Tải bản đầy đủ (.pdf) (3 trang)

Bài tập môm xác suất thống kê pptx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (48.1 KB, 3 trang )

BÀI TẬP C2

1/.Một thí sinh dự thi lái xe đến khi đậu mới thôi. Xác suất thi đậu của người này ở mỗi lần thi là 60%. Gọi X là số
lần dự thi của người này.
a) Tìm quy luật phân phối xác suất của X.
b) Tính xác suất người này dự thi ít nhất ba lần.
c) Có 200 người dự thi lái xe cho đến khi đậu. Xác suất thi đậu của mỗi người ở mỗi lần thi là 60%. Theo Anh Chò
có bao nhiêu người dự thi ít nhất ba lần.
2/ X(năm) là tuổi thọ của một loại sản phẩm điện tử có phân phối chuẩn
X~N(5;1). Thời gian bảo hành sản phẩm là 2 năm.
a) Tìm tỷ lệ sản phẩm cần được bảo hành.
b) Tại một đại lý; trong năm 2009 bán được 100 sản phẩm, theo Anh Chò có bao nhiêu sản phẩm cần được
bảo hành.
c) Thời gian bảo hành là bao nhiêu ,để tỷ lệ sp cần được bảo hành là 2%
3/ Trường ĐHKT có 500 SV nội trú,căng tin của trường phục vụ cơm trưa cho
SV theo 2 ca:
Ca 1 : từ 11.00 giờ - 11.30 giờ
Ca 2 : từ 11.40 giờ - 12.10 giờ
SV có thể chọn bất kỳ ca nào để dùng cơm.
Theo Anh Chò căng tin cần có ít nhất bao nhiêu chỗ ngồi để xác suất luôn luôn đáp ứng đủ chỗ ngồi cho SV
đến dùng cơm trưa không bé hơn 95%.
4/ Một công ty du lòch tổ chức tuần trăng mật cho 100 cặp vợ chồng mới cưới tại Đà lạt.
Tại khách sạn phục vụ điểm tâm sáng theo hai ca:
Ca 1: từ 6.30 – 7.00 .
Ca 2: từ 7.10 - 7.40.
Mỗi cặp vợ chồng luôn đi ăn cùng nhau và có thể chọn tùy ý một trong hai ca.
Số chỗ ngồi tại căng tin của khách sạn phải có ít nhất bao nhiêu chỗ ngồi, để xác suất luôn đáp ứng đủ chỗ
ngồi cho các cặp vợ chồng đến dùng điểm tâm ≥ 99%
5/ Cho : X~B(20,80%)
Y~H(60,40,10)
Z~P(4)


S= 4X-5Y-4Z+100;
X, Y, Z độc lập
Tính E(S) , Var(S)
6/ Cho: X~N(4,16)
Tính: P(X> 10) ; P( 5<X<7) ; P( -2<X<3)
8/ Tại 1 đòa phương vùng cao, theo số liệu các năm vừa qua trung bình một năm có 3 thí sinh đậu đại học. Tính
xác suất năm 2009 có :
a) 5 thí sinh đậu
b) có ít nhất 5 thí sinh đậu.
9/ Một trường Đại học có chỉ tiêu tuyển sinh là 500
a) Có 2000 thí sinh dự thi, xác suất thi đậu của mỗi thí sinh là 30%. Tính xác suất để số thí sinh trúng tuyển
không vượt quá chỉ tiêu.
b) Số thí sinh là bao nhiêu , để biến cố: số thí sinh trúng tuyển không vượt quá chỉ tiêu có xác suất ≥ 95% .
( xác suất đậu của mỗi thí sinh là 30% )
10/ Trọng lượng của một loại trái cây có phân phối chuẩn, kiểm tra 1000 trái thấy có :
106 trái có trọng lượng >300g
40 trái có trọng lượng <180g
a) Tìm trọng lượng trung bình và độ lệch chuẩn của loại trái cây trên.
b) Hãy ước lượng số trái cây có trọng lượng từ 200g-250g trong 1000 trái trên.
11/.X(phút): thời gian đi từ nhà đến trường của sinh viên A là một đại lượng ngẫu nhiên có phân phối chuẩn. Biết
rằng 76,24% số ngày A đi từ nhà đến trường mất trên 22 phút và 10% số ngày mất trên 28 phút.
a) Tính thời gian trung bình A đi từ nhà đến trường.
b) Giả sử A xuất phát từ nhà trước giờ vào học 26 phút.
Tính xác suất A bò trể giờ học.
c) A cần phải xuất phát từ nhà trước giờ vào học bao nhiêu phút để xác suất bò trể giờ vào học của A bé hơn
3%.
12/.Một thiết bò điện tử gồm có 10 ngàn linh kiện . Trong đó có 2 ngàn linh kiện loại loại I, 3 ngàn linh kiện loại II
và 5 ngàn linh kiện loại III. Xác suất để một linh kiện loại I bò hỏng là 0,003% . Xác suất để một linh kiện loại II bò
hỏng là 0,002%. Xác suất để một linh kiện loại III bò hỏng là 0,001%.Thiết bò ngừng hoạt động khi có ít nhất ba
linh kiện bò hỏng.

Tính xác suất để thiết bò này ngừng hoạt động.
Biết rằng việc các linh kiện hoạt động tốt hay hư hỏng làhoàn toàn độc lập với nhau.
13/. X(phút): thời gian chờ đợi tính tiền tại một
siêu thò có hàm mật độ là:





∈−
=
]2,0[0
]2,0[)2(
)(
x
xxax
xf

a) Tính thời gian chờ đợi trung bình.
b) Tính xác suất trong 100 khách hàng có ít nhất 70 khách hàng chờ đợi trên một phút.

×