ĐỀ ÔN THI CAO ĐẲNG, ĐẠI HỌC NĂM 2011 MÔN TOÁN HỌC
MÃ ĐỀ 006
Thời gian làm bài: 180 phút (Không kể thời gian giao đề)
A. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm):
Câu I (2 điểm): Cho hàm số
3 2 2 3
3 3( 1)
y x mx m x m m
(1)
1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) ứng với m=1
2.Tìm m để hàm số (1) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến
góc tọa độ O bằng
2
lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến góc tọa độ O.
Câu II (2 điểm):
1. Giải phương trình :
2
2 os3x.cosx+ 3(1 sin2x)=2 3 os (2 )
4
c c x
2. Giải phương trình :
2 2
1 2 2 1 2 2
2
2
log (5 2 ) log (5 2 ).log (5 2 ) log (2 5) log (2 1).log
(5 2 )
x
x x x x x x
Câu III (1 điểm): Tính tích phân :
6
0
tan( )
4
os2x
x
I dx
c
Câu IV (1 điểm): Cho hình chóp S.ABCD có đáy là hình vuông cạnh a , SA vuông góc với đáy
và SA=a .Gọi M,N lần lượt là trung điểm của SB và SD;I là giao điểm của SD và mặt phẳng
(AMN). Chứng minh SD vuông góc với AI và tính thể tích khối chóp MBAI.
Câu V (1 điểm): Cho x,y,z là ba số thực dương có tổng bằng 3.Tìm giá trị nhỏ nhất của biểu thức
2 2 2
3( ) 2
P x y z xyz
.
B. PHẦN TỰ CHỌN (3 điểm): Thí sinh chỉ được chọn một trong hai phàn (phần 1 hoặc 2)
1.Theo chương trình chuẩn:
Câu VIa (2 điểm):
1. Trong mặt phẳng với hệ toạ đ ộ Oxy cho điểm C(2;-5 ) và đường thẳng
:3 4 4 0
x y
.
Tìm trên
hai điểm A và B đối xứng nhau qua I(2;5/2) sao cho diện tích tam giác ABC
bằng15.
2. Trong không gian với hệ toạ độ Oxyz cho mặt cầu
2 2 2
( ): 2 6 4 2 0
S x y z x y z
.
Viết phương trình mặt phẳng (P) song song với giá của véc tơ
(1;6;2)
v
, vuông góc với mặt
phẳng
( ): 4 11 0
x y z
và tiếp xúc với (S).
Câu VIIa(1 điểm): Tìm hệ số của
4
x
trong khai triển Niutơn của biểu thức :
2 10
(1 2 3 )
P x x
2.Theo chương trình nâng cao:
Câu VIb (2 điểm):
1.Trong mặt phẳng với hệ toạ độ Oxy cho elíp
2 2
( ): 1
9 4
x y
E
và hai điểm A(3;-2) , B(-3;2) .
Tìm trên (E) điểm C có hoành độ và tung độ dương sao cho tam giác ABC có diện tích lớn nhất.
2.Trong không gian với hệ toạ độ Oxyz cho mặt cầu
2 2 2
( ): 2 6 4 2 0
S x y z x y z
.
Viết phương trình mặt phẳng (P) song song với giá của véc tơ
(1;6;2)
v
, vuông góc với mặt
phẳng
( ): 4 11 0
x y z
và tiếp xúc với (S).
Câu VIIb (1 điểm):
Tìm số nguyên dương n sao cho thoả mãn
2
0 1 2
2 2 2 121
2 3 1 1
n
n
n n n n
C C C C
n n
HẾT
Cán bộ coi thi không g ải thích gì thêm
Họ tên thí sinh: Số báo danh:
ĐÁP ÁN VÀ THANG ĐIỂM
Câu NỘI DUNG Điêm
2. Ta có
, 2 2
3 6 3( 1)
y x mx m
Để hàm số có cực trị thì PT
,
0
y
có 2 nghiệm phân biệt
2 2
2 1 0
x mx m
có 2 nhiệm phân
biệt
1 0,
m
05
Cực đại của đồ thị hàm số là A(m-1;2-2m) và cực tiểu của đồ thị hàm số
là
B(m+1;-2-2m)
025
Theo giả thiết ta có
2
3 2 2
2 6 1 0
3 2 2
m
OA OB m m
m
Vậy có 2 giá trị của m là
3 2 2
m
và
3 2 2
m
.
025
1.
os4x+cos2x+ 3(1 sin 2 ) 3 1 os(4x+ )
2
os4x+ 3sin 4 os2x+ 3sin2 0
PT c x c
c x c x
05
sin(4 ) sin(2 ) 0
6 6
18 3
2sin(3 ). osx=0
6
x=
2
x x
x k
x c
k
Vậy PT có hai nghiệm
2
x k
và
18 3
x k
.
05
2. ĐK :
1 5
2 2
0
x
x
.
Với ĐK trên PT đã cho tương đương với
2
2
2
2 2 2 2
2
log (5 2 )
log (5 2 ) 2log (5 2 ) 2log (5 2 )log (2 1)
log (2 1)
x
x x x x
x
05
2
2 2
2
1
4
log (2 1) 1
1
log (5 2 ) 2log (2 1) 2
2
log (5 2 ) 0
2
x
x
x x x x
x
x
025
I
II
Kết hợp với ĐK trên PT đã cho có 3 nghiệm x=-1/4 , x=1/2 và x=2.
025
26 6
2
0 0
tan( )
tan 1
4
os2x (tanx+1)
x
x
I dx dx
c
025
Đặt
2
2
1
t anx dt= (tan 1)
cos
t dx x dx
x
0 0
1
6
3
x t
x t
05
Suy ra
1
1
3
3
2
0
0
1 1 3
( 1) 1 2
dt
I
t t
.
025
Ta có
,( , )
,( )
AM BC BC SA BC AB
AM SB SA AB
AM SC
(1)
Tương tự ta có
AN SC
(2)
Từ (1) và (2) suy ra
AI SC
05
III
IV
V
Vẽ IH song song với BC cắt SB tại H. Khi đó IH vuông góc với (AMB)
Suy ra
1
.
3
ABMI ABM
V S IH
Ta có
2
4
ABM
a
S
2 2
2 2 2 2 2
. 1 1 1
2 3 3 3
IH SI SI SC SA a
IH BC a
BC SC SC SA AC a a
Vậy
2 3
1
3 4 3 36
ABMI
a a a
V
05
Ta c ó:
2
3 ( ) 2( ) 2
3 9 2( ) 2
27 6 ( ) 2 ( 3)
P x y z xy yz zx xyz
xy yz zx xyz
x y z yz x
025
2
3 2
( )
27 6 (3 ) ( 3)
2
1
( 15 27 27)
2
y z
x x x
x x x
025
Xét hàm số
3 2
( ) 15 27 27
f x x x x
, với 0<x<3
, 2
1
( ) 3 30 27 0
9
x
f x x x
x
x
0 1 3
y’ + 0 -
y
14
Từ bảng biến thiên suy ra MinP=7
1
x y z
.
05
1. Gọi
3 4 16 3
( ; ) (4 ; )
4 4
a a
A a B a
. Khi đó diện tích tam giác ABC là
1
. ( ) 3
2
ABC
S AB d C AB
.
05
Theo giả thiết ta có
2
2
4
6 3
5 (4 2 ) 25
0
2
a
a
AB a
a
Vậy hai điểm cần tìm là A(0;1) và B(4;4).
05
2. Ta có mặt cầu (S) có tâm I(1;-3;2) và bán kính R=4
Véc tơ pháp tuyến của
( )
là
(1;4;1)
n
025
Vì
( ) ( )
P
và song song với giá của
v
nên nhận véc tơ
(2; 1;2)
p
n n v
làm vtpt. Do đó (P):2x-y+2z+m=0
025
Vì (P) tiếp xúc với (S) nên
( ( )) 4
d I P
21
( ( )) 4
3
m
d I P
m
025
Vậy có hai mặt phẳng : 2x-y+2z+3=0 và 2x-y+2z-21=0. 025
Ta có
10 10
2 10 2
10 10
0 0 0
(1 2 3 ) (2 3 ) ( 2 3 )
k
k k k i k i i k i
k
k k i
P x x C x x C C x
05
VIa
VIIa
VIb
Theo giả thiết ta có
4
0 1 2
0 10
4 3 2
,
k i
i i i
i k
k k k
i k N
025
Vậy hệ số của
4
x
là:
4 4 3 1 2 2 2 2
10 10 3 10 2
2 2 3 3 8085
C C C C C .
025
1. Ta có PT đường thẳng AB:2x+3y=0
Gọi C(x;y) với x>0,y>0.Khi đó ta có
2 2
1
9 4
x y
và diện tích tam giác ABC
là
1 85 85
. ( ) 2 3 3
2 13 3 4
2 13
ABC
x y
S AB d C AB x y
05
2 2
85 170
3 2 3
13 9 4 13
x y
Dấu bằng xảy ra khi
2 2
2
1
3
9 4
2
2
3 2
x y
x
x y
y
. Vậy
3 2
( ; 2)
2
C .
05
Xét khai triển
0 1 2 2
(1 )
n n n
n n n n
x C C x C x C x
Lấy tích phân 2 vế cân từ 0 đến 2 , ta được:
1 2 3 1
0 1 3
3 1 2 2 2
2
1 2 3 1
n n
n
n n n n
C C C C
n n
05
2 1 1
0 1 2
1
2 2 2 3 1 121 3 1
2 3 1 2( 1) 1 2( 1)
3 243 4
n n n
n
n n n n
n
C C C C
n n n n
n
Vậy n=4.
05
VIIb