tạo dạng xung (do phối hợp cả bộ lọc nơi
phát và nơi thu) để kiểm soát ISI.
Khi xét đến truyền tin số băng thông dải, dòng dữ liệu sẽ được điều chế lên sóng
mang (giá trị tần số sóng mang này tùy theo tính chất kênh). Vấn đề chính ở đây là thiết
kế tối ưu bộ thu để tối thiểu xác suất lỗi ký hiệu khi có ồn. Điều này không có ngh
ĩa là
ồn không ảnh hưởng đến truyền xung băng cơ sở, cũng như không có nghĩa ISI không
ảnh hưởng đến truyền tin số băng thông dải. Đây chỉ là 2 vấn đề nổi bật trong 2 phạm vi
truyền dẫn.
PSK (khóa dịch pha) và FSK (khóa dịch tần) không sợ tính phi tuyến về biên độ của
kênh truyền nên trong truyền tin số băng thông dải chúng hay được sử dụng hơn
ASK(khóa dịch bên độ), thể hiệ
n đặc biệt trong thông tin vệ tinh, hay vi ba. Các vấn đề sẽ
được phân tích kỹ ở đây là: Thiết kế tối ưu bộ thu để có ít lỗi, tính xác suất lỗi ký hiệu
trung bình trong kênh có ồn và xác định tính chất phổ của tín hiệu điều chế. Hai trường
hợp điển hình được xem xét là kỹ thuật đồng bộ (bộ thu bám pha với ký hiệu đến) và kỹ
thuật không đồng bộ
(tức là không có đồng bộ pha giữa bộ thu và ký huệy đến). Để chuẩn
bị cho việc phân tích và đánh giá các kỹ thuật nói trên ta nêu ra trước hết lý thuyết tổng
quát về không gian tín hiệu.
3.1 Mô hình hệ truyền tin số băng thông dải
Giả sử m
i
là một ký hiệu thuộc tập M ký hiệu của bản tin. m
i
sẽ được truyền trong
thời gian T và có xác suất xuất hiện giả sử là p
i
=P(m
i
)=1/M (xác suất trước hay còn gọi
là xác suất tiền nghiệm).
Để tạo ra tín hiệu truyền, m
i
được đưa vào bộ tạo véc tơ (mã hóa ký hiệu truyền) ứng
với véc to N chiều: s
i
=(s
i1
,s
i2
,…s
iN
) với N≤M. Tức là tín hiệu truyền được coi là một véc
to trong không gian có hệ cơ sở N chiều
Các thành phần của vecto được đưa vào bộ điều chế tạo nên tín hiệu s
i
(t) (i=1,2, M)
có độ dài T giây. Tín hiệu này có năng lượng hữu hạn:
∫
=
T
ii
dttsE
0
2
)(
i=1,2 ,M (3.1)
Và s
i
(t) còn gọi là điểm tín hiệu trong không gian M tín hiệu
Kênh truyền giả sử có 2 tính chất:
1) Tuyến tính, độ rông băng đủ lớn để không làm méo s
i
(t).
2
2) Kênh có ồn Gauss cộng tính trung bình zero và dừng (AWGN) (Giả thiết này ứng
với kênh điển hình trên thực tế)
Tín hiệu sau khi qua kênh sẽ là
x(t)=s
i
(t)+w(t) 0≤t≤T
Bộ thu quan sát x(t) trong thời gian T giây để ước lượng tốt nhất s
i
(t) tương ứng với m
i
.
Nhiệm vụ này được chia làm 2 bước.
- Bước đầu là bộ tách (còn gọi là giải điều chế): tách được các thành phần của véc tơ
x(t). Do quá trình ngẫu nhiên của ồn nên x(t) cũng là véc to của biến ngẫu nhiên X.
- Bước 2 gọi là giải mã tín hiệu truyền tạo nên một ước lượng
m
ˆ
i
khi quan sát vecto
nhận được x (coi rằng đã biết dạng điều chế cùng với xác suất tiền nghiệm ở bên phát
p
i
=P(m
i
))
Do ồn có tính thống kê nên việc quyết định cũng có bản chất thống kê (thỉnh thoảng
có lỗi). Yêu cầu thiết kế bộ thu phải làm sao tối thiểu xác suất trung bình của lỗi
∑
=
≠=
M
i
iie
mPmmPP
1
)()
ˆ
(
(3.2)
Ngoài ra bộ thu nói chung còn được phân loại thành thu đồng bộ và không đồng bộ
3.2 Qui trình trực giao hóa Gram-schmidt
Nhiệm vụ chuyển bản tin m
i
(i=1,2, M) thành tín hiệu được điều chế (tín hiệu mang
thông tin) s
i
(t) gồm 2 phép toán thời gian rời rạc và phép toán thời gian liên tục.
Hình 3.1 Mô hình hệ truyền tin số băng cơ sở
Hình 3.2 a) Sơ đồ phát tín hiệu s
i
(t), b) Sơ đồ phát tập các hệ
số{s
i
}
3
Hai phép toán này cho phép biểu diễn một tập M tín hiệu năng lượng {s
i
(t)} như một tổ
hợp tuyến tính của N hàm trực giao có sở
∑
=
=
N
j
jiji
tsts
1
)()(
φ
0≤t≤T i=1,2, M (phép toán rời rạc) (3.3)
Với
⎩
⎨
⎧
≠
=
=
∫
jineu
jineu
dttt
T
ji
_0
_1
)()(
0
φφ
(điều kiện chuẩn hóa và trực giao) (3.4)
Ta sẽ có
∫
=
T
jiij
dtttss
0
)()(
φ
(phép toán liên tục) (3.5)
Các hệ số s
ij
đươc coi như tọa độ của véc tơ N chiều s
i
(t). Khi cho các tọa độ này ở lối
vào bộ tạo tín hiệu có thể tạo nên tín hiệu s
i
(t). Sơ đồ trên hình 3.2 a có thể coi như bộ
điều chế bên phát.
Ngược lại khi cho tín hiệu s
i
(t) (i=1,2, M) đi vào một dãy các bộ nhân và tích phân
(còn gọi là bộ tương quan) có thể tính được các hệ số s
ij
theo sơ đồ (hình 3.2 b). Sơ đồ
này được gọi là bộ tách hay giải điều chế bên thu
Như vậy việc điều chế và giải điều chế có thể coi như việc tổng hợp phân tích tín
hiệu thông qua các hàm cơ sở. Vấn đề là cốt lõi là xác định các hàm cơ sở từ tập M tín
hiệu định sử dụng, đây cũng chính là cơ sở cho việc thiêt kế bộ thu và phát. Quá trình tìm
các hàm cơ sở này đã được Gram-smidth nêu ra như là quá trình trực giao hóa như sau:
Trước hết ta định nghĩa hàm cơ sở thứ nhất (từ tín hiệu thứ nhất) là
1
1
1
)(
)(
E
ts
t =
φ
(3.6)
Ở đó E
1
là năng lượng của s
1
(t).
Khi đó:
)()()(
111111
tstEts
φφ
==
. (3.7)
Tiếp đó ta định nghĩa:
∫
=
T
dtttss
0
1221
)()(
φ
(3.8)
và đưa ra hàm trung gian
)()()(
12122
tststg
φ
−
=
(3.9)
hàm này trực giao với )(
1
t
φ
trên khoảng 0≤t≤T. Bây giờ ta định nghĩa hàm cơ sở thứ 2:
∫
=
T
dttg
tg
t
0
2
2
2
2
)(
)(
)(
φ
(3.10)
Thay vào các phương trình trên và rút gọn ta có:
2
212
1212
2
)()(
)(
sE
tsts
t
−
−
=
φ
φ
(3.11)
Ở đó E
2
là năng lượng của s
2
(t) và rõ ràng là:
1)(
0
2
2
=
∫
T
dtt
φ
và
0)()(
0
21
=
∫
T
dttt
φφ
(3.12)
Tiếp tục qui trình này có thể định nghĩa:
4
∑
−
=
−=
1
1
)()()(
i
j
jijii
tststg
φ
Ở đó
∫
=
T
jiij
dtttss
0
)()(
φ
j=1,2, i-1 (3.13)
Khi đó có thể định nghĩa tập hàm cơ sở:
∫
=
T
i
i
i
dttg
tg
t
0
2
)(
)(
)(
φ
i=1,2, N (3.14)
Theo qui trình trực giao hóa nói trên có thể thấy
- Khi s
i
(t) là tập M tín hiệu độc lập tuyến tính thì N=M
-
Khi s
i
(t) là tập M tín hiệu không độc lập tuyến tính thì N<M và các hàm trung
gian g
i
(t)=0 khi i>N
Chú ý rằng khai triển chuỗi Fourier theo các tín hiệu tuần hoàn hay biểu diễn một tín
hiệu băng giới hạn theo các mẫu của nó tại tốc độ Nyquist là những trường hợp riêng của
qui trình trên, tuy nhiên có 2 khác biệt quan trọng cần nói rõ:
-
dạng các hàm cơ sở
)(t
i
φ
i=1,2, N ở qui trình trên là không xác định tức là ta
không hạn chế qui trình trực giao theo hàm sin hay hàm sinc
-
Khai triển tín hiệu s
i
(t) theo qui trình trên gồm một số hữu hạn các số hạng không
phải là một xấp xỉ mà là một biểu diễn chính xác
Ví dụ: Cho các tín hiệu s
1
(t),s
2
(t),s
3
(t),s
4
(t) trên hình. Dùng thủ tục Gam-Schmidt để tìm
các hàm trực giao cơ sở của các tín hiệu này
Bước 1. Năng lượng của s
1
(t) là:
Hình 3.3 a) Tập các tín hiệu sẽ được trực giao hóa, b) Kết quả các
hàm trực giao
5
3/)1()(
3/
0
2
0
2
11
TdtdttsE
TT
===
∫∫
(3.15)
Hàm cơ sở đầut iên sẽ là:
⎩
⎨
⎧
≤≤
==
laicon
TtT
E
ts
t
_0
3/0/3
)(
)(
1
1
1
φ
(3.16)
Bước 2
3
3
)1()()(
3/
00
1221
T
dt
T
dtttss
TT
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
==
∫∫
φ
(3.17)
Năng lượng của s
2
(t) là:
3/2)1()(
3/2
0
2
0
2
22
TdtdttsE
TT
===
∫∫
(3.18)
Hàm cơ sở thứ 2 sẽ được tính:
⎩
⎨
⎧
≤≤
=
−
−
=
laicon
TtTT
sE
tsts
t
_0
3/23//3
)()(
)(
2
212
1212
2
φ
φ
(3.19)
Bước 3
0)()(
0
1331
==
∫
T
dtttss
φ
(3.20)
3
3
)1()()(
3/2
3/0
2332
T
dt
T
dtttss
T
T
T
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
==
∫∫
φ
(3.21)
Vì vậy
⎩
⎨
⎧
≤≤
=−−=
laicon
TtTT
tstststg
_0
3/2/3
)()()()(
23213133
φφ
(3.22)
Hàm cơ sở thứ 3 sẽ la:
⎩
⎨
⎧
≤≤
==
∫
laicon
TtTT
dttg
tg
t
T
_0
3/2/3
)(
)(
)(
0
2
3
3
3
φ
(3.23)
Cuối cùng với i=4 ta có g
4
(t) băng zero , quá trình trực giao kết thúc với M=4, N=3
3.3 Ý nghĩa hình học của tín hiệu
Mỗi tín hiệu trong tập {s
i
(t)} được xác định như một vecto với các tọa độ của nó. Mở
rộng ra: tập M tín hiệu như tập M điểm trong khônggian Euclid N chiều với N trục vuông
góc.
Trong không gian Euclid N chiều có thể biểu diễn độ dài veto và góc giữa chúng
ji
j
T
i
ij
ss
ss
=
θ
cos
(3.24)
Chú ý: Năng lượng của tín hiệu bằng bình phương độ dài veto biểu diễn chúng. Thật
vậy:
∑∑
∫
∑
∫
===
=
⎥
⎦
⎤
⎢
⎣
⎡
⎥
⎦
⎤
⎢
⎣
⎡
==
N
j
ij
N
k
kik
T
N
j
jij
T
ii
sdttstsdttsE
1
2
1
0
1
0
2
)()()(
φφ
(3.25)
6
3.3 Đáp ứng của các bộ tương quan đối với lối vào có ồn (sau kênh)
Gọi X= (X
1
,X
2
,…X
N
) là veto các biến ngẫu nhiên tại lối ra các bộ tương quan (với các
hàm cơ sở). Do có ồn trên kênh và các tọa độ trực giao nên các thành phần của veto là
độc lập thống kê có trung bình là s
ij
và phương sai N
0
/2 . Do đó ta có thể biểu diễn hàm
mật độ xác suất điều kiện X ứng với s
i
(t)
được truyền bằng tích các hàm mật độ xác suất
điều kiện của các thành phần trong veto
∏
=
=
N
j
ijXix
mxfmxf
j
1
)/()/(
(3.26)
Ở đó veto
x và thành phần vô hướng x
j
là các giá trị mẫu của veto ngẫu nhiên X và biến
ngẫu nhiên X
j
. Hàm mật độ xác suất điều kiện cho mỗi lần truyền m
i
gọi là hàm khả năng
(Likelihood function) sẽ đặc trưng cho kênh có ồn. Ngược lại kênh thỏa mãn tính chất
trên gọi là kênh không nhớ.
Tính chất thống kê của lối ra các bộ tương quan sẽ được diễn tả như sau:
Do mỗi biến Gauss X
j
với trung bình s
ij
, phương sai N
0
/2 có hàm mật độ xác suất là:
⎥
⎦
⎤
⎢
⎣
⎡
−−=
2
0
0
)(
1
exp
1
)/(
jjijX
sx
N
N
mxf
j
π
(3.27)
Nên thay vào phương trình trên ta có
⎥
⎦
⎤
⎢
⎣
⎡
−−=
∑
=
−
2
1
0
2/
0
)(
1
exp)()/(
jj
N
j
N
iX
sx
N
Nmxf
π
(3.28)
Hình 3.4 Minh họa biểu diễn hình học tín hiệu khi N=2 và M=3
7
3.5 Tách tín hiệu đồng bộ trong ồn
Tập các vecto tín hiệu phát đi (hay các điểm trong không gian tín hiệu của bản tin) gọi
là chòm sao tín hiệu. Do có ồn nên véc to nhận được sẽ là điểm phân bố xung quanh điểm
tín hiệu phát (hình 3.5). Với véc tơ thu được ta phải ước lượng
m
ˆ
sao cho xác xuất lỗi là
tối thiểu
3.5.1 Bộ giải mã khả năng cực đại
Xác suất lỗi quyết định được tính là:
P
e
(m
i
,x)=P(m
i
không được phát/x)=1-P(m
i
phát/x)
Mặt khác tiêu chuẩn quyết định là tối thiểu lỗi hay qui tắc quyết định tối ưu là:
Chọn m
i
nếu P(m
i
phát/x)≥P(m
k
phát/x) k=1,2, M
Qui tắc này gọi là qui tắc cực đại xác suất sau (còn gọi làxác suất hậu nghiệm, MAP).
Qui tắc trên chứa đựng cả xác suất trước (xác suất tiền nghiệm) của tín hiệu phát và hàm
khả năng. Dùng qui tắc Bayes ta phát biểu lại qui tắc MAP như sau:
Quyết định là m
i
nếu
)(
)/(
xf
mxfp
x
kxk
là cực đại khi k=i (3.29)
Ở đó p
k
là xác suất trước, f
x
(x/m
k
) là hàm khả năng (tức là khả năng thu được khi m
k
được phát, xác suất này do kênh ồn gây nên) và f
x
(x) là hàm mật độ xác suất liên kết
không điều kiện của vecto
x . Tuy nhiên chú ý là mẫu số độc lập với tín hiệu phát và nếu
xác suất trước là bằng nhau thì
Quyết định là m
i
nếu f
x
(x/m
k
) là cực đại khi k=i
Trên thực tế ta dùng hàm logarit tự nhiên sẽ có nhiều thuận tiện hơn trong biểu diễn. Với
kênh không nhớ, logarit của hàm khả năng gọi là metric. Qui tắc phát biểu lại là:
Quyết định là m
i
nếu ln[ f
x
(x/m
k
)] là cực đại khi k=i. Qui tắc này gọi là qui tắc cực đại
hàm khả năng (được áp dung khi xác suất trước là như nhau)
Bộ giải mã theo cách cực đại hàm khả năng sẽ tính các metric đối với tất cả các tín
hiệu truyền và so sánh chúng để tìm ra (quyết định) tín hiệu có metric cực tiểu. Trường
hợp có 2 metric bằng nhau (tín hiệu quan sat nằm trên vùng biên) thi giải quyết như tung
đồng xu
Chú ý là:
Hình 3.5 Minh họa hiệu ứng a) ồn lên b) Vị trí c
ủa điểmt ín hiệu thu
8
⎥
⎦
⎤
⎢
⎣
⎡
−−=
∑
=
−
2
1
0
2/
0
)(
1
exp)()/(
jj
N
j
N
iX
sx
N
Nmxf
π
(3.30)
Có metric tương ứng là:
∑
=
−−−=
N
j
kjjkx
sx
N
N
N
mxf
1
2
0
0
)(
1
)ln(
2
)]/(ln[
π
k=1,2,…M (3.31)
Qui tắc cực đại hàm khả năng sẽ chuyển thành
∑
=
−−
N
j
kjj
sx
N
1
2
0
)(
1
cực đại khi k=i (3.33)
Hay
2
1
2
)(
k
N
j
kjj
sxsx −=−
∑
=
cực tiểu khi k=i (3.34)
Tóm lại: Qui tắc quyết định theo cực đại hàm khả năng (ML) thực ra là tìm điểm tín hiệu
gần điểm vecto quát sát nhất. Trên thực tế có thể không cần phép tính bình phương khi
xét khai triển sau:
∑∑∑∑
====
+−=−
N
j
kj
N
j
kjj
N
j
j
N
j
kjj
ssxxsx
1
2
11
2
1
2
2)( (3.35)
Số hạng đầu không phụ thuộc vào k và có thể bỏ qua. Số hạng thứ 3 là năng lượng của
s
k
(t). Nên qui tắc quyết định rút lại là là:
k
N
j
kjj
Esx
2
1
1
−
∑
=
cực đại khi k=i thì quyết định là m
i
(3.36)
Khi các tín hiệu được truyền với năng lượng bằng nhau qui tắc trên được rút gọn thành:
∑
=
N
j
kjj
sx
1
cực đại khi k=i , quyết định là m
i
(3.37)
3.6 Bộ thu tương quan:
Đối với kênh AWGN và khi tín hiệu phát là tập M tín hiệu có xác suất bằng nhau. Bộ
thu tối ưu sẽ gồm 2 phần:
-Phần tách (giải điều chế) gồm N bộ tích-tich phân (hay bộ tương quan) với tập tương
ứng các tín hiệu tham chiếu đồng bộ (hay các hàm cơ sở trực giao). Dãy tương quan này
hoạt động trong khoảng 0≤t≤T để tạo nên vecto x(t) quan sát được. Nói ngắn gọn phần
tách xác định tín hiệu thu được n
ằm ở chỗ nào trong không gian tín hiệu.
-Phần 2 của bộ thu (giải mã tín hiệu phát) thực hiện quyết định theo khả năng cực đại
(ML): N thành phần của veto x quan sat được được nhân tương ứng với N thành phần của
mỗi veto m
i
tín hiệu trong khai triển (có M tín hiệu như thế) rồi được công liên tiếp lại
trong bộ tích lũy (tạo nên tập tương ứng các tích nội {x
T
s
k
/k=1,2, M} tức là phép tương
quan với các tín hiệu phát chuẩn), sau đó được hiệu chỉnh theo năng lượng tín hiệu truyền
nếu năng lượng của các tín hiệu không bằng nhau. Cuối cùng giá trị lớn nhất (có kết quả
tương quan lớn nhất) với tín hiệu phát nào sẽ cho quyết định là tín hiệu đó phát.
Bộ thu như trên gọi là bộ thu tươngquan
3.6.1 Sự tương đương giữa bộ thu tương quan và bộ thu phù hợp
Bộ tách (hay giải điều chế ) nói trên là tập các bộ tương quan. Ta có thể sử dụng tập các
bộ lọc phù hợp để xây dựng bộ tách. Xét bộ lọc LTI với đáp ứng h
j
(t). Tín hiệu nhận
được x(t) đi qua bộ lọc sẽ cho lối ra là:
9
∫
∞
∞−
−=
τττ
dthxty
jj
)()()(
(3.39)
Từ định nghĩa bộ lọc phù hợp với tín hiệu vào
)(t
j
φ
, đáp ứnng xung phải là:
)()( tTth
jj
−
=
φ
nên
∫
∞
∞−
+−=
ττφτ
dtTxty
jj
)()()( (3.40)
Khi lấy mẫu lối ra với t=T
Hình 3.6 a) Bộ tách hay giải điều chế b) Bộ giải mã tín hiệu truyền
10
∫
∞
∞−
=
ττφτ
dxTy
jj
)()()(
(3.41)
Do
)(t
j
φ
là zero bên ngoài [0,T] nên y
j
(T) là lối ra bộ tương quan thứ j tạo bởi tín hiệu
x(t) thu được
∫
=
T
jj
dxTy
0
)()()(
ττφτ
Kết quả này cho thấy dùng bộ lọc phù hợp kết hợp lấy mẫu đồng bộ cho kết quả thu
tương đương như bộ thu tương quan
(3.42)
3.7 Xác suất lỗi
Giả sử không gian quan sát được chia thành M vùng. Vùng Z
i
tương ứng với vecto tín
hiệu m
i
. Xác suất lỗi trung bình là:
∑∑
==
∉=∉=
M
i
iii
M
i
iie
mZxP
M
mPmZxPP
11
)/(
1
)()/( (3.43)
=
∑
∫
∑
==
−=∈−
M
i
Z
ix
M
i
ii
i
dxmxf
M
mZxP
M
11
)/(
1
1)/(
1
1 (3.44)
Đối với vecto quan sát N chiều, tích phân trên cũng có N chiều
3.7.1 Biên của xác suất lỗi
Trong nhiều trường hợp tích phân tính xác suất lỗi trên không tính được, ta phải sử
dung khái niêm biên để dự đoán tỷ số tín hiệu /ồn yêu cầu để xấp xỉ tích phân trong P
e
. Ở
đây ta đơn giản miền lấy tích phân để có biên trên hay là biên liên kết đối với xác suất
trung bình lỗi của tập M tín hiệu.
Gọi A
ik
(i,k=1,2, M) là sự kiện vec to quan sát gần vecto s
k
hơn gần vecto s
i
khi s
i
được gửi, Xác suất điều kiện của lỗi khi m
i
được gửi là bằng xác suất xảy ra tập các sự
kiện: A
i1
, A
i2
, ,A
ii-1
A
i1+1
,…
A
iM
.
Hình 3.7 Phần tách của bộ thu lọc phù hợp. Bộ giải mã nêu ở
3.6 b)
11
Theo lý thuyết xác suất : xác suất để có tập các sự kiện đồng thời không lớn hơn tổng
các xác suất riêng rẽ.
∑
≠=
≤
M
ikk
ikie
APmP
,1
)()(
(3.45)
Chú ý là P(
m
ˆ
=m
k
/m
i
) là khác với P(A
ik
). Xác suất này là xác suất để véc to quan sát gần
tín hiệu s
k
hơn tất cả các tín hiệu khác khi s
i
được gửi. Còn P(A
ik
) là xác suất để vecto
quan sát gần s
k
hơn s
i
:
P(A
ik
)=P(x_gan s
k
hon s
i
, khi s
i
được gui)=
∫
∞
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
2/
0
2
0
exp
1
ik
d
du
N
u
N
π
(3.46)
Ở đó d
ik
là khoảng cách Euclid của 2 véc tơ s
i
và s
k
Từ định nghĩa hàm bù lỗi
∫
∞
−=
u
dzzuerfc )exp(
2
)(
2
π
(3.47)
Ta có
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
0
2
2
1
)(
N
d
erfcAP
ik
ik
(3.48)
Hàm bù lỗi giảm đơn điệu theo biến, nên khoảng cách giữa 2 vec to tăng thì xác suất lỗi
giảm. Thay vào công thức xác suất lỗi ta có:
∑
≠=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
≤
M
ikk
ik
ie
N
d
erfcmP
,,1
0
2
2
1
)(
(3.49)
Hình 3.8 Minh họa việc chia khônggian quan sát thành các
vùng quyết định khi N=2 và M=4 với giả thiết xác suất phát
bằng nhau
12
Cuối cùng với M ký hiệu phát với xác suất bằng nhau thì xác suất trung bình của lỗi ký
hiệu bị chặn trên như sau
∑∑∑
=≠==
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
≤=
M
i
M
ikk
ik
M
i
iee
N
d
erfc
M
mP
M
P
1,,1
0
1
2
2
1
)(
1
(3.49)
Vế phải gọi là biên toàn thể của xác suất trung bình lỗi cho tập các ký hiệu xác suất
như nhau. Trong trường hợp tập tín hiệu có tính đối xứng hình học (hay gặp trên thực tế),
có thể đơn giản biên lỗi như sau:
∑
≠=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
≤=
M
ikk
ik
iee
N
d
erfcmPP
,,1
0
2
2
1
)( (3.50)
Ngoài ra hàm bù lỗi bị chặn trên bởi:
Hình 3.9 Minh họa biên tòan thể a) Chòm sao 4 điểm báo hiệu, b) Ba
chòm sao với điểm báo hiệu chung và một điểm báo hiệu khác
13
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−≤
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
0
2
0
2
exp
1
2
N
d
N
d
erfc
ikik
π
(3.51)
Vì vây có thể viết lại
∑
≠=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−≤
M
ikk
ik
e
N
d
P
,1
0
2
2
exp
2
1
π
(3.52)
Khi cho năng lượng tín hiệu đủ lớn so với mật độ ồn N
0
, số hạng mũ với khoảng cách d
ik
nhỏ nhất sẽ nổi trội trong tổng nên có thể xấp xỉ biên:
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−≤
0
2
min
2
minexp
2
N
dM
P
ik
e
π
(3.53)
Ở đó M
min
là số ký hiệu phát có khoảng cách nhỏ nhất đối với mỗi m
i
. Dạng biên trên dễ
dàng tính được.
3.7.2 Xác suất lỗi bit so sánh với xác suất lỗi ký hiệu
Cấu hình metric là lựa chọn tự nhiên khi ký hiệu dài m=log
2
M được truyền. Tuy
nhiên khi yêu cầu phát dữ liệu nhị phân thì metric hay được dùng là xác suất bit lỗi hay
tốc độ bit lỗi (BER). Mặc dù nói chung không có liên hệ duy nhất giữa 2 cấu hình metric
song có 2 trường hợp hay gặp được phân tích như sau:
Trường hợp 1: Có thể tạo được ánh xạ giữa nhị phân và ký hiệu hạng M theo cách 2 dãy
nhị phân ứng với cặp ký hiệu cạnh nhau trong điều chế hạng M chỉ khác nhau 1 vị trí bit.
Ràng buộc này thỏa mãn khi dùng mã Gray. Khi xác suất l
ỗi ký hiệu là chấp nhận được,
ta thấy rằng xác suất nhầm lẫn một ký hiệu với một trong 2 ký hiệu gần nhất lớn hơn các
kiểu lỗi khác. Hơn nữa với một lỗi ký hiệu , khả năng lỗi 1 bit là cao nhất (như ràng buộc
ở trên). Vì có log
2
M bit trên một ký hiệu nên lỗi tb của ký hiệu liên hệ với tốc độ lỗi bit
như sau:
).(log)__()__(
2
log
1
log
1
2
2
BERMbiloiithbitPbiloiithbitPP
M
i
M
i
e
=≤
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
∑
=
=
U
(3.54)
Ta cũng chú ý là P
e
≥P(bit_ith_ biloi)=BER nên tóm lại:
e
e
PBER
M
P
≤≤
2
log
(3.55)
Trường hợp 2: M=2
k
ở đó k là số nguyên. Giả sử các lỗi ký hiệu bằng nhau và xảy ra với
xác suất:
121 −
=
−
k
ee
P
M
P
(3.56)
Câu hỏi đặt ra là xác suất bit thứ i trong ký hiệu bị lỗi là bao nhiêu? Câu trả lời là: có 2
k-1
trường hợp lỗi ký hiệu do bit này thay đổi và 2
k-1
-1 trường hợp mà trong đó bit này không
thay đổi. Vì vậy tốc độ lỗi bit là:
ee
k
k
P
M
M
PBER
⎟
⎠
⎞
⎜
⎝
⎛
−
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
=
−
1
2/
12
2
1
(3.57)
Với M lớn tốc độ lỗi bit tiến đến P
e
/2
Một cách tương tự cho thấy lỗi bit không độc lập vì ta có:
14
2
2
)(
12
2
)____( BERPbiloijthvaithbitP
e
k
k
≠
−
=
−
(3.58)
3.8 Tách tín hiệu không biết pha trong ồn.
Khi đường truyền gây ồn pha (đa đường , trễ thay đổi, đặc biệt đúng với tín hiệu
băng hẹp), việc đồng bộ có thể quá tốn kém, người thiết kế có thể giảm nhẹ yêu cầu
thông tin pha chấp nhận giảm hiệu suất của hệ ở mức độ nào đó.
Xét tín hiệu
)2cos(
2
)( tf
T
E
ts
ii
π
= 0≤t≤T (3.59)
Hinh 3.10 Bộ thu không đồng bộ a) Bột hu vuông góc dùng các
bộ tương quan, b) Bộ thu vuông góc dùng bộ lọc phù hợp, c) Bộ
l
ọcph
ùh
ợp không đồng bộ
15
Ở đó E là năng lượng tín hiệu. T là khoảng tín hiệu và f
i
là bội nguyên của 1/2T. Khi
không có đồng bộ pha của bộ thu với bộ phát, tín hiệu thu được qua kênh AWGN có
dạng:
)()2cos(
2
)( twtf
T
E
tx
i
++=
θπ
0≤t≤T (3.60)
Với w(t) là hàm mẫu của ồn trắng có trung bình zero và mật độ phổ công suất N
0
/2.
Pha θ là không biết và được coi như giá trị mẫu của biến ngẫu nhiên phân bố đều trong
[0,2π]. Hệ thông tin số đặc trưng theo cách này là không đồng bộ
Rõ ràng sơ đồ tách theo các cách trước là không thích hợp (vì lối ra của các bộ tương
quan sẽ phụ thuộc vào biến ngẫu nhiên θ).
Khai triển biểu thức trên ta được:
)()2sin(sin
2
)2cos(cos
2
)(
11
twtf
T
E
tf
T
E
tx +−=
πθπθ
(3.61)
Giả sử tín hiệu x(t) được cấp lên hai bộ tương quan với tín hiệu
)2cos(/2 tfT
i
π
và
)2sin(/2 tfT
i
π
trong thời gian quan sát 0≤t≤T Khi không có ồn, lối ra 2 bộ tương quan
này sẽ là
θ
cosE
và -
θ
sinE
.
Sự không hiểu biết về θ có thể loại trừ bằng cách lấy tổng bình phương 2 hai lối ra trên và
sau đó khai căn tổng này kết quả là
E
. Bộ thu kiểu này gọi là bộ thu cầu phương. Thực
chất đây là bộ thu tối ưu theo nghĩa tối thiểu xác suất lỗi. Tiếp đó có thể thay thế bộ
tương quan bằng bộ lọc phù hơp.
Bài tập
Qui trình trực giao hóa Gram - Schmidt
Hình 3.11 Lối ra của bộ lọc phù hợp đối với sóng RF
chữ nhật a) θ=0 và b) θ=180
0
16
1
a). Dùng qui trình trực giao hóa để tìm tập hàm cơ sở trực giao biểu diễn 3 tín
hiệu s
1
(t), s
2
(t), s
3
(t) chỉ trên hình 3.12
b) Biểu diễn mỗi hàm cơ sở này theo các hàm cơ sở tìm được
Ý nghĩa hình học của tín hiệu
2. Xét tập tín hiệu:
⎪
⎩
⎪
⎨
⎧
≤≤−
=
laicon
Ttitf
T
E
ts
c
i
_0
0)
4
2cos(
2
)(
π
π
Với i=1,2,3,4 và f
c
=n
c
/T đối với một số nguyên n
c
cố định
a)
Số chiều N của không gian tập tín hiệu?
b)
Tìm tập hàm cơ sở trực giao
c)
Biểu diễn các tím hiệu theo các hàm trực giao
d)
Vẽ vị trí s
i
(t) trong không gian tín hiệu
Đáp ứng dãy các bộ tương quan với lối vào có ồn
3. Tín hiệu ngẫu nhiên nhận được có dạng:
)(')()(
1
tWtXtX
N
j
jj
+=
∑
=
φ
0≤t≤T
Với tập X
j
được định nghĩa:
∫
=
T
jj
dtttXX
0
)()(
φ
Ký hiệu W’(t
k
) là bíen ngẫu nhiên quan sát W’(t) tại thời điểm t=t
k
. Chứngtỏ rằng:
E[X
j
W’(t
k
)]=0 với j=1,2,…N 0≤tρT
Tách tín hiệu đã biết trong ồn
4. Xác định vùng quyết định tối ưu cho chòm sao 16 ký hiệu cho trên hình 3.13
Cả 2 chòm sao đều có công suất đỉnh như nhau
5. Cho các tín hiệu:
⎟
⎠
⎞
⎜
⎝
⎛
=
T
nt
T
ts
π
2
cos
2
)(
1
0≤t≤T
Hình 3.12
17
⎟
⎠
⎞
⎜
⎝
⎛
=
T
nt
T
ts
π
4
cos
2
)(
2
0≤t≤T
⎟
⎠
⎞
⎜
⎝
⎛
=
T
nt
T
ts
π
6
cos
2
)(
3
0≤t≤T
Ở đó n là số nguyên bất kỳ
a) Vẽ không gian tín hiệu và biên quyết định của tập tín hiệu này
b) Giả sử các tín hiệu trên có các suất trước bằng nhau, chứng tỏ rằng không gian tín hiệu
có thể rút xuống 2 chiều
Xác suất lỗi
6. Xét sơ đồ báo hiệu cực (quanternary).
X(t)=a
i
+w(t) 0≤t≤T i=1,2,3,4
Với a
i
=±a/2, ±3a/2 và w(t) là hàm mẫu của ồn Gauss có mẫt độ phổ công suất
N
0
/2
Tìm xác suất điều kiện để nhận chính xác khi
a)
00 được truyền
b)
01 được truyền
c)
11 được truyền
d)
10 được truyền
7.
Xét hệ truyền thông hạng M=2
N
. Các véc tơ tín hiệu dài băng nhau và nằm ở các
đỉnh của hình lập phương hyperbol (có tâm tại gốc tọa độ). Năng lượng ký hiệu là
E
a)
Tín hiệu phát s
i
(t) là tổ hợp của các hàm trực giao (có N hàm trực giao),
i=1,2,…M:
∑
=
=
N
j
jiji
tsts
1
)()(
φ
Tìm các hệ số s
ij
b)
Chứng tỏ rằng xác suất lỗi trung bình được tính bằng
N
e
MN
E
erfcP
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−−=
20
log2
1
11
Ở đó N
0
/2 là mật độ phổ công suất của ồn Gauss (tb zero)
Hình 3.13
18
Bộ thu lọc phù hợp
8. Xét tín hiệu trên hình 3.14
a)
Xác định đáp ứng xung của bộlọc phù hợp với tín hiệu này và vẽ nó như một hàm
thời gian
b)
Vẽ lối ra của bộ lọc thu theo thờig ian
c)
Giá trị đỉnh của lối ra bằng bao nhiêu
9.
a) Xác định bộ lọc phù hợp cho tín hiệu s
1
(t) trên hình (3.15 a) và vẽ lối ra của bộ
lọc
b) Lặp lại như trên cho tín hiệu s
2
(t) trong 3.15b.
c) Vẽ tín hiệu ra của bộ lọc phù hợp với s
2
(t) khi s
1
(t) cấp trên lối vào
Tách tín hiệu không biết pha trong ồn
10. Bộ thu góc phần tư chỉ trên hình 3.10c gồm bộ lọc không kết hợp kèm sau là bộ
lấy mẫu. Bộ thu này cũng được coi là bộ tách năng lượng. Bình luận phát biểu này
Hình 3.14
Hình 3.15