Tải bản đầy đủ (.pdf) (4 trang)

Tuyển tập 55 đề ôn thi đại học năm 2011 môn Toán có đáp án - Đề số 2 pps

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (133.17 KB, 4 trang )

Đề số 2

I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I. (2đ): Cho hàm số y x mx x
3 2
3 9 7
   
có đồ thị (C
m
).
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi
m
0

.
2. Tìm
m
để (C
m
) cắt trục Ox tại 3 điểm phân biệt có hoành độ lập thành cấp
số cộng.
Câu II. (2đ):
1. Giải phương trình:
x x x x
2 2 2 2
sin 3 cos 4 sin 5 cos 6
  

2. Giải bất phương trình:
x x
x


1
2 2 1
0
2 1

 



Câu III. (1đ) Tính giới hạn sau:
x
x x
A
x
2
3
1
7 5
lim
1

  



Câu IV (1đ): Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật; SA 
(ABCD); AB = SA = 1;
AD
2


. Gọi M, N lần lượt là trung điểm của AD và
SC; I là giao điểm của BM và AC. Tính thể tích khối tứ diện ANIB.
Câu V (1đ): Biết
x y
( ; )
là nghiệm của bất phương trình: x y x y
2 2
5 5 5 15 8 0
    
.
Hãy tìm giá trị lớn nhất của biểu thức
F x y
3
 
.
II. PHẦN TỰ CHỌN (3đ)
A. Theo chương trình chuẩn:
Câu VI.a (2đ)
1. Trong mặt phẳng với hệ toạ độ Oxy, cho elip (E):
x y
2 2
1
25 16
 
. A, B là các
điểm trên (E) sao cho:
1
AF BF
2
8

 
, với
F F
1 2
;
là các tiêu điểm. Tính
AF BF
2 1
 .
2. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng
( )

: x y z
2 5 0
   

và điểm A
(2;3; 1)

. Tìm toạ độ điểm B đối xứng với A qua mặt phẳng
( )

.
Câu VIIa. (1đ): Giải phương trình:
( ) ( ) ( )
2 3 3
1 1 1
4 4 4
3
log x 2 3 log 4 x log x 6

2
+ - = - + +
B. Theo chương trình nâng cao:
Câu VI.b (2đ)
1. Trong mặt phẳng với hệ toạ độ Oxy, viết phương trình đường tròn đi qua
A
(2; 1)

và tiếp xúc với các trục toạ độ.
2. Trong không gian với hệ toạ độ Oxyz, cho đường thẳng
d
:
x y z
1 1 2
2 1 3
  
  và mặt phẳng
P
:
x y z
1 0
   
. Viết phương trình đường
thẳng  đi qua A
(1;1; 2)

, song song với mặt phẳng
P
( )
và vuông góc với

đường thẳng
d
.
Câu VII.b (1đ) Cho hàm số:
mx m x m m
y
x m
2 2 3
( 1) 4
   


có đồ thị
m
C
( )
.
Tìm m để một điểm cực trị của
m
C
( )
thuộc góc phần tư thứ I, một điểm cực trị
của
m
C
( )
thuộc góc phần tư thứ III của hệ toạ độ Oxy.
Hướng dẫn Đề sô 2

Câu I: 2) Phương trình hoành độ giao điểm của (C

m
) và trục hoành:
x mx x
3 2
3 9 7 0
   
(1)
Gọi hoành độ các giao điểm lần lượt là
x x x
1 2 3
; ;
. Ta có:
x x x m
1 2 3
3
  
Để
x x x
1 2 3
; ;
lập thành cấp số cộng thì
x m
2

là nghiệm của phương trình
(1)

m m
3
2 9 7 0

   



m
m
1
1 15
2



 




. Thử lại ta được : m
1 15
2
 

Câu II: 1)
x x x x
2 2 2 2
sin 3 cos 4 sin 5 cos 6
  
 x x x
cos (cos7 cos11 ) 0
 


k
x
k
x
2
9











2)
x
0 1
 

Câu III:
x x
x x
A
x x
2
3

1 1
7 2 2 5
lim lim
1 1
 
   
 
 
=
1 1 7
12 2 12
 
Câu IV:
ANIB
V
2
36

Câu V: Thay yFx 3


vào bpt ta được: y Fy F F
2 2
50 30 5 5 8 0
    

Vì bpt luôn tồn tại
y
nên 0
y



040025025
2
 FF


82


F

Vậy GTLN của yxF 3


là 8.
Câu VI.a: 1)
1
AF AF a
2
2
  và
BF BF a
1 2
2
 



1 2

AF AF BF BF a
1 2
4 20
    


1
AF BF
2
8
 



2
AF BF
1
12
 

2) B
(4;2; 2)


Câu VII.a: x x
2; 1 33
  
Câu VI.b: 1) Phương trình đường tròn có dạng:
x a y a a a
x a y a a b

2 2 2
2 2 2
( ) ( ) ( )
( ) ( ) ( )

   

   



a) 
a
a
1
5





b)  vô nghiệm.
Kết luận: x y
2 2
( 1) ( 1) 1
   
và x y
2 2
( 5) ( 5) 25
   


2)
d P
u u n
; (2;5; 3)
 
  
 
 

.  nhận
u

làm VTCP 
x y z
1 1 2
:
2 5 3

  
 


Câu VII.b: Toạ độ các điểm cực trị lần lượt là: A m m
2
( ;3 1)

và B m m
2
( 3 ; 5 1)

  

Vì y m
2
1
3 1 0
  
nên để một cực trị của
m
C
( )
thuộc góc phần tư thứ I, một cực trị
của
m
C
( )
thuộc góc phần tư thứ III của hệ toạ độ Oxy thì
m
m
m
2
0
3 0
5 1 0



 



  


m
1
5

.

×