Tải bản đầy đủ (.pdf) (6 trang)

ĐỀ THI THỬ ĐẠI HỌC NĂM 2011 - Trường THPT Đào Duy Tân pps

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (279.81 KB, 6 trang )

TRI'ONG
TIIPT
DAo
DUY TTI
-
IIA
NoI
of
rrn rrnlDAr
Hgc
r,Arv
r
(2010 2011)
nndx,
roAN
rn6r a
Thdi gian:
180
phtu (kh6ng
*6 nm
g*n
giaa
di)
CAu
I.
Cho
him
s5
y:
x3
-


3x (l)-
/
U Xnaosft
sg bi6n
thi€n
vi
v€
eO tni narn
sO
(t;.
'.t
u
2/
Tl^m etii
phuong
trinh
x3
-3x
=
+
c6
3 nghiQm phdn
biQt.
m" +l
3/ V6iO(0;
0) vd
A(2;2)
h
hai ttiiAm nim
tr6n

AO
tni
hdm
sd
(1),
rim
di€rn
lvi
nim
trOn cung OA
crha dd thihAm
sO
(t)
sao
cho khodng
c6ch
tu
M cli5n
OA ld
ld.n
nh6t,
Cffu II.
1/ Cho
b6t
phuong
trinh:
JT3x+2)
7n-rt7
1x+4
l,

v
al
Giai bdt
phuong
trinh khi
m
:4.
b/ Tim tdt
cir chc
giittri
cria
m
ee
UAt
phucrng
trinh
tr€n
nghiQnr
ding
viii
riiqi
x
>:i.
,,1
2/ Gi6i
phucrng
trinh:
tanx+cosx-cos2x
=sinx(l
+tan!-tarrx).

Cffu III.
V
ttTrCn
m{t
phdne
tqa d0
Oxy, tim
phuong
trinh
tludrng
thingr
di
qua
di6rn
M(l; 3) sao cho dudng theng
d6 ctrng
v6i2
dudrng
thang
(d1):
3x-{-
4y
+
5
:
{j
vi
(d2):
4x
+

3y
-
I
:
0
t4o
th'nnh
mQt tam
gitlc
cdn
c6
dinh
ld
giao
di6m
cria
(d1)
,,,d
(d2).
(
2l
Cho hinh ch6p SABC
c6 dhy
ABC
li
tam
gi6c
cdn,
c6 AB
:

AC
:
?,a;
RC
-
2a
c6c m{t
bon ctrng tao vdi ttax,m0t
g6c
600.
Hinh
chitiu
H
cia dinh
s xu6ng
(ABC)
nam
O trong tam
gi6cABC.
'/
at
cntng
minh t6ng H h tem
dulng
trdn
nQi
ti6p cria
tam
gi6c
ABC.

b/ Tfnh thiS
tich
cria trl di0n SABC
Cffu
IV.
Cho tflp hW A
gdm
n
phAn
tri
(n
>
4).
nii5t
ra"g
sO tgp con
gOm
4
pfran
tri
cria
A
bing}} Hn
sO
tdp
con
g6m
2
phan
tfr

cria
A.
Tim
k e
{1,2,3, ,n}
sao cho
si5
tfp
con
g6m
k
phAn
trl cria A ln lcrn nhdt.
Cf,uY,
Cho 3 sO
kh6ng
6m
a,b,c. Chung minh
ring:
a3 +bt +c'> a'Jbc
+b'Ji
+t'^[on
.
www.laisac.page.tl
_x
oAp
An
vA
rHANc
orru

rrrr
ruuD+r
rrgc
IAN
r
-
ivr0N
roAN
Caulf
NQi
dung cho
tli6m
oi6m
al
Khio
s6t
str bi€n
thi6n vi
ve
d6
thj
hdm
sd
y
=
x3
-
3x
1.00
TXD:

R
Gioih4n:
L im1x3-3x;=
to
r+
t@
Strbitinthi6n:
y'=3*-3.
Tac6y'=0<=>x=
t I
Bnng bi6n thi6n:
HAm
sii
tt6ng biiSn
tr0n
(-co;
-l)
vi
(l;
+o);
Nghlch
biiSn
ffin
Gl;
t)
Hnm
si5 d4t
cyc d?r
t?r
(-l;2),cgc

ti6u
6(l;
-Z)
x
-dr
-1
I 1-@
v'
+0
0
+
v
*oo
-2
Ei0m u6n:
Y"
=
6x
-
0
<:>
x:0
. Di6m
u6n
U(0;
0)
VE
hinh:
2 Ditim
u5n:

y"
= 6x =
0
<:>
x
=
0
. Ei6m
u6nU(0;
0)
Ve hinh
a2
Tim m ttti
phuong
fiinh x3
-3x
=
+
c6 3 nghiQm
phdn
biQt.
m" +l
1.00
Sưu tầm: Nguyễn Minh Hải
SO nghigm
cua
phuong
trinh
x3
-3,c

=#bdng
sd
giao
<ti6m cria
2 dO
thf :
[y=r'-3t
lz^
l'=
*u
0.25
DU,a
vio dO
thi ta th6y
dO
phuong
trinh t€n
c6 3
nghigm
phdn
bigt thi
+. ?*
q)q=7-rn'-l<m<m2
+l
m'+l
0.50
(=)
-mr
-m-
I

<
0
<
m'
-m
+
I
(Lu0n
dung
voi mgi m)
V{y voi mgi m
phuong trinh
ludn s[ ]nghiQm
phan
bipt.
0.25
43.
1.00
Gpi
M(xo;
yo)
voi
0
<
xo <
zlb,mOt
diem
bat
kj' n[m tr0n
cung

OA
ciad6 thi.
X6t duong
thdng
(d) qua
M vi
song
song
voi OA.
Ta c6:
d(M;
oA)
=
d((d);
oA);
Khoang
c6ch nay
lcrn nh6t
khi
(d)
cdch xa OA
ntrAt
<=>
(d)
chinh b ti6p
tuytin
song
sonl
OA tar
ti6p di6m

M.
Phuong
tinh duong
thdng OA li
y
=
x
=>
Tiiip tuy6n
t4i M
song
song voi OA
c6 hQ sd
g6c
f
(x6):
I
<=>
3xo2-
3
=
I
=)
Xo
=
#
r**(hrfl
,!
S 4*a2,
a

-^ti
aa
a
(.r
<
-2;x
2
-l)
1.00
THt.Ntiu
4-Jf
4x+4=ol-=t
16<xz
-3x+4
Biit
phuong
tinh
lu6n th6a
m5n.
f _,
t*.F
<->
x,
-ix-r2zo<=>l
^-,
:*
lx(
LZ
rH2,Ni5u
q-J*z*+q>g4=1

+.*.*
0
Khi
d6
hai
vii cua BPT
di cho
ludn
duong, binh
phuong
hai vi6 ta c6:
BPT
<=>
x'
-3x+2r-16-sJ*
1r+4 +x2
-3x+4
[*.
u-s,
a=2
4"{y,
-{J
)-9
<=> x,
-*-!.
o
.=r
l
^
-

o,
:
(*uu
mfln
dk x6c
ttir
16
I
6+J53
l_r>-
L+
Sưu tầm: Nguyễn Minh Hải
riit rrq,p
f)
ta
c6,.e.P'L#f
y
rS:ftYf,
r6t
hq,p THl,
ta c6 tl6p s5
x
e,-*,tftrt*,**l
IUlb.
1.00
. BPT
quy
v0 drrr1e
J
f a* *;+

.fir' 3r *
4
>
m
A
xet nam so
f
(x)
='[x'
1x
+, +'[77)c
+ 4
(**)
=>
/(x)
=
2x-3
2x-3
D6 th6y
f
'(x)>0
Vx
>
3
n€n
(x)
<l6ng
biiSn ffin
(3;
+o1

EO
1**1
c6 nghiQm Vx
2
3
<->
M!
f
(x)>
m <+
f
(3)
=2+
,[2
> m
un.
1.00
tanx+cosx-cost x
=sinx(l*t*{t*r)
DKcosx.
cos x/2
*0
'2
'7
sinl.sinr
PT
<=>
tanr+cosx-cos'a
=pinr(l
*-4-)

''
cos cos.r
2
xx
cosr.cos-+sm slnI
(=)
tflox*
cosx
-cost
x
=
sinx(4)
x
cos cosr
(n)
,O'I
(=>
tanx*cosr-cos'x
=
sinx
2
.orI ort
2
<=>cosx-cos2x-0<->cosx=
I
<->x:k2
r
$e
Z)
Nghr€m

thoa m6n diAu
kiQn
(*)
IIu1.
1.00
Phuong
trinh duong
thdng
(d)
qua
M(l;
3) c6 d4ng
A(x
*
1)
+
B(y
-
3) = 0
Sưu tầm: Nguyễn Minh Hải
<:)Ax+By-A-38=0
Tac6
i(A;n'1,112;+S,ir(a;3)
Hn luqt h
cric
vdcto
ph6p
tuy6n cua
(d), (dr), (dz).
E6

(q
t4o voi
(dr);
(dz)
mQt tam
gi6c
cdn
tai
dinh
ld
giao
cua
(dr);
(dz)
<=>
t(d
;
d,)
=
t(d
;
d
)
,
I
3 A
!
4 B
!
-

ft
A
f
n
!
11o,*
o.:=
o
: :t
u^
^.=rl
n
=
'
'
s"[t +E
y17;g
-
L3A+48=4A-38
LA=
Chgn
B
:
I ta
c6 A:
I
ho{c
-1.
Vfly
phuong ttnh

ttuong
thlttg
(d)
c6 d4ng:
x
+
y
-
4= 0
ho{c
x
-
y
-
2
:
0-
Go. i
MN,
P lan
luqt
h
hinh chi6u
cria
H l€n
c6c
c4nh
BC,
AC,
AB

Tac6
ISMH
=
ISNH
=
ISPH=600
=>
HM
:
HN
:
HP
=
SH/tan600,
H h diAm
trong
dudmg
trdn
n6n
H
ld t6m ducmg
trdn
nQi
ti6p cua
tam
gi6c
ABC.
I
Tac6
V*u,

=;SH.SABc
li ducrng
cao, dudng
trung
tuy6n
cria tam
gi6c
Sesc=
%ANI.vc=
|Jst
-+A.za=a2Ji
Ta l+i
c6 Sesc
:
pr:
P.
HN
=) HN
:
ry
=
=>sH=HN.tan60o
=$.a:+
4
j4
=)
vsnsc=:+tJ3=f"
<=>
(n
-

2).(n
-
3) =
240
<:>
n
:
18
X6t
ddy
sO
{Cl,hf
e
{0;1;2; ;18}.
Trlgiathi6t
tae6
cl
=20c:
n(n-r)(rL
-2)(n-3)
=2gn(n,-l)
242
Sưu tầm: Nguyễn Minh Hải
\
\
Xdt
day
sO
{Ci};lr
e

{0;1;2; ;18}.
Ta
c6 T
:
-*
=
.\*t=<
I
<=>
/r <
8,5
1=)
k= 0;l;2 ;g
ciJ'
18-k
'v
v'r''"''e
Tuongt.uT>
|
4=)k=9;
l0; ;18
Tt d6 ta nh{n
duo. c
c,!
Ma,r
k{ri
k
=
8 ho{c
9. so

srinh
t.uc
titip
nhfn
dugc
k
=
p
vl.
1.00
at +b3
+ct
>
a2Jbc
+b'.[*
+t'JoO
j
Ta c6 theo
BDT
cdsi: 2vP
:
z1a2
J-bc
+
b'
Ji
+ t'
J
ony
<

a2
(b
+ c)
+
b2
(a
+
c) +
c,
1a
+
< ab(a
+
b) +
bc(b +
c)
+
ca(a +
c)
(l)
Lai c6
dE dang chimg
minh
ttugc
a3
+b3
>-ab(a+b)
cq(Do
a3+
b3

-ab(a+b)
=
(a+b)(a-b)'
> 0 voi mgi
q
b
>
0)
Tuong
t:ty b3 +c3
>bc(b+c);ct
+at
>
ca(c+a)
=>
2VT
ab(a +
b)
+
bc(b +
c) + ca(c
+
a)
(2)
Tir
(1)
vn
(2)
ta nhAn dugc
dpcm.

Ddu
":'xiy
ra khi
a
=
b
=c.
r7
Sưu tầm: Nguyễn Minh Hải

×