Tải bản đầy đủ (.pdf) (11 trang)

GIÁO TRÌNH : CÔNG NGHỆ CHẾ BIẾN DẦU MỠ THỰC PHẨM part 2 potx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (651.83 KB, 11 trang )

Công nghệ chế biến dầu mỡ thực phẩm Trần Thanh Trúc


8

Hình 1.4. Cấu trúc của steran và sterol

Tùy theo nguồn gốc phát sinh, sterol được chia thành hai loại chính: sterol động vật
(cholesterol) hay sterol thực vật (phytosterol: β-sitosterol). Hàm lượng sterol thay đổi
trong khoảng từ 0,05-0,60%. Cholseterol được xem như một trong những nguyên nhân
chính gây nên bệnh nhồi máu cơ tim. Chính vì thế, rất nhiều biện pháp làm giảm lượng
cholesterol trong thực phẩm đã được nghiên cứu thành công trong những năm gần đây.
Tuy vậy, cholesterol vẫn có một số chức năng cần thiết cho hoạt đống sống khi nó là
thành phầ
n chính của màng tế bào, chất dự đoán cho hoạt động của hormone steroid -
hormone cần thiết cho quá trình lớn lên và phát triển của động vật hữu nhũ còn non.
Tocopherol: Tocopherol là chất chống oxy hóa tự nhiên rất quan trọng thuộc họ
phenolic. Tocopherol cũng có đặc tính tan trong dầu, thường tồn tại ở dạng tự do. Tùy
thuộc vào cấu tạo khác nhau của tocopherol (hình 1.5) mà đặc tính tương ứng cũng
thay đổi; phụ thuộc mạch C chính bão hòa hay chứa 3 liên kết đôi, và phụ thuộc vào số
nhóm cũng như vị trí nhóm methyl gắn kết trên mạch nhánh; có 4 loại tocopherol khác
nhau: α-tocopherol (5,7,8-trimethyl), β (5,7-dimethyl), γ (7,8-dimethyl) và δ (8-
methyl).
Hoạt tính ch
ống oxy hóa của các tocopherol trong dầu và mỡ phụ thuộc chủ yếu vào
nhiệt độ và sự hiện diện của các hợp chất nhiễm vào hệ thống. Tuy nhiên, hoạt động
chống oxy hóa của các tocopherol cũng tùy thuộc vào vị trí cấu tạo:
δ > β = γ >α

Công nghệ chế biến dầu mỡ thực phẩm Trần Thanh Trúc



9

Hình 1.5. Cấu trúc hóa học của các tocopherol

Các hợp chất màu (pigment): Sự khác nhau về màu sắc của các loại dầu và mỡ
khác nhau phụ thuộc vào lượng hợp chất màu hòa tan trong dầu. Những hợp chất
màu quan trọng nhất trong dầu mỡ là carotene, chlorophyll và gossypol.
- Carotene (hình 1.6) là nguồn cung cấp vitamine A - chất có hoạt tính chống oxy
hóa và chống ung thư. Carotene hiện diện chủ yếu trong dầu cọ, đây chính là lý
do chủ yếu làm cho dầu có màu vàng, cam hay đỏ.
- Chlorophyll cũng chính là nguyên nhân tạo cho dầu có màu xanh tối không
mong muốn.
Điều quan trọng là sự hiện diện của chlorophyll torng dầu là
nguyên nhân chủ yếu làm cho dầu rất nhạy cảm với ánh sáng quang hợp, gây
nên biến đổi chất lượng. Chính vì thế, trong quá trình tinh luyện các loại dầu có
chứa nhiều chlorophyll (dầu olive), quá trình khử màu nhằm loại hợp chất này
rất được quan tâm.
- Gossypol tạo màu đỏ nâu trong dầu hạt bông vải (cottonseed oil). Gossypol có
cấu tạo là hợp chất phenol phức tạp, có mùi vị khó chị
u, có tính độc. Do đó, cần
tách loại hoàn toàn hợp chất này ra khỏi dầu và khô dầu.

Hình 1.6. Cấu trúc hóa học của các caroten quan trọng nhất

Công nghệ chế biến dầu mỡ thực phẩm Trần Thanh Trúc


10
Hợp chất sáp: hiện diện chủ yếu trong dầu bắp và cải dầu. Về cấu tạo, sáp là ester của

rược bậc một và ít thấy đối với rượu 2 chức. Sáp có nhiệt độ nóng chảy khá cao (t
nc
>
80
o
C), bền vững và rất khó tiêu hóa, sáp không có giá trị về mặt dinh dưỡng. Trong
quá trình chế biến, sự tồn tại của hợp chất sáp trong dầu là nguyên nhân chủ yếu gây
đục dầu. Ngay ở điều kiện nhiệt độ bình thường, chúng tồn tại ở các dạng tinh thể nhỏ
li ti, trong một thời gian dài vẫn không lắng thành cặn, làm giảm giá trị cảm quan dầu.
Các thông số đặc trưng của sáp được cho ở bả
ng 1.2.
Bảng 1.2: Các thông số đặc trưng của sáp
Thông số Giá trị
Chỉ số idoine 11,1-17,6
Hàm lượng acid béo tự do (FFA) 2,1-7,3 %
Phosphorus 0,01-0,15 %
Điểm nóng chảy 75,3-79,9
o
C

Việc tách sáp có thể được thực hiện bằng biện pháp đông hóa dầu ở nhiệt độ 5
o
C trước
khi lọc.
Hợp chất mùi gốc hydrocarbon: bao gồm các alkan, alken (squalene, hình 1.7) và các
hydrocarbon đa vòng có mùi (polycyclic acromatic hydrocarbons – PAHs). Các hợp
chất alkan (C31-C33) hiện diện trong dầu thô với hàm lượng từ 40-100 ppb, giảm dần
sau quá trình tinh luyện. Một số hợp chất mùi như squalene có vai trò rất quan trọng
trong công nghiệp mỹ phẩm. Squalene hiện diện chủ yếu trong dầu gan cá nhám góc
(deep-sea dogfish, Squalus acanthus) và một số dầu cá khác; olive là dầu thực vật chủ

yếu có sự hiện diện của squalene. Ngược lại, hầu hết các hydrocarbon đa vòng có mùi
(PAHs) hiện diện ở hàm lượng lớn hơn 150 ppb trong hầu hết các dầu thực vật thô,
chúng chỉ giảm nhẹ sau quá trình tinh luyện.

Hình 1.7. Cấu trúc hóa học của squalene

Vitamin hòa tan trong dầu: bên cạnh vitamin A (retinol) - hiện diện nhiều nhất ở dầu
cá, trong dầu còn tìm thấy một số các vitamin khác với lượng ít hơn như vitamin D,
vitamin E (α-tocopherol) và vitamin K (phytoenzymeadion). Các vitamin này rất cần
thiết cho quá trình hấp thu của cơ thể người.

Công nghệ chế biến dầu mỡ thực phẩm Trần Thanh Trúc


11
1.3. TÍNH CHẤT LÝ HÓA CỦA DẦU MỠ
1.3.1. Tính chất vật lý
- Dầu mỡ nhẹ hơn nước, tỉ trọng 0,91-0,97. Mức độ không no càng lớn thì tỉ trọng
càng lớn.
- Chỉ số khúc xạ 1,448-1,474 . Mức độ không no càng lớn thì chỉ số khúc xạ càng cao.
- Có tính nhớt khá cao.
- Tan nhiều trong các dung môi hữu cơ như eter, benzen, hexan …
- Điểm nóng chảy của dầu mỡ thể hiện không rõ ràng, tùy thuộc vào tính chất của
nguyên liệu tạo ra dầu mỡ: Khi dây acid béo càng dài, càng no thì độ nóng chảy của
triglycerid càng cao, áp suất hơi càng kém do đó có ít mùi . Dầu mỡ với cấu tạo chủ
yếu là triglycerid dây ngắn (dầu dừa) thì sự thủy phân sẽ phóng thích các acid béo tự
do có khối lượng phân tử nhỏ, dễ bay hơi, gây mùi khó chịu. Cùng một chiều dài, dây
carbon của acid nào có chứa nhiều nối kép thì có nhiệt độ nóng chảy càng thấp.
1.3.2. Tính chất hóa học của dầu mỡ
Tính chất hóa học của d

ầu mỡ chủ yếu do phản ứng của triglycerid, có tác động đáng
kể đến sự thay đổi chất lượng sản phẩm.
1.3.1.1 Phản ứng thủy phân và xà phòng hóa
Trong điều kiện thích hợp, dầu mỡ dễ bị thủy phân theo phản ứng
C
3
H
5
(COOR)
3
+ 3H
2
O → 3RCOOH + C
3
H
5
(OH)
3
Nếu có mặt một lượng kiềm (KOH, NaOH) thì sau phản ứng thủy phân, acid béo tác
dụng với chất kiềm để tạo thành muối kiềm (xà phòng).
RCOOH + NaOH → RCOONa + H
2
O
Phương trình tổng quát:
C
3
H
5
(COOR)
3

+3NaOH → 3RCOONa + C
3
H
5
(OH)
3
1.3.2.2 Phản ứng cộng hợp
Phản ứng này có tác dụng cộng hydro vào các nối đôi trên dây carbon của acid béo với
sự hiện diện của chất xúc tác thích hợp nhằm làm giảm số nối đôi trên dây carbon, làm
cho dầu mỡ ổn định hơn, hạn chế được các quá trình như oxy hóa, trùng hợp của dầu
mỡ. Ngoài ra, phản ứng này còn có tác dụng giữ cho dầu không bị trở mùi khi bảo
quản lâu.
-CH = CH - + H
2
→ - CH
2
– CH
2

Phản ứng này có ý nghĩa thực tiễn quan trọng: đây chính là cơ sở lý thuyết cho quá
trình chuyển đổi dầu từ thể lỏng sang thể rắn để sử dụng trong một số trường hợp đặc
biệt (margarine, shorterning…)
Ngoài ra, thành phần acid béo của dầu thường chứa đồng thời acid oleic, acid linoleic,
acid linolenic. Mặc dù acid linolenic có vai trò sinh học quan trọng, nhưng nó cũng là
Công nghệ chế biến dầu mỡ thực phẩm Trần Thanh Trúc


12
nguyên nhân chính gây nên sự trở mùi của thực phẩm, vì thế quá trình hydro hóa chọn
lọc để giảm bớt hàm lượng acid linolenic thường được tiến hành trong công nghệ chế

biến dầu.
1.3.2.3 Phản ứng đồng phân hóa
Dưới tác dụng của baz hòa tan trong rượu sẽ xảy ra sự đồng phân hóa (theo cả hai
kiểu đồng phân hình học và vị trí, chương 5) các nối kép trên dây carbon, làm tăng
tính khô của dầu. Sự đồng phân hóa có thể thực hiện với chất xúc tác Niken, nhi
ệt độ
180
o
C, Al
2
O
3
tăng hoạt tính.
1.3.2.4 Phản ứng với rượu
Đây là phản ứng cơ bản để biến triglycerid thành ester metyl của acid béo nhằm để
phân tích thành phần hóa học bằng sắc ký khí.
1.3.2.5 Phản ứng oxy hóa
Những dầu mỡ có chứa nhiều acid béo không no sẽ dễ bị oxy hóa bởi oxy không khí.
Đa số các phản ứng xảy ra trên các nối đôi của carbon. Dầu mỡ chứa nhiều acid béo no
có ưu điểm là dễ bả
o quản, ít bị biến đổi nhưng lại có hệ số đồng hóa thấp.
Từ đặc tính lý hóa của dầu mỡ nói chung, các nghiên cứu về hiện tượng trở mùi của
dầu mỡ khi chúng được tồn trữ trong thời gian dài đã đưa ra hai nguyên nhân chủ yếu
dẫn đến sự biến đổi này:
(i) Sự thủy phân giải phóng acid béo từ triglycerid
Sự thủy phân này có thể xảy ra khi mạch carbon của triglycerid ngắn, ho
ặc dưới
tác dụng của enzyme lipase.
(ii) Sự ôi dầu do phản ứng oxy hóa hóa học
Phản ứng này xảy ra dể dàng với dây triglycerid có chứa nhiều nối kép. Nó

thường bắt nguồn tử phản ứng cộng oxy váo các nối kép hay xen vào C
α
đối với nối
kép để tạo ra các hydroperoxit. Các hydroperoxit này tiếp tục bị phân hủy để cho ra
các sản phẩm sau cùng như các hợp chất carbonyl, aldehyd, aceton, alcohol.
Tổng quát :

Aldehyd
Ceton
Acid
Ester
Alcohol

Chất béo + O
2
⇒ hydroperoxit ⇒

Việc tìm ra nguyên nhân gây biến đổi mùi trong quá trình bảo quản có ý nghĩa thực tế
rất quan trọng, đây chính là cơ sở cho các nghiên cứu tiếp theo nhằm làm thay đổi đặc
tính dầu mỡ như ester hóa nội phân tử, hydrogen hóa…(chương 5).


Công nghệ chế biến dầu mỡ thực phẩm Trần Thanh Trúc


13
1.4. PHÂN LOẠI DẦU MỠ THỰC PHẨM
Dầu và mỡ thực phẩm có thể được phân thành nhiều loại dựa vào thành phần và tính
chất của các acid béo. Có thể chia dầu mỡ thành 9 nhóm chủ yếu:
1.4.1. Nhóm chất béo sữa

Chất béo thuộc nhóm này có nguồn gốc từ sữa động vật. Chất béo sữa có cấu tạo chủ
yếu từ các acid béo mạch ngắn, không có nối đôi (C4:0, C6:0 và C8:0). Ngoài ra, trong
chất béo sữa vẫn có sự
hiện diện của các acid béo bão hòa mạch dài (C16:0 và C18:0)
và acid béo không bão hòa có một nối đôi (C18:1). Do sự hiện diện đa dạng của các
loại acid béo này mà chất béo sữa thường có điểm nóng chảy thấp, khoảng nhiệt độ
nóng chảy rộng, thành phần triglycerid phức tạp hơn so với dầu thực vật. Với hầu hết
các động vật, acid béo tồn tại chủ yếu ở dạng trans Chất béo sữa
được sử dụng chủ
yếu làm nguồn thức ăn cho người do giá thành cao.
1.4.2. Nhóm acid lauric (dầu dừa và dầu hạt cọ)
Nhóm chất béo này có tính chất rất khác biệt so với các loại dầu khác do sự hiện diện
với mức độ cao của acid lauric (40-50% C12:0), kế đến là acid myristic và các acid
béo bão hòa có 8,10 và 14 C. Điểm đặc trưng của nhóm này là sự hiện diện ở tỷ lệ rất
thấp các acid béo không bão hòa, tương ứng với điể
m nóng chảy rất thấp. Mặc dù vậy,
nhóm dầu dừa và dầu cọ vẫn được sử dụng trong công nghiệp thực phẩm và trong chế
biến margarine.
1.4.3. Nhóm bơ thực vật (bơ cacao)
Nhóm chất béo này có thành phần triglycerid và acid béo rất đặc biệt: chủ yếu từ các
acid béo không no có 1 nối đôi như C18:1, C20:1, C24:3. Bơ thực vật có giá trị kinh tế
cao, sử dụng chủ yếu trong chế biến chocolate và kẹo.
1.4.4. Nhóm mỡ độ
ng vật (mỡ heo)
Mỡ động vật được cấu tạo chủ yếu từ acid béo C16:0, C18:0 và các acid béo có mức
độ không bão hòa trung bình. Nhóm chất béo này chứa một tỷ lệ mong muốn của
triglycerid bão hòa hoàn toàn, tuy nhiên nhược điểm lớn nhất của nó là sự hiện diện ở
mức độ rất thấp các acid béo không bão hòa.
1.4.5. Nhóm dầu cá (dầu cá và dầu gan cá)
Dầu cá được tạo thành từ các acid béo không no có mạch carbon dài (chứa ít nhất 6

liên kết đ
ôi). Chất lượng dầu cá cao, tuy nhiên nó là loại dầu có giá thành thấp nhất do
khả năng bảo quản thấp:dầu cá không có tính ổn định, dễ biến đổi do quá trình oxy hóa
nối đôi và phát sinh mùi không mong muốn.


Công nghệ chế biến dầu mỡ thực phẩm Trần Thanh Trúc


14
1.4.6. Nhóm acid oleic và acid linoleic (dầu olive, dầu cọ, dầu bắp, dầu hướng
dương)
Đây là nhóm dầu hiện diện phổ biến nhất. Acid béo tạo nên dầu nhóm này chủ yếu là
C18:1 và C18:2. Lượng acid béo bão hòa trong nhóm dầu này chỉ chiếm tối đa 20%.
1.4.7. Nhóm acid linolenic (dầu đậu nành, dầu hạt lanh)
Đặc điểm quan trọng của dầu đậu nành và dầu hạt lanh là sự hiện diện ở hàm lượng
cao acid linolenic (C18:3). Do mức độ không bão hòa cao, các dầu này rất nhạ
y cảm
với các chất oxy hóa, điều này dẫn đến các biến đổi không mong muốn về mùi và vị.
Ngoại trừ dầu đậu nành, dầu hạt lanh không được sử dụng phổ biến cho chế biến thực
phẩm.
1.4.8. Nhóm acid erulic (C22:1)
Dầu thuộc nhóm này có hàm lượng cao (40-50%) acid erulic (C22:1), hiện diện chủ
yếu trong hạt bông vải. Một số giả thiết cho rằng một số các biến đổi sinh lý không
mong muốn trong cơ
thể người do sự tham gia của acid erulic. Chính vì thế, việc
nghiên cứu tìm các loại nguyên liệu cho dầu có hàm lượng erulic thấp vẫn được quan
tâm.
1.4.9. Nhóm hydroxy acid
Các nghiên cứu cho thấy, nhóm hydroxy acid chỉ hiện diện trong dầu hải ly (castor

oil): triglycerid của glycerin chủ yếu (90%) với acid ricinoleic (12-hydroxyoctadec-9-
enoic acid). Dầu hải ly không được sử dụng cho chế biến thực phẩm.
Công nghệ chế biến dầu mỡ thực phẩm Trần Thanh Trúc


15
CHƯƠNG 2. NGUYÊN LIỆU CHẾ BIẾN DẦU MỠ

2.1. HẠT CHỨA DẦU (SEED OILS)
Đặc điểm quan trọng của hạt dầu là độ ẩm thấp, ngăn cản sự biến đổi cơ học và sự phá
hủy của côn trùng. Dựa vào ưu điểm này, dầu thường không được tách chiết sớm ra
khỏi hạt dầu mà sẽ được bảo quản trong hạt nhằm ngăn cản các biến đổi không mong
muốn của d
ầu thô. Hầu hết các hạt rau quả… đều chứa dầu nhưng chỉ những nguyên
liệu có hàm lượng dầu cao mới được sử dụng trong quá trình sản xuất dầu. Tuy nhiên,
một số các hạt lại có khả năng sử dụng cho trích ly dầu là thành phần loại ra của quá
trình sản xuất một sản phẩm khác (hạt cà chua trong chế biến nước cà chua hay hạt
nho trong sản xuất rượu vang).
Nhược đi
ểm của việc sản xuất dầu từ hạt dầu là: Dầu trong hạt dầu không nằm ở dạng
tự do, bên ngoài mà được nhốt trong các khe vách bên trong tế bào, quá trình tách
chiết dầu không thể tiến hành trực tiếp mà phải qua các khâu chuẩn bị phức tạp. Một
số hạt có hàm lượng dầu cao nhưng quá trình trích ly dầu có thể kèm theo sự giải
phóng một số hợp chất không mong muốn, khó phân tách khỏi dầu.
Một s
ố hạt dầu sử dụng phổ biến trong quá trình sản xuất dầu:
2.1.1. Dầu dừa
Thu được từ cơm dừa khô (Cocos nucifera, họ Palmae.). Cây dừa có thể trồng và phát
triển ở vùng vành đai từ 20
o

vĩ Bắc đến 20
o
vĩ Nam của xích đạo, nhiệt độ thích hợp
cho quá trình phát triển là 30
o
C. Chính nhờ vào nhiệt độ cao của những vùng trồng
dừa, người ta có thể sử dụng ánh nắng mặt trời cho quá trình làm khô cơm dừa, ngoài
ra, nguồn nhiên liệu từ vỏ dừa cũng được tận dụng- đây chính là nguyên nhân làm cho
dầu dừa thường chứa các hợp chất hydrocarbon đa vòng. Dầu dừa thuộc nhóm acid
lauric. Nhờ vào khối lượng phân tử của triglycerid ở mức trung bình, dầu dừa có nhiệt
độ nóng chả
y thấp (24-27
o
C). Ngoài ra, mức độ không bão hòa trong dầu dừa thấp
(<10%), dầu dừa ít bị các biến đổi oxy hóa làm phát triển mùi ôi.
2.1.2. Dầu hạt cọ (Palm kernel oil, PKO)
Thu được từ hat của cây cọ dầu (Elaels guineensis), có tính chất tương tự dầu dừa.
Dầu hạt cọ có mức độ acid béo không bão hòa cao hơn dầu dừa, nhờ đó chỉ số Iod của
dầu hạt cọ thay đổi trong khoảng từ 13-23 và nhiệt độ
đông đặc từ 20-24
o
C.
2.1.3. Dầu “ babussa”
Dầu “ babussa” được sản xuất từ cây họ cọ babussa (Orbignya speciosa) có nguồn
gốc Brazil. Loại dầu này cũng thuộc nhóm acid lauric. Trữ lượng dầu trong babussa
cao, tuy nhiên địa hình trồng các loại cây này chủ yếu ở các vùng rừng mưa nhiều,
giao thông không thuận lợi, do đó việc phát triển sản xuất dầu từ babussa còn chưa
được chú ý khai thác.
Công nghệ chế biến dầu mỡ thực phẩm Trần Thanh Trúc



16
2.1.4. Bơ cacao
Đây là loại bơ thực vật quan trọng nhất. Bơ cacao có màu vàng nhạt, thu được từ hạt
của cây cacao nhiệt đới Theobroma cacao (họ Stercuiliaceae). Bơ cacao có mức độ
acid béo bão hòa cao, do đó bơ cacao có thể đông đặc ở ngay nhiệt độ thường (30-
35
o
C).
2.1.5. Các loại bơ thực vật khác
Nhóm này chỉ chiếm một lượng nhỏ và được sử dụng như chất thay thế bơ cacao
(cocoa butter equilivalent – CBE):
(i) Mỡ bomeo (Bomeo tallow; illipe butter): được tách chiết từ cây Shorea
stenoptera ở Malaysia. Bomeo tallow còn được gọi là “bơ xanh” do sản
phẩm có màu xanh nhạt. Loại bơ này có tính chất gần giống với bơ cacao
nhất khi so sánh với các loại bơ khác.
(ii) Bơ shea: thu đượ
c từ cây hạt mỡ ở Tây phi (Butyrospermum parkii), có mức
độ acid béo không bão hòa cao hơn khi so sánh với bơ cacao. Việc phân
tách tạo stearin từ bơ shea này có thể tạo ra sản phẩm thay thế bơ cacao
(CBE).
2.1.6. Dầu hướng dương
Được chiết tách từ hạt cây hướng dương (Helianthus annuus L., họ Compositae).
Hướng dương thường sống ở những vùng khí hậu ôn hòa như Mỹ, Châu Âu và Trung
Quốc. Việc trồng và chế biến các s
ản phẩm từ hướng dương được phát triển mạnh
trong suốt 25 năm qua nhờ vào sự hiện diện ở hàm lượng cao của acid linoleic – thành
phần dinh dưỡng quan trọng cho cơ thể. Trong quá trình tách chiết dầu, hạt hướng
dương thường phải trải qua quá trình xử lý sơ bộ nghiêm ngặt, xay xát loại bỏ lớp vỏ
bên ngoài hạt nhằm làm giảm tối đa thành phần sáp hiện diện trong dầu sau quá trình

thu hồi. D
ầu hướng dương có thể thu được bằng cả hai biện pháp: ép bằng sức nước và
trích ly. Quá trình tinh luyện dầu hướng dương là khâu đặc biệt quan trọng nhằm loại
bỏ các thành phần không mong muốn có mặt trong dầu do quá trình trích ly hay ép.
Dầu hướng dương thuộc nhóm acid oleic-linoleic, chứa hơn 85% acid béo không bão
hòa, trong đó hơn 2/3 là acid linoleic (C18:2). Điểm đông đặc của dầu hướng dương là
-15
o
C, chỉ số iod từ 110-145. Sau quá trình trích ly, trong khô hay bã dầu hướng
dương còn chứa khoảng 40-45% protein – đây là nguồn thích hợp cho việc chế biến
thức ăn gia súc.
2.1.7. Dầu cây rum (Safflower)
Được sản xuất nhờ quá trình ép hay trích ly hạt cây rum Carthamus tinctorius L. (họ
Compositae). Loại cây này có nguồn gốc chủ yếu từ Ai cập, Đông Á và một số vùng
phía tây Hoa Kỳ, sau đó được phát triển với một thời gian dài ở nhiều nơi nhằm phụ
c
vụ cho việc sản xuất dầu. Ngày nay, vai trò quan trọng của cây rum đã thay đổi đáng
kể, nguyên nhân chủ yếu do sự phát minh ra màu aniline; đồng thời màu dầu sậm,
Công nghệ chế biến dầu mỡ thực phẩm Trần Thanh Trúc


17
khác màu vàng nhạt không còn được ưa chuộng. Dầu rum có giá trị dinh dưỡng rất cao
do có hàm lượng acid linoleic lớn nhất (>80%), đây là nguồn quan trọng cho việc cung
cấp acid linoleic tinh khiết. Tuy nhiên, phần khô và bã dầu rum hầu như không có giá
trị dinh dưỡng.
2.1.8. Dầu hạt bông vải
Chế biến từ sản phẩm phụ (phần thải) của quá trình sản xuất bông. Trữ lượng sản xuất
bông trên thế giới rất lớn, kèm theo đ
ó một lượng lớn hạt bông chứa tỷ lệ dầu cao được

loại ra. Ai Cập, Hoa Kỳ, Trung Quốc và Nga là những nước đã và đang chế biến dầu
từ hạt bông vải. Ở Châu Âu, dầu hạt bông chiếm tỷ lệ lớn nhất. Tuy nhiên, do tính chất
của dầu bông vải có chứa gossypol (hình 2.1) - hợp chất đa vòng tạo mùi vị khó chịu,
khi kết hợp với protein hình thành hợp chất không thể
tiêu hóa, gây độc. Do đó, việc
tiền xử lý và tinh luyện dầu bông luôn được quan tâm. Dầu bông vải thuộc nhóm acid
oleic-linoleic; mặc dù thành phần dầu có chứa một tỷ lệ tương đối cao các acid béo
không bão hòa có nhiều nối đôi, dầu bông cũng chứa lượng acid béo bão hòa cao nhất
trong nhóm hạt dầu. Dầu bông vải có thể được sử dụng trong nấu nướng hàng ngày
(cooking oil, salad oil) hay trong công nghiệp chế biến margarine, shortening.

Hình 2.1. Cấu tạo của gossypol

2.1.9. Dầu thuộc họ cải dầu (rapeseed, colza)
Thu được từ hạt của cây cải dầu Brassica napus L. và B. campestis L. (họ Cruciferae.).
Cây cải dầu phát triển chủ yếu ở những vùng khí hậu ôn đới hay khí hậu lạnh: Đông và
Tây Âu, Canada, Ấn Độ và Trung Quốc. Cải dầu chứa hàm lượng cao acid erulic, mặc
dù hợp chất này không có tác hại về dinh dưỡng, tuy nhiên các nghiên cứu tìm các loại
dầu thuộc họ này với l
ượng acid erulic thấp vẫn được quan tâm. Dầu “Canola” là loại
dầu từ hạt cải dầu phổ biến nhất hiện nay. Có 3 kiểu phổ biến của dầu loại này:
(i) Dầu có hàm lượng acid erulic cao: 20-55% acid erulic
(ii) Dầu có hàm lượng acid erulic thấp: 0-5% acid erulic
(iii) Dầu không chứa acid erulic
Công nghệ chế biến dầu mỡ thực phẩm Trần Thanh Trúc


18
Một đặc điểm quan trọng của dầu nhóm này là mức độ chuyển hóa đường thấp. Bã dầu
là nguồn thích hợp cho việc chế biến thức ăn gia súc, tuy nhiên loại có hàm lượng acid

erulic cao không thích hợp cho cừu và gia cầm. Hàm lượng chất xơ cao cũng là một
điểm đặc biệt của họ cải dầu.
2.1.10. Dầu bắp (corn oil)
Được chiết tách từ phần phôi (hạt bắp) của Zea mays.
Dầu bắp thô có màu đỏ sậm do
sự hiện diện của hợp chất carotene và xantophyllic. Dầu bắp chứa một lượng tương đối
cao (1-3%) phospholipid và những hợp chất không có đặc tính của dầu khác, chủ yếu
là sterol (≥ 1%). Dầu bắp cũng thuộc nhóm acid oleic-linoliec với mức độ acid béo
không bão hòa cao, được sử dụng chủ yếu trong chế biến dầu ăn.
2.1.11. Dầu đậu nành (soybean oil)
Đây là sả
n phẩm của quá trình ép hay trích ly hạt đậu nành Glycine max (L.) merill (họ
Leguminosae). Đậu nành là nguồn cung cấp dầu thực vật chủ yếu cho việc chế biến
thực phẩm của con người. Đậu nành có nguồn gốc từ Trung Quốc, nhưng ngày nay,
nguồn cung cấp đậu nành và dầu đậu nành chủ yếu từ Mỹ và các nước thuộc Châu Mỹ.
Chỉ bắt đầu trồng đậu nành từ khoảng nă
m 1970, hiện nay Nam Mỹ đã cung cấp
khoảng 25% sản lượng đậu nành trên thế giới. Mặc dù quá trình ép dầu thu được hiệu
suất vẫn khá cao, tuy nhiên quá trình này thường đi kèm với các biến đổi không mong
muốn về chất lượng: một số thành phần độc hại thu được cùng với dầu trong quá trình
ép… Chính vì thế, chiết tách dầu bằng biện pháp trích ly hiện đang được sử dụng rộng
rãi, quá trình ép chỉ được tiến hành
ở quy mô nhỏ. Dầu đậu nành thuộc nhóm acid
linilenic; trong thành phần chứa hàm lượng acid linolenic rất cao khi so sánh với các
loại dầu khác. Thêm vào đó, quá trình hydrogen hóa dầu đậu nành cũng thường được
áp dụng trong chế biến margarine và shortening. Bã đậu nành sau trích ly là nguồn
cung cấp protein và các chất dinh dưỡng cần thiết cho gia súc.
2.1.12. Dầu đậu phộng (peanut oil)
Dầu phộng là một trong 5 loại dầu ăn quan trọng nhất trên thế giới. Dầu phộng thu
được nhờ vào quá trình tách chiết d

ầu từ nhân hạt cây đậu phộng Arachis hypogea-
đây là loài cây trồng phổ biến ở Châu Phi, Ấn Độ và Trung Quốc. Dầu đậu nành được
sử dụng chủ yếu cho nhu cầu thực phẩm: dầu chiên nấu, shortening, margarine, dầu
trộn (salad oil). Đặc tính quan trọng của dầu phộng là sự hiện diện ở hàm lượng thấp
acid béo bão hoà, trong khi đó lại rất giàu acid béo không no chứa 1 nối đôi (chủ yếu
là acid oleic). Do các triglycreid này có độ nóng chảy cao, khi nhi
ệt độ dầu giảm
xuống 5
o
C, dầu phộng bị vẩn đục do sự tạo gel trong dầu; tuy nhiên quá trình đông hóa
có thể được áp dụng để làm trong dầu. Một vấn đề nghiêm trọng ảnh hưởng đến chất
lượng và giá trị dinh dưỡng của dầu là sự nhiễm độc tố aflatoxin B
1
, B
2
, G
1
và G
2
(hình
2.2) do điều kiện môi trường làm phát sinh nấm mốc. Việc di chuyển độc tố từ bột đậu

×