Tải bản đầy đủ (.pdf) (62 trang)

Insulin Action and Its Disturbances in Disease - part 2 pptx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (658 KB, 62 trang )

46 THE INSULIN RECEPTOR AND DOWNSTREAM SIGNALLING
112. Cameron, K. E., Resnik, J. and Webster, N. J. (1992) Transcriptional regulation of the
human insulin receptor gene. JBiolChem267, 17 375–17 383.
113. Brunetti, A., Foti, D. and Goldfine, I. D. (1993) Identification of unique nuclear regula-
tory proteins for the insulin receptor gene, which appear during myocyte and adipocyte
differentiation. J Clin Invest 92, 1288–1295.
114. Webster, N. J., Kong, Y., Cameron, K. E. and Resnik, J. L. (1994) An upstream ele-
ment from the human insulin receptor gene promoter contains binding sites for C/EBP-
beta and NF-1. Diabetes 43, 305–312.
115. McKeon, C., Accili, D., Chen, H., Pham, T. and Walker, G. E. (1997) A conserved
region in the first intron of the insulin receptor gene binds nuclear proteins during
adipocyte differentiation. Biochem Biophys Res Commun 240, 701–706.
116. Lee, J. K. and Tsai, S. Y. (1994) Multiple hormone response elements can confer glu-
cocorticoid regulation on the human insulin receptor gene. Mol Endocrinol 8, 625–634.
117. Mamula, P. W., McDonald, A. R., Brunetti, A., Okabayashi, Y., Wong, K. Y., Mad-
dux, B. A., Logsdon, C. and Goldfine, I. D. (1990) Regulating insulin receptor gene
expression by differentiation and hormones. Diabetes Care 13, 288–301.
118. Shen, W. J., Kim, H. S. and Tsai, S. Y. (1995) Stimulation of human insulin receptor
gene expression by retinoblastoma gene product. JBiolChem270, 20 525–20 529.
119. Webster, N. J., Resnik, J. L., Reichart, D. B., Strauss, B., Haas, M. and Seely, B. L.
(1996) Repression of the insulin receptor promoter by the tumor suppressor gene product
p53: a possible mechanism for receptor over-expression in breast cancer. Cancer Res
56, 2781–2788.
120. Giraud, S., Greco, A., Brink, M., Diaz, J. J. and Delafontaine, P. (2001) Translation
initiation of the insulin-like growth factor I receptor mRNA is mediated by an internal
ribosome entry site. JBiolChem276, 5668–5675.
121. Knutson, V. P., Ronnett, G. V. and Lane, M. D. (1983) Rapid, reversible internaliza-
tion of cell surface insulin receptors. Correlation with insulin-induced down regulation.
JBiolChem258, 12 139–12 142.
122. Thien, C. B. and Langdon, W. Y. (2001) Cbl: many adaptations to regulate protein
tyrosine kinases. Nat Rev Mol Cell Biol 2, 294–307.


123. Haglund, K., Sigismund, S., Polo, S., Szymkiewicz, L., Di Fiore, P. P. and Dikic, I.
(2003) Multiple monoubiquitination of RTKs is sufficient for their endocytosis and
degradation. Nat Cell Biol 5, 461–466.
124. Ahmed, Z., Smith, B. J. and Pillay, T. S. (2000) The APS adapter protein couples the
insulin receptor to the phosphorylation of c-Cbl and facilitates ligand-stimulated ubiq-
uitination of the insulin receptor. FEBS Lett 475, 31–34.
125. Vecchione, A., Marchese, A., Henry, P., Rotin, D. and Morrione, A. (2003) The Grb10/
Nedd4 complex regulates ligand-induced ubiquitination and stability of the insulin-like
growth factor I receptor. Mol Cell Biol 23, 3363–3372.
126. Helmerhorst, E. and Yip, C. (1993) Insulin binding to rat liver membranes predicts a
homogeneous class of binding sites in different affinity states that may be related to a
regulator of insulin binding. Biochemistry 32, 2356–2362.
127. Ramalingam, T. S., Chakrabarti, A. and Edidin, M. (1997) Interaction of class I human
leukocyte antigen (HLA-I) molecules with insulin receptors and its effect on the insulin
signaling cascade. Mol Biol Cell 8, 2463–2474.
128. Goldfine, I. D., Maddux, B. A., Youngren, J. F., Frittitta, L., Trischitta, V. and Dohm,
G. L. (1998) Membrane glycoprotein PC-1 and insulin resistance. Mol Cell Biochem
182, 177–184.
129. Norgren, S., Zierath, J., Galuska, D., Wallberg-Henriksson, H. and Luthman, H. (1993)
Differences in the ratio of RNA encoding two isoforms of the insulin receptor between
REFERENCES 47
control and NIDDM patients. The RNA variant without Exon 11 predominates in both
groups. Diabetes 42, 675–681.
130. Anderson, C. M., Henry, R. R., Knudson, P. E., Olefsky, J. M. and Webster, N. J.
(1993) Relative expression of insulin receptor isoforms does not differ in lean, obese,
and noninsulin-dependent diabetes mellitus subjects. J Clin Endocrinol Metab 76, 1380–
1382.
131. Kellerer, M., Sesti, G., Seffer, E., Obermaier-Kusser, H., Pongratz, D. E., Mosthaf, L.
and Haring, H. U. (1993) Altered pattern of insulin receptor isotypes in skeletal mus-
cle membranes of type 2 (non-insulin-dependent) diabetic subjects. Diabetologia 36,

628–632.
132. Hansen, T., Bjorbaek, C., Vestergaard, H., Gronskov, K., Bak, J. F. and Pedersen, O.
(1993) Expression of insulin receptor spliced variants and their functional correlates in
muscle from patients with non-insulin-dependent diabetes mellitus. J Clin Endocrinol
Metab 77, 1500–1505.
133. Sell, S. M., Reese, D. and Ossowski, V. M. (1994) Insulin-inducible changes in insulin
receptor mRNA splice variants. JBiolChem269, 30 769–30 772.
134. Savkur, R. S., Philips, A. V. and Cooper, T. A. (2001) Aberrant regulation of insulin
receptor alternative splicing is associated with insulin resistance in myotonic dystrophy.
Nat Genet 29, 40–47.
135. White, M. F. (1998) The IRS-signaling system: a network of docking proteins that
mediate insulin and cytokine action. Rec Prog Horm Res 53, 119–138.
136. White, M. F., Maron, R. and Kahn, C. R. (1985) Insulin rapidly stimulates phosphory-
lation of a Mr-185,000 protein in intact cells. Nature 318, 183–186.
137. Sun, X. J., Rothenberg, P., Kahn, C. R., Backer, J. M., Araki, E., Wilden, P. A., Cahill,
D. A., Goldstein, B. J. and White, M. F. (1991) Structure of the insulin receptor sub-
strate IRS-1 defines a unique signal transduction protein. Nature 352, 73–77.
138. Sun, X. J., Wang, L. M., Zhang, Y., Yenush, L., Myers, M. G., Glasheen, E., Lane,
W. S., Pierce, J. H. and White, M. F. (1995) Role of IRS-2 in insulin and cytokine
signalling. Nature 377, 173–177.
139. Johnston, J. A., Wang, L. M., Hanson, E. P., Sun, X. J., White, M. F., Oakes, S. A.,
Pierce, J. H. and O’Shea, J. J. (1995) Interleukins 2, 4, 7, and 15 stimulate tyrosine
phosphorylation of insulin receptor substrates 1 and 2 in T cells. Potential role of JAK
kinases. JBiolChem270, 28 527–28 530.
140. Yenush, L. and White, M. F. (1997) The IRS-signalling system during insulin and
cytokine action. Bioessays 19, 491–500.
141. He, W., O’Neill, T. J. and Gustafson, T. A. (1995) Distinct modes of interaction of
SHC and insulin receptor substrate-1 with the insulin receptor NPEY region via non-
SH2 domains. JBiolChem270, 23 258–23 262.
142. van der Geer, P., Wiley, S. and Pawson, T. (1999) Re-engineering the target specificity

of the insulin receptor by modification of a PTB domain binding site. Oncogene 18,
3071–3075.
143. Yenush, L., Makati, K. J., Smith-Hall, J., Ishibashi, O., Myers, M. G. and White, M. F.
(1996) The pleckstrin homology domain is the principal link between the insulin recep-
tor and IRS-1. JBiolChem271, 24 300–24 306.
144. Jacobs, A. R., LeRoith, D. and Taylor, S. I. (2001) Insulin receptor substrate-1 pleck-
strin homology and phopshotyrosine-binding domains are both involved in plasma
membrane targeting. JBiolChem276, 40 795–40 802.
145. Vainshtein, I., Kovacina, K. S. and Roth, R. A. (2001) The insulin receptor substrate
(IRS)-1 pleckstrin homology domain functions in downstream signaling. JBiolChem
276, 8073–8078.
48 THE INSULIN RECEPTOR AND DOWNSTREAM SIGNALLING
146. Eck, M. J., Dhe-Paganon, S., Trub, T., Nolte, R. T. and Shoelson, S. E. (1996) Struc-
ture of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin
receptor. Cell 85, 695–705.
147. Dhe-Paganon, S., Ottinger, E. A., Nolte, R. T., Eck, M. J. and Shoelson, S. E. (1999)
Crystal structure of the pleckstrin homology–phosphotyrosine binding (PH-PTB) tar-
geting region of insulin receptor substrate 1. Proc Natl Acad Sci USA 96, 8378–8383.
148. Razzini, G., Ingrosso, A., Brancaccio, A., Sciacchitano, S., Esposito, D. L. and Falasca,
M. (2000) Different subcellular localization and phosphoinositides binding of insulin
receptor substrate protein pleckstrin homology domains. Mol Endocrinol 14, 823–836.
149. Burks, D. J., Wang, J., Towery, H., Ishibashi, O., Riedel, H. and White, M. F. (1998)
IRS pleckstrin homology domains bind to acidic motifs in proteins. JBiolChem273,
31 061–31 067.
150. Farhang-Fallah, J., Randhawa, V. K., Nimnual, A., Klip, A., Bar-Sagi, D. and Rozakis-
Adcock, M. (2002) The pleckstrin homology (PH) domain-interacting protein couples
the insulin receptor substrate 1 PH domain to insulin signaling pathways leading to
mitogenesis and GLUT4 translocation. MolCellBiol22, 7325–7336.
151. Inoue, G., Cheatham, B., Emkey, R. and Kahn, C. R. (1998) Dynamics of insulin sig-
naling in 3T3-L1 adipocytes. Differential compartmentation and trafficking of insulin

receptor substrate (IRS)-1 and IRS-2. JBiolChem273, 11 548–11 555.
152. Clark, S. F., Molero, J. C. and James, D. E. (2000) Release of insulin receptor sub-
strate proteins from an intracellular complex coincides with the development of insulin
resistance. JBiolChem275, 3819–3826.
153. Araki, E., Lipes, M. A., Patti, M. E., Bruning, J. C., Haag, B., Johnson, R. S. and Kahn,
C. R. (1994) Alternative pathway of insulin signalling in mice with targeted disruption
of the IRS-1 gene. Nature 372, 186–190.
154. Tamemoto, H., Kadowaki, T., Tobe, K., Yagi, T., Sakura, H., Hayakawa, T., Terauchi,
Y., Ueki, K., Kaburagi, Y., Satoh, S., Hisahiko, S., Yoshioka, S., Horikoshi, H., Furuta,
Y., Ikawa, Y., Kasuga, M., Yazaki, Y. and Aizawa, S. (1994) Insulin resistance and
growth retardation in mice lacking insulin receptor substrate-1. Nature 372, 182–186.
155. Bruning, J. C., Winnay, J., Bonner-Weir, S., Taylor, S. I., Accili, D. and Kahn, C. R.
(1997) Development of a novel polygenic model of NIDDM in mice heterozygous for
IR and IRS-1 null alleles. Cell 88, 561–572.
156. Withers, D. J., Gutierrez, J. S., Towery, H., Burks, D. J., Ren, J. M., Previs, S., Zhang,
Y., Bernal, D., Pons, S., Shulman, G. I., Bonner-Weirt, S. and White, M. F. (1998) Dis-
ruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900–904.
157. Kido, Y., Burks, D. J., Withers, D., Bruning, J. C., Kahn, C. R., White, M. F. and
Accili, D. (2000) Tissue-specific insulin resistance in mice with mutations in the insulin
receptor, IRS-1 and IRS-2. J Clin Invest 105, 199–205.
158. Burks, D. J., Font de Mora, J., Schubert, M., Withers, D. J., Myers, M. J., Tow-
ery, H. H., Altamuro, S. L., Flint, C. L. and White, M. F. (2000) IRS-2 pathways inte-
grate female reproduction and energy homeostasis. Nature 407, 377–382.
159. Br
¨
uning, J. C., Winnay, J., Cheatham, B. and Kahn, C. R. (1997) Differential signaling
by insulin receptor substrate 1 (IRS-1) and IRS-2 in IRS-1-deficient cells. Mol Cell Biol
17, 1513–1521.
160. Lavan, B. E., Lane, W. S. and Lienhard, G. E. (1997) The 60-kDa phosphotyrosine
protein in insulin-treated adipocytes is a new member of the insulin receptor substrate

family. JBiolChem272, 11 439–11 443.
161. Bj
¨
ornholm, M., He, A. R., Attersand, A., Lake, S., Liu, S. C. H., Lienhard, G. E.,
Taylor, S., Arner, P. and Zierath, J. R. (2002) Absence of functional insulin receptor
substrate-3 (IRS-3 ) gene in humans. Diabetologia 45, 1697–1702.
REFERENCES 49
162. Liu, S. C., Wang, Q., Lienhard, G. E. and Keller, S. R. (1999) Insulin receptor
substrate 3 is not essential for growth or glucose homeostasis. JBiolChem274,
18 093–18 099.
163. Laustsen, P. G., Michael, M. D., E. C. B., Cohen, S. E., Ueki, K., Kulkarni, R. N.,
Keller, S. R., Lienhard, G. E. and Kahn, C. R. (2002) Lipoatrophic diabetes in
Irs1(−/−)/Irs3(−/−) double knockout mice. Genes Dev 16, 3213–3222.
164. Lavan, B. E., Fantin, V. R., Chang, E. T., Lane, W. S., Keller, S. R. and Lien-
hard, G. E. (1997) A novel 160-kDa phosphotyrosine protein in insulin-treated embry-
onic kidney cells is a new member of the insulin receptor substrate family. JBiolChem
272, 21 403–21 407.
165. Fantin, V. R., Wang, Q., Lienhard, G. E. and Keller, S. R. (2000) Mice lacking insulin
receptor substrate 4 exhibit mild defects in growth, reproduction and glucose
homeostasis. Am J Physiol Endocrinol Metab 278, E127–E133.
166. Zick, Y. (2001) Insulin resistance: a phosphorylation based uncoupling of insulin
signaling. Trends Biochem Sci 11, 437–441.
167. Le Marchand-Brustel, Y., Gual, P., Gr
´
emeaux, T., Gonzalez, T., Barres, R. and
Tanti, J F. (2003) Fatty acid-induced insulin resistance: role of insulin receptor
substrate 1 serine phosphorylation in the retroregulation of insulin signalling. Biochem
Soc Trans 31, 1152–1156.
168. Schmitz-Peiffer, C. and Whitehead, J. P. (2003) IRS-1 regulation in health and disease.
IUBMB Life 55, 367–374.

169. Johnston, A. M., Pirola, L. and Van Obberghen, E. (2003) Molecular mechanisms of
insulin receptor substrate protein-mediated modulation of insulin signalling. FEBS Lett
546, 32–36.
170. Greene, M. W. and Garofalo, R. S. (2002) Positive and negative regulatory roles of
insulin receptor substrate 1 and 2 (IRS-1 and IRS-2) serine/threonine phosphorylation.
Biochemistry 41, 7082–7091.
171. Paz, K., Liu, Y. F., DShorer, H., Hemi, R., LeRoith, D., Quan, M., Kanety, H.,
Seger, R. and Zick, Y. (1999) Phosphorylation of insulin receptor substrate-1 (IRS-1) by
protein kinase B positively regulates IRS-1 function. JBiolChem274, 28 816–28 822.
172. Jakobsen, S. N., Hardie, D. G., Morrice, N. and Tornqvist, H. (2001) 5

-AMP-activated
protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response
to 5-aminoimidazole-4-carboxamide riboside. JBiolChem276, 46 912–46 916.
173. Giraud, J., Leshan, R., Lee, Y. H., and White, M. F. (2004) Nutrient-dependent and
insulin-stimulated phosphorylation of insulin receptor substrate-1 on serine 302
correlates with increased insulin signaling. JBiolChem279, 3447–3454.
174. Ogihara, T., Isobe, T., Ichimura, T., Taoka, M., Funaki, M., Sakoda, H., Onishi, Y.,
Inukai, K., Anai, M., Fukushima, Y., Kikuchi, M., Yazaki, Y., Oka, Y. and Asano, T.
(1997) 14–3–3 protein binds to insulin receptor substrate-1, one of the binding sites
of which is in the phosphotyrosine binding domain. JBiolChem272, 25 267–25 274.
175. Kosaki, A., Yamada, K., Suga, J., Otaka, A. and Kuzuya, H. (1998) 14–3–3beta
protein associates with insulin receptor substrate 1 and decreases insulin-stimulated
phosphatidylinositol 3

-kinase activity in 3T3L1 adipocytes. JBiolChem273, 940–944.
176. Xiang, X., Yuan, M., Song, Y., Ruderman, N., Wen, R. and Luo, Z. (2002) 14–3–3
facilitates insulin-stimulated intracellular trafficking of insulin receptor substrate 1. Mol
Endocrinol 16, 552–562.
177. Rui, L., Yuan, M., Frantz, D., Shoelson, S. and White, M. F. (2002) SOCS-1 and

SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS-1 and IRS-2.
JBiolChem277, 42 394–42 398.
178. White, M. F. (1997) The insulin signalling system and the IRS proteins. Diabetologia
40 (Suppl 2), S2–17.
50 THE INSULIN RECEPTOR AND DOWNSTREAM SIGNALLING
179. Mothe, I. and Van Obberghen, E. (1996) Phosphorylation of insulin receptor substrate-1
on multiple serine residues, 612, 632, 662, and 731, modulates insulin action. JBiol
Chem 271, 11 222–11 227.
180. De Fea, K. and Roth, R. A. (1997) Protein kinase C modulation of insulin
receptor substrate-1 tyrosine phosphorylation requires serine 612. Biochemistry 36,
12 939–12 947.
181. De Fea, K. and Roth, R. A. (1997) Modulation of insulin receptor substrate-1 tyrosine
phosphorylation and function by mitogen-activated protein kinase. JBiolChem272,
31 400–31 406.
182. Paz, K., Hemi, R., LeRoith, D., Karasik, A., Elhanany, E., Kanety, H. and Zick, Y.
(1997) A molecular basis for insulin resistance: elevated serine/threonine
phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region
of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine
phosphorylation. JBiolChem272, 29 911–29 918.
183. Aguirre, V., Werner, E. D., Giraud, J., Lee, Y. H., Shoelson, S. E. and White, M. F.
(2002) Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions
with the insulin receptor and inhibits insulin action. JBiolChem277, 1531–1537.
184. Haruta, T., Uno, T., Kawahara, J., Takano, A., Egawa, K., Sharma, P. M., Olef-
sky, J. M. and Kobayashi, M. (2000) A rapamycin-sensitive pathway down-regulates
insulin signaling via phosphorylation and proteasomal degradation of insulin receptor
substrate-1. Mol Endocrinol 14, 783–794.
185. Takano, A., Usui, I., Haruta, T., Kawahara, J., Uno, T., Iwata, M. and Kobayashi, M.
(2001) Mammalian target of rapamycin pathway regulates insulin signaling via
subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals
and metabolic signals of insulin. Mol Cell Biol 21, 5050–5062.

186. Greene, M. W., Sakaue, H., Wang, L., Alessi, D. R. and Roth, R. A. (2003)
Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by
serine 312 phosphorylation. JBiolChem278, 8199–8211.
187. Gual, P., Gremeaux, T., Gonzalez, T., Le Marchand-Brustel, Y. and Tanti, J. F. (2003)
MAP kinases and mTOR mediate insulin-induced phosphorylation of insulin receptor
substrate-1 on serine residues 307, 612 and 632. Diabetologia 46, 1532–1542.
188. Aguirre, V., Uchida, T., Yenush, L., Davis, R. and White, M. F. (2000) The c-Jun
NH(2)-terminal kinase promotes insulin resistance during association with insulin
receptor substrate-1 and phosphorylation of Ser(307). JBiolChem275, 9047–9054.
189. Rui, L., Aguirre, V., Kim, J., Shulman, G. I., Lee, A., Corbould, A., Dunaif, A. and
White, M. F. (2001) Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1
at inhibitory Ser307 via distinct pathways. J Clin Invest 107, 181–189.
190. Kim, J. K., Kim, Y. J., Fillmore, J. J., Chen, Y., Moore, I., Lee, J., Yuan, M.,
Li, Z. W., Karin, M., Perret, P., Shoelson, S. E. and Shulman, G. I. (2001) Prevention
of fat-induced insulin resistance by salicylate. J Clin Invest 108, 437–446.
191. Yu, C., Chen, Y., Zhong, H., Wang, Y., Bergeron, R., Kim, J. K., Cline, G. W.,
Cushman, S. W., Cooney, G. J., Atcheson, B., White, M. F., Kraegen, E. W. and
Shulman, G. I. (2002) Mechanism by which fatty acids inhibit insulin activation of
IRS-1 associated phosphatidylinositol 3-kinase activity in muscle. JBiolChem277,
50 230–50 236.
192. Lee, Y. H., Giraud, J., Davis, R. J. and White, M. F. (2003) c-Jun N-terminal kinase
(JNK) mediates feedback inhibition of the insulin signaling cascade. JBiolChem278,
2896–2902.
193. Kanety, H., Feinstein, R., Papa, M. Z., Hemi, R. and Karasik, A. (1995) Tumor
necrosis factor alpha-induced phosphorylation of insulin receptor substrate-1 (IRS-1).
REFERENCES 51
Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of
IRS-1. JBiolChem270, 23 780–23 784.
194. Hotamisligil, G. S., Peraldi, P., Budavari, A., Ellis, R., White, M. F. and Spiegel-
man, B. M. (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity

in TNF-alpha- and obesity-induced insulin resistance. Science 271, 665–668.
195. Shulman, G. I. (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106,
171–176.
196. Bouzakri, K., Roques, M., Gual, P., Espinosa, S., Guebre-Egziabher, F., Riou, J. P.,
Laville, M., Le Marchand-Brustel, Y., Tanti, J. F. and Vidal, H. (2003) Reduced
activation of phosphatidylinositol 3-kinase and increased serine 636 phosphorylation
of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients
with type 2 diabetes. Diabetes 52, 1319–1325.
197. Cai, D., Dhe-Paganon, S., Melendez, P. A., Lee, J. and Shoelson, S. E. (2003) Two
new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. JBiolChem278,
25 323–25 330.
198. Liu, Y. and Rohrschneider, L. R. (2002) The gift of Gab. FEBS Lett 515, 1–7.
199. Holdago-Madruga, M., Emlet, D. R., Moscatello, D. K., Godwin, A. K. and Wong, A.
J. (1996) A Grb2-associated docking protein in EGF- and insulin-receptor signalling.
Nature 379, 560–563.
200. Rocchi, S., Tartare-Deckert, S., Murdaca, J., Holdago-Madruga, M., Wong, A. J. and
Van Obberghen, E. (1998) Determination of Gab1 (Grb2-associated binder-1)
interaction with insulin receptor-signaling molecules. Mol Endocrinol 12, 914–923.
201. Lehr, S., Kotzka, J., Herkner, A., Sikmann, A., Meyer, H. E., Krone, W. and Muller-
Wieland, D. (2000) Identification of major tyrosine phosphorylation sites in the human
insulin receptor substrate Gab-1 by insulin receptor kinase in vitro. Biochemistry 39,
10 898–10 907.
202. Winnay, J. N., Br
¨
uning, J. C., Burks, D. J. and Kahn, C. R. (2000) Gab-1-mediated
IGF-1 signaling in IRS-1-deficient 3T3-fibroblasts. JBiolChem275, 10 545–10 550.
203. Harada, S., Esch, G. L., Holdago-Madruga, M. and Wong, A. J. (2001) Grb-2-
associated binder-1 is involved in insulin-induced egr-1 gene expression through its
phosphatidylinositol 3


-kinase binding site. DNA Cell Biol 20, 223–229.
204. Pelicci, G., Lanfrancone, L., Grignani, F., McGlade, J., Fomi, G., Nicoletti, I.,
Pawson, T. and Pelicci, P. G. (1992) A novel transforming protein (SHC) with an SH2
domain is implicated in mitogenic signal transduction. Cell 70, 93–104.
205. Pronk, G. J., McGlade, J., Pelicci, G., Pawson, T. and Bos, J. L. (1993) Insulin-induced
phosphorylation of the 46- and 52-kDa Shc proteins. JBiolChem268, 5748–5753.
206. Kovacina, K. S. and Roth, R. A. (1993) Identification of SHC as a substrate of
the insulin receptor kinase distinct from the GAP-associated 62 kDa tyrosine
phosphoprotein. Biochem Biophys Res Commun 192, 1303–1311.
207. Sasaoka, T. and Kobayashi, M. (2000) The functional significance of Shc in insulin
signalling as a substrate of the insulin receptor. Endocr J 47, 373–381.
208. Luzi, L., Confalonieri, S., Di Fiore, P. P. and Pelicci, P. G. (2000) Evolution of Shc
functions from nematode to human. Curr Opin Genet Dev 10, 668–674.
209. Ravichandran, K. S. (2001) Signaling via Shc family adapter proteins. Oncogene 20,
6322–6330.
210. van der Geer, P., Wiley, S., Gish, G. D. and Pawson, T. (1996) The Shc adaptor protein
is highly phosphorylated at conserved, twin tyrosine residues (Y239/240) that mediate
protein–protein interactions. Curr Biol 6, 1435–1444.
211. Ishihara, H., Sasaoka, T., Wada, T., Ishiki, M., Haruta, T., Usui, I., Iwata, M.,
Takano, A., Uno, T., Ueno, E. and Kobayashi, M. (1998) Relative involvement of Shc
tyrosine residues 239/240 and tyrosine 317 on insulin-induced mitogenic signaling
52 THE INSULIN RECEPTOR AND DOWNSTREAM SIGNALLING
in rat1 fibroblasts expressing insulin receptors. Biochem Biophy Res Commun 252,
139–144.
212. Migliaccio, E., Mele, S., Salcini, A. E., Pelicci, G., Lai, K M. V., Superti-Furga, G.,
Pawson, T., DiFiore, P. P., Lanfrancone, L. and Pelicci, P. G. (1997) Opposite effects
of the p52shc/p46shc and p66shc splicing iosforms in the EGF receptor–MAP
kinase–fos signalling pathway. EMBO J 16, 706–716.
213. Okada, S., Kao, A. W., Ceresa, B. P., Blaikie, P., Margolis, B. and Pessin, J. E. (1997)
The 66-kDa Shc isoform is a negative regulator of the epidermal growth factor-

stimulated mitogen-activated protein kinase pathway. JBiolChem272, 28 042–28 049.
214. Kao, A. W., Waters, S. B., Okada, S. and Pessin, J. E. (1997) Insulin stimulates the
phosphorylation of the 66- and 52-kilodalton Shc isoforms by distinct pathways.
Endocrinology 138, 2472–2480.
215. Skolnik, E., Lee, C. H., Batzer, A., Vicentini, L. M., Zhou, M., Daly, R., Myers, M. J.,
Backer, J. M., Ullrich, A. and White, M. F. (1993) The SH2/SH3 domain-containing
protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for
insulin control of ras signalling. EMBO J 12, 1929–1936.
216. Myers, M. G., Wang, L. M., Sun, X. J., Zhang, Y., Yenush, L., Schlessinger, J.,
Pierce, J. H. and White, M. F. (1994) Role of IRS-1-GRB-2 complexes in insulin
signaling. Mol Cell Biol 14, 3577–3587.
217. Sasaoka, T., Draznin, B., Leitner, J. W., Langlois, W. J. and Olefsky, J. M. (1994) Shc
is the predominant signaling molecule coupling insulin receptors to activation of guanine
nucleotide releasing factor and p21ras-GTP formation. JBiolChem269, 10 734–10 738.
218. Valentinis, B., Romano, G., Peruzzi, F., Morrione, A., Prisco, M., Soddu, S., Cristo-
fanelli, B., Sacchi, A. and Baserga, R. (1999) Growth and differentiation signals by the
insulin-like growth factor 1 receptor in hemopoietic cells are mediated through different
pathways. JBiolChem274, 12 423–12 430.
219. Sasaoka, T., Ishiki, M., Wada, T., Hori, H., Hirai, H., Haruta, T., Ishihara, H. and
Kobayashi, M. (2001) Tyrosine phosphorylation-dependent and -independent role
of Shc in the regulation of IGF-1-induced mitogenesis and glycogen synthesis.
Endocrinology 142, 5226–5235.
220. Poy, N. M., Ruch, R. J., Fernstrom, M. A., Okabayashi, Y. and Najjar, S. M. (2002)
Shc and CEACAM1 interact to regulate the mitogenic action of insulin. JBiolChem
277, 1076–1084.
221. Emanuelli, B., Peraldi, P., Filloux, C., Sawka-Verhelle, D., Hilton, D. and Van
Obberghen, E. (2000) SOCS-3 is an insulin-induced negative regulator of insulin
signaling. JBiolChem275, 15 985–15 991.
222. Ahmed, Z. and Pillay, T. S. (2001) Functional effects of APS and SH2-B on insulin
receptor signalling. Biochem Soc Trans 29, 529–534.

223. Kotani, K., Wilden, P. and Pillay, T. S. (1998) SH2-Bα is an insulin-receptor adapter
protein and substrate that interacts with the activation loop of the insulin-receptor kinase.
Biochem J 335, 103–109.
224. Ahmed, A., Smith, B. J., Kotani, K., Wilden, P. and Pillay, T. S. (1999) APS, an
adapter protein with a PH and SH2 domain, is a substrate for the insulin receptor
kinase. Biochem J 341, 665–668.
225. Moodie, S. A., Alleman-Sposeto, J. and Gustafson, T. A. (1999) Identification of the
APS protein as a novel insulin receptor substrate. JBiolChem274, 11 186–11 193.
226. Ahmed, Z. and Pillay, T. S. (2003) Adapter protein with a pleckstrin homology (PH)
and an Src homology 2 (SH2) domain (APS) and SH2-B enhance insulin-receptor
autophosphorylation, extracellular-signal-regulated kinase and phosphoinositide 3-
kinase-dependent signalling. Biochem J 371, 405–412.
REFERENCES 53
227. Riedel, H., Yousaf, N., Zhao, Y., Dai, H., Deng, Y. and Wang, J. (2000) PSM, a
mediator of PDGF-BB-, IGF-I- and insulin-stimulated mitogenesis. Oncogene 19,
39–50.
228. Yousaf, N., Deng, Y., Kang, Y. and Riedel, H. (2001) Four PSM/SH2-B alternative
splice variants and their differential roles in mitogenesis. JBiolChem276,
40 940–40 948.
229. Liu, J., Kimura, A., Baumann, C. A. and Saltiel, A. R. (2002) APS facilitates c-Cbl
tyrosine phosphorylation and GLUT4 translocation in response to insulin in 3T3-L1
adipocytes. Mol Cell Biol 22, 3599–3609.
230. Minami, A., Iseki, M., Kishi, K., Wang, M., Ogura, M., Furukawa, N., Hayashi, S.,
Yamada, M., Obata, T., Takeshita, Y., Nakaya, Y., Bando, Y., Izumi, K., Moodie, S.
A., Kajiura, F., Matsumoto, M., Takatsu, K., Takaki, S. and Ebina, Y. (2003) Increased
insulin sensitivity and hypoinsulinaemia in APS knockout mice. Diabetes 52,
2657–2665.
231. Ohtsuka, S., Takaki, S., Iseki, M., Miyoshi, K., Nakagata, N., Kataoka, Y., Yoshida, N.,
Takatsu, K. and Yoshimura, A. (2002) SH2-B is required for both male and female
reproduction. Mol Cell Biol 22, 3066–3077.

232. Daly, R. J. (1998) The Grb7 family of signalling proteins. Cell Signal 10, 613–618.
233. Han, D. C., Shen, T. L. and Guan, J. L. (2001) The Grb7 family proteins: structure,
interactions with other signaling molecules and potential cellular functions. Oncogene
20, 6315–6321.
234. Morrione, A. (2003) Grb10 adapter protein as a regulator of insulin-like growth factor
signaling. J Cell Physiol 197, 307–311.
235. Langlais, P., Dong, L. Q., Hu, D. and Liu, F. (2000) Identification of Grb10 as a direct
substrate for members of the Src tyrosine kinase family. Oncogene 2000, 2895–2903.
236. O’Neill, T. J., Rose, D. W., Pillay, T. S., Hotta, K., Olefsky, J. M. and Gustafson, T.
A. (1996) Interaction of a Grb-IR splice variant (a human Grb10 homolog) with the
insulin and insulin-like growth factor-I receptors. Evidence for a role in mitogenic
signaling. JBiolChem271, 22 506–22 513.
237. Laviola, L., Giorgino, F., Chow, J. C., Baquero, J. A., Hansen, H., Ooi, J., Zhu, J.,
Riedel, H. and Smith, R. J. (1997) The adapter protein Grb10 associates preferentially
with the insulin receptor as compared with the IGF-I receptor in mouse fibroblasts. J
Clin Invest 99, 830–837.
238. He, W., Rose, D. W., Olefsky, J. M. and Gustafson, T. A. (1998) Grb10 interacts
differentially with the insulin receptor, insulin-like growth factor I receptor, and
epidermal growth factor receptor via the Grb10 Src homology 2 (SH2) domain and
a second novel domain located between the pleckstrin homology and SH2 domains. J
Biol Chem 273, 6860–6867.
239. Hemming, R., Agatep, R., Badiani, K., Wyant, K., Arthur, G., Gietz, R. D. and Triggs-
Raine, B. (2001) Human growth factor receptor bound 14 binds the activated insulin
receptor and alters the insulin-stimulated tyrosine phosphorylation levels of multiple
proteins. Biochem Cell Biol 79, 21–32.
240. Bereziat, V., Kasus-Jacobi, A., Perdereau, D., Cariou, B., Girard, J. and Burnol, A. F.
(2002) Inhibition of insulin receptor catalytic activity by the molecular adapter Grb14.
JBiolChem277, 4845–4852.
241. Wick, K. R., Werner, E. D., Langlais, P., Ramos, F. J., Dong, L. O., Shoelson, S. E.
and Liu, F. (2003) Grb10 inhibits insulin-stimulated insulin receptor substrate (IRS)-

phosphatidylinositol 3-kinase/Akt signaling pathway by disrupting the association of
IRS-1/IRS-2 with the insulin receptor. JBiolChem278, 8460–8467.
242. Wang, J., Dai, H., Yousaf, N., Moussaif, M., Deng, Y., Boufelliga, A., Swamy, O. R.,
Leone, M. E. and Riedel, H. (1999) Grb10, a positive, stimulatory signaling adapter in
54 THE INSULIN RECEPTOR AND DOWNSTREAM SIGNALLING
platelet-derived growth factor BB-, insulin-like growth factor I- and insulin-mediated
mitogenesis. MolCellBiol19, 6217–6228.
243. Deng, Y., Bhattacharya, S., Swamy, O. R., Tandon, R., Wang, Y., Janda, R. and
Riedel, H. (2003) Growth factor receptor-binding protein 10 (Grb10) as a partner
of phosphatidylinositol 3-kinase in metabolic insulin action. JBiolChem278,
39 311–39 322.
244. Nantel, A., Mohammad-Ali, K., Sherk, J., Bosner, B. I. and Thomas, D. Y. (1998)
Interaction of the Grb10 adapter protein with the Raf1 and MEK1 kinases. JBiol
Chem 273, 10 475–10 484.
245. Jahn, T., Seipel, P., Urschel, S., Peschel, C. and Duyster, J. (2002) Role for the adaptor
protein Grb10 in the activation of Akt. Mol Cell Biol 22, 979–991.
246. Giovannone, B., Lee, E., Laviola, L., Giorgino, F., Cleveland, K. A. and Smith, R. J.
(2003) Two novel proteins that are linked to insulin-like growth factor (IGF-I) receptors
by the Grb10 adaptor and modulate IGF-I signalling. JBiolChem278, 31 564–31 573.
247. Blagitko, N., Mergenthaler, S., Schulz, U., Wollmann, H. A., Craigen, W., Egger-
mann, T., Ropers, H. H. and Kalscheuer, V. M. (2000) Human GRB10 is imprinted and
expressed from the paternal and maternal allele in a highly tissue- and isoform-specific
fashion. Hum Mol Genet 9, 1587–1595.
248. Miyoshi, N., Kuroiwa, Y., Kohda, T., Shitara, H., Yonekawa, H., Kawabe, T.,
Hasegawa, H., Barton, S. C., Surani, M. A., Kaneko-Ishino, T. and Ishino, F. (1998)
Identification of the Meg1/Grb10 imprinted gene on mouse proximal chromosome
11, a candidate for the Silver–Russell syndrome gene. Proc Natl Acad Sci USA 95,
1102–1107.
249. Charalambous, M., Smith, F. M., Bennett, W. R., Crew, T. E., Mackenzie, F. and
Ward, A. (2003) Disruption of the imprinted Grb10 gene leads to disproportionate

overgrowth by an Igf2-independent mechanism. Proc Natl Acad Sci USA 100,
8292–8297.
250. Cooney, G. J., Lyons, R. J., Crew, A. J., Jensen, T. E., Molero, J. C., Mitchell, C. J.,
Biden, T. J., Ormandy, C. J., James, D. E. and Daly, R. J. (2004) Improved glucose
homeostasis and enhanced insulin signalling in Grb14-deficient mice. EMBO J 23,
582–593.
251. Alessi, D. R. and Downes, C. P. (1998) The role of PI 3-kinase in insulin action.
Biochim Biophys Acta 1436, 151–164.
252. Shepherd, P. R., Withers, D. J. and Siddle, K. (1998) Phosphoinositide 3-kinase: the
key switch mechanism in insulin signalling. Biochem J 333, 471–490.
253. Cantrell, D. A. (2001) Phosphoinositide 3-kinase signalling pathways. J Cell Sci 114,
1439–1445.
254. Katso, R., Okkenhaug, K., Ahmadi, K., White, S., Timms, J. and Waterfield, M. D.
(2001) Cellular function of phosphoinositide 3-kinases: implications for development,
immunity, homeostasis and cancer. Annu Rev Cell Dev Biol 17, 615–675.
255. Cantley, L. C. (2002) The phosphoinositide 3-kinase pathway. Science 296,
1655–1657.
256. Dhand, R., Hiles, I., Panayotou, G., Roche, S., Fry, M. J., Gout, I., Totty, N. F.,
Truong, O., Vicendo, P. and Yonezawa, K. (1994) PI 3-kinase is a dual specificity
enzyme: autoregulation by an intrinsic protein-serine kinase activity. EMBO J 13,
522–533.
257. Tanti, J. F., Gremeaux, T., Van Obberghen, E. and Le Marchand-Brustel, Y. (1994)
Insulin receptor substrate 1 is phosphorylated by the serine kinase activity of
phosphatidylinositol 3-kinase. Biochem J 304, 17–21.
REFERENCES 55
258. Lam, K., Carpenter, C. L., Ruderman, N. B., Friel, J. C. and Kelly, K. L. (1994) The
phosphatidylinositol 3-kinase serine kinase phosphorylates IRS-1. Stimulation by insulin
and inhibition by wortmannin. JBiolChem269, 20 648–20 652.
259. Beeton, C. A., Chance, E. M., Foukas, L. C. and Shepherd, P. R. (2000) Comparison
of the kinetic properties of the lipid- and protein-kinase activities of the p110alpha

and p110beta catalytic subunits of class-Ia phosphoinositide 3-kinases. Biochem J 350,
353–359.
260. Lefai, E., Roques, M., Vega, N., Laville, M. and Vidal, H. (2001) Expression of the
splice variants of the p85alpha regulatory subunit of phosphoinositide 3-kinase in
muscle and adipose tissue of healthy subjects and type 2 diabetic patients. Biochem
J 360, 117–125.
261. Terauchi, Y., Tsuji, Y., Satoh, S., Minoura, H., Murakami, K., Okuno, A., Inukai, K.,
Asano, T., Kaburagi, Y., Ueki, K., Nakajima, H., Hanafusa, T., Matsuzawa, Y.,
Sekihara, H., Yin, Y., Barrett, J. C., Oda, H., Ishikawa, H., Akanuma, Y., Komuro, I.,
Suzuki, M., Yamamura, K., Kodama, T., suzuki, H., Koyasu, S., Aizawa, S., Tobe, K.,
Fukui, Y., Yazaki, Y. and Kadowaki, T. (1999) Increased insulin sensitivity and
hypoglycaemia in mice lacking the p85alpha subunit of phosphoinositide 3-kinase. Nat
Genet 21, 230–235.
262. Ueki, K., Yballe, C. M., Brachmann, S. M., Vincent, D., Watt, J. M., Kahn, C. R. and
Cantley, L. C. (2001) Increased insulin sensitivity in mice lacking p85beta subunit of
phosphoinositide 3-kinase. Proc Natl Acad Sci USA 99, 419–424.
263. Mauvais-Jarvis, F., Ueki, K., Fruman, D. A., Hirshman, M. F., Sakamoto, K., Good-
year, L. J., Iannacone, M., Accili, D., Cantley, L. C. and Kahn, C. R. (2002) Reduced
expression of the murine p85alpha subunit of phosphoinositide 3-kinase improves
insulin signaling and ameliorates diabetes. J Clin Invest 109, 141–149.
264. Chen, D., Mauvais-Jarvis, F., Bluher, M., Fisher, S. J., Jozsi, A., Goodyear, L. J.,
Ueki, K. and Kahn, C. R. (2004) p50alpha/p55alpha phosphoinositide 3-kinase
knockout mice exhibit enhanced insulin sensitivity. Mol Cell Biol 24, 320–329.
265. Ueki, K., Fruman, D. A., Yballe, C. M., Fassaur, M., Klein, J., Asano, T., Cant-
ley, L. C. and Kahn, C. R. (2003) Positive and negative roles of p85alpha and p85beta
regulatory subunits of phosphoinositide 3-kinase in insulin signaling. JBiolChem278,
48 453–48 466.
266. Oatey, P. B., Venkateswarlu, K., Williams, A. G., Fletcher, L. M., Foulstone, E. J.,
Cullen, P. J. and Tavare, J. M. (1999) Confocal imaging of the subcellular distribution
of phosphatidylinositol 3,4,5-trisphosphate in insulin- and PDGF-stimulated 3T3-L1

adipocytes. Biochem J 344, 511–518.
267. Heller-Harrison, R. A., Morin, M., Guilherme, A. and Czech, M. P. (1996) Insulin-
mediated targeting of phosphatidylinositol 3-kinase to GLUT4-containing vesicles. J
Biol Chem 271, 10 200–10 204.
268. Leslie, N. R. and Downes, C. P. (2002) PTEN: the down side of PI 3-kinase signalling.
Cell Signal 14, 285–295.
269. Ono, H., Katagiri, H., Funaki, M., Anai, M., Inukai, K., Fukushima, Y., Sakoda, H.,
Ogihara, T., Onishi, Y., Fujishiro, M., Kikuchi, M., Oka, Y. and Asano, T. (2001)
Regulation of phosphoinositide metabolism, Akt phosphorylation, and glucose transport
by PTEN (phosphatase and tensin homolog deleted on chromosome 10) in 3T3-L1
adipocytes. Mol Endocrinol 15, 1411–1422.
270. Wada, T., Sasaoka, T., Funaki, M., Hori, H., Murakami, S., Ishiki, M., Haruta, T.,
Asano, T., Ogawa, W., Ishihara, H. and Kobayashi, M. (2001) Overexpression of SH2-
containing inositol phosphatase 2 results in negative regulation of insulin-induced
metabolic actions in 3T3-L1 adipocytes via its 5

-phosphatase catalytic activity. Mol
Cell Biol 21, 1633–1646.
56 THE INSULIN RECEPTOR AND DOWNSTREAM SIGNALLING
271. Clement, S., Krause, U., Desmedt, F., Tanti, J. F., Behrends, J., Pesesse, X., Sasaki, T.,
Penninger, J., Doherty, M., Malaisse, W., Dumont, J. E., Le Marchand-Brustel, Y.,
Erneux, C., Hue, L. and Schurmans, S. (2001) The lipid phosphatase SHIP2 controls
insulin sensitivity. Nature 409, 92–97.
272. Kimber, W. A., Deak, M., Prescott, A. R. and Alessi, D. R. (2003) Interaction of the
protein tyrosine phosphatase PTPL1 with the PtdIns(3,4)P2-binding adaptor protein
TAPP1. Biochem J 376, 525–535.
273. Burgering, B. M. and Coffer, P. J. (1995) Protein kinase B (c-Akt) in
phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599–602.
274. Vanhaesebroeck, B. and Alessi, D. R. (2000) The PI3K–PDK1 connection: more than
justaroadtoPKB.Biochem J 346, 561–576.

275. Brazil, D. P. and Hemmings, B. A. (2001) Ten years of protein kinase B signalling: a
hard Akt to follow. Trends Biochem Sci 26, 657–664.
276. Lawlor, M. A. and Alessi, D. R. (2001) PKB/Akt: a key mediator of cell proliferation,
survival and insulin responses? J Cell Sci 114, 2903–2910.
277. Vivanco, I. and Sawyers, C. L. (2002) The phosphatidylinositol 3-kinase-Akt pathway
in human cancer. Nat Rev Cancer 2, 489–501.
278. Whiteman, E. L., Cho, H. and Birnbaum, M. J. (2002) Role of Akt/protein kinase B in
metabolism. Trends Endocrinol Metab 13, 444–451.
279. Scheid, M. P. and Woodgett, J. R. (2003) Unravelling the activation mechanism of
protein kinase B/Akt. FEBS Lett 546, 108–112.
280. Alessi, D. R., James, S. R., Downes, C. P., Holmes, A. B., Gaffney, P. R., Reese, C.
B. and Cohen, P. (1997) Characterization of a 3-phosphoinositide-dependent protein
kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7, 261–269.
281. Meier, R. and Hemmings, B. A. (1999) Regulation of protein kinase B. J Recep Signal
Transduct Res 19, 121–128.
282. Frame, S. and Cohen, P. (2001) GSK3 takes centre stage more than 20 years after its
discovery. Biochem J 359, 1–16.
283. Kitamura, T., Kitamura, Y., Kuroda, S., Hino, Y., Ando, M., Kotani, K., Konishi, H.,
Matsuzaki, H., Kikkawa, U., Ogawa, W. and Kasuga, M. (1999) Insulin-induced
phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the
serine–threonine kinase Akt. MolCellBiol19, 6286–6296.
284. Pozuelo Rubio, M., Peggie, M., Wong, B. H., Morrice, N. and MacKintosh, C. (2003)
14–3–3s regulate fructose-2,6-bisphosphate levels by binding to PKB-phosphorylated
cardiac fructose-2,6-bisphosphate kinse/phosphatase. EMBO J 22, 3514–3523.
285. Carlsson, P. and Mahlapuu, M. (2002) Forkhead transcription factors: key players in
development and metabolism. Dev Biol 250, 1–23.
286. Burgering, B. M. and Kops, G. J. (2002) Cell cycle and death control: long live
forkheads. Trends Biochem. Sci. 27, 352–360.
287. O’Brien, R. M., Streeper, R. S., Ayala, J. E., Stadelmaier, B. T. and Hornbuckle, L. A.
(2001) Insulin-regulated gene expression. Biochem Soc Trans 29, 552–558.

288. Puigserver, P., Rhee, J., Donovan, J., Walkey, C. J., Yoon, J. C., Oriente, F., Kita-
mura, Y., Altomonte, J., Dong, H., Accili, D. and Spiegelman, B. M. (2003) Insulin-
regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature
423, 550–555.
289. Ducluzeau, P. H., Fletcher, L. M., Welsh, G. I. and Tavar
´
e, J. M. (2002) Functional
consequence of targeting protein kinase B/Akt to GLUT4 vesicles. J Cell Sci 115,
2857–2866.
290. Calera, M. R., Martinez, C., Liu, H., Jack, A. K., Birnbaum, M. J. and Pilch, P. F.
(1998) Insulin increases the association of Akt-2 with Glut4-containing vesicles. JBiol
Chem 273, 7201–7204.
REFERENCES 57
291. Kupriyanova, T. A. and Kandror, K. V. (1999) Akt-2 binds to Glut4-containing vesicles
and phosphorylates their component proteins in response to insulin. JBiolChem274,
1458–1564.
292. Cho, H., Mu, J., Kim, J. K., Thorvaldsen, J. L., Chu, Q., Crenshaw, E. B., Kaest-
ner, K. H., Bartolomel, M. S., Shulman, G. I. and Birnbaum, M. J. (2001) Insulin resis-
tance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2
(PKBbeta). Science 292, 1728–1731.
293. Garofalo, R. S., Orena, S. J., Rafidi, C., Torchia, A. J., Stock, J. L., Hildebrandt, A. L.,
Coskran, T., Black, S. C., Brees, D. J., Wicks, J. R., McNeish, J. D. and Cole-
man, K. G. (2003) Severe diabetes, age-dependent loss of adipose tissue, and mild
growth deficiency in mice lacking Akt2/PKBbeta. J Clin Invest 112, 197–208.
294. Cho, H., Thorvaldsen, J. L., Chu, Q., Feng, F. and Birnbaum, M. J. (2001) Akt1/PKB-
alpha is required for normal growth but dispensable for maintenance of glucose
homeostasis in mice. JBiolChem276, 38 349–38 352.
295. Bae, S. S., Han, C., Mu, J. and Birnbaum, M. J. (2003) Isoform-specific regulation of
insulin-dependent glucose uptake by Akt/PKB. JBiolChem278, 49 530–49 536.
296. Garofalo, R. S. (2002) Genetic analysis of insulin signaling in Drosophila. Trends

Endocrinol Metab 13, 156–162.
297. Nelson, D. W. and Padgett, R. W. (2003) Insulin worms its way into the spotlight.
Genes Dev 17, 813–818.
298. Faridi, J., Fawcett, J., Wang, L. and Roth, R. A. (2003) Akt promotes an increase in
mammalian cell size by stimulating protein synthesis as well as by inhibiting protein
degradation. Am J Physiol Endocrinol Metab 285, E964–E972.
299. Shah, O. J., Anthony, J. C., Kimball, S. R. and Jefferson, L. S. (2000) 4E-BP1 and
S6K1: translational integration sites for nutritional and hormonal information in muscle.
Am J Physiol Endocrinol Metab 279, E715–E729.
300. Thomas, G. (2002) The S6 kinase signaling pathway in the control of development and
growth. Biol Res 35, 305–313.
301. Kleijn, M., Scheper, G. C., Voorma, H. O. and Thomas, A. A. (1998) Regulation of
translation initiation factors by signal transduction. Eur J Biochem 253, 531–544.
302. Dufner, A. and Thomas, G. (1999) Ribosomal S6 kinase signaling and the control of
translation. Exp Cell Res 253, 100–109.
303. Gingras, A. C., Raught, B., Gygi, S. P. A. N., Miron, M., Burley, S. K., Polakiewicz,
R. D., Wyslouch-Cieszynska, A., Aebersold, R. and Sonnenberg, N. (2001) Hierarchi-
cal phosphorylation of the translation inhibitor 4E-BP1. Genes Dev 15, 2852–2864.
304. Yonezawa, K., Yoshino, K. I., Tokunaga, C. and Hara, K. (2004) Kinase activities
associated with mTOR. Curr Top Microbiol Immunol 279, 271–282.
305. Martin, K. A. and Blenis, J. (2002) Coordinate regulation of translation by the PI 3-
kinase and mTOR pathways. Adv Cancer Res 86, 1–39.
306. Inoki, K., Li, Y., Xu, T. and Guan, K. L. (2003) Rheb GTPase is a direct target of
TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17, 1829–1834.
307. Tee, A. R., Manning, R. D., Roux, P. P., Cantley, L. C. and Blenis, J. (2003) Tuberous
sclerosis gene products, tuberin and hamartin, control mTOR signaling by acting as a
GTPase-activating protein complex towards Rheb. Curr Biol 13, 1259–1268.
308. Zhang, Y., Gao, X., Saucedo, L. J., Ru, B., Edgar, B. A. and Pan, D. (2003) Rheb is
a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5,
578–581.

309. Garami, A., Zwartkruis, F. J. T., Nobukuni, T., Joaquin, M., Roccio, M., Stocker, H.,
Kozma, S. C., Hafen, E., Bos, J. L. and Thomas, G. (2003) Insulin activation of Rheb,
a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11,
1457–1466.
58 THE INSULIN RECEPTOR AND DOWNSTREAM SIGNALLING
310. Nav
´
e, B. T., Ouwens, M., Withers, D. J., Alessi, D. R. and Shepherd, P. R. (1999)
Mammalian target of rapamycin is a direct target for protein kinase B: identification
of a convergence point for opposing effects of insulin and amino-acid deficiency on
protein translation. Biochem J 344, 427–431.
311. Tzivion, G. and Avruch, J. (2002) 14–3–3 proteins: active cofactors in cellular
regulation by serine/threonine phosphorylation. JBiolChem277, 3061–3064.
312. Shumway, S. D., Li, Y. and Xiong, Y. (2003) 14–3–3beta binds to and negatively
regulates the tuberous sclerosis complex 2 (TSC2) tumor suppressor gene product,
tuberin. JBiolChem278, 2089–2092.
313. Zhao, X., Gan, L., Pan, H., Kan, D., Majeski, M., Adam, S. A. and Unterman, T. G.
(2004) Multiple elements regulate nuclear/cytoplasmic shuttling of FOXO1:
characterization of phosphorylation- and 14–3–3-dependent and -independent
mechanisms. Biochem J (in press).
314. Brazil, D. P., Park, J. and Hemmings, B. A. (2002) PKB binding proteins: getting in
on the Akt. Cell 111, 293–303.
315. Du, K., Herzig, S., Kulkarni, R. N. and Montminy, M. (2004) TRB3: a tribbles
homolog that inhibits Akt/PKB activation by insulin in liver. Science 300, 1574–1577.
316. Kim, Y. B., Nikoulina, S. E., Ciaraldi, T. P., Henmry, R. R. and Kahn, B. B. (1999)
Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation
of phosphoinositide 3-kinase, in muscle in type 2 diabetes. J Clin Invest 104, 733–741.
317. Krook, A., Bjornholm, M., Galuska, D., Jiang, X. J., Fahlman, R., Myers, M. G.,
Wallberg-Henriksson, H. and Zierath, J. R. (2000) Characterization of signal
transduction and glucose transport in skeletal muscle from type 2 diabetic patients.

Diabetes 49, 284–292.
318. Carvalho, E., Eliasson, B., Wesslau, C. and Smith, U. (2000) Impaired phosphorylation
and insulin-stimulated translocation to the plasma membrane of protein kinase B/Akt
in adipocytes from Type II diabetic subjects. Diabetologia 43, 1107–1115.
319. Tsuchida, H., Bjornholm, M., Fernstrom, M., Galuska, D., Johansson, P., Wallberg-
Henriksson, H., Zierath, J. R., Lake, S. and Krook, A. (2002) Gene expression of the
p85alpha regulatory subunit of phosphatidylinositol 3-kinase in skeletal muscle from
type 2 diabetic subjects. Pflugers Arch 445, 25–31.
320. Smith, U. (2002) Impaired (‘diabetic’) insulin signaling and action occur in fat cells
long before glucose intolerance – is insulin resistance initiated in the adipose tissue?
Int J Obes Relat Metab Disord 26, 897–904.
321. Kim, Y. B., Kotani, K., Ciaraldi, T. P., Henry, R. R. and Kahn, B. B. (2003) Insulin-
stimulated protein kinase C lambda/zeta activity is reduced in skeletal muscle of
humans with obesity and type 2 diabetes: reversal with weight reduction. Diabetes
52, 1935–1942.
322. Farese, R. V. (2002) Function and dysfunction of aPKC isoforms for glucose transport
in insulin-sensitive and insulin-resistant states. Am J Physiol Endocrinol Metab 283,
E1–E11.
323. Cong, L. N., Chen, H., Li, Y., Zhou, L., McGibbon, M. A., Taylor, S. I. and
Quon, M. J. (1997) Physiological role of Akt in insulin-stimulated translocation of
GLUT4 in transfected rat adipose cells. Mol Endocrinol 11, 1881–1890.
324. Kohn, A. D., Barthel, A., Kovacina, K. S., Boge, A., Wallach, B., Summers, S. A.,
Birnbaum, M. J., Scott, P. H., Lawrence, J. C. and Roth, R. A. (1998) Construction
and characterization of a conditionally active version of the serine/threonine kinase
Akt. JBiolChem273, 11 937–11 943.
325. Kotani, K., Ogawa, W., Matsumoto, M., Kitamura, T., Sakaue, H., Hino, Y., Miyake,
K., Sano, W., Akimoto, K., Ohno, S. and Kasuga, M. (1998) Requirement of atypical
REFERENCES 59
protein kinase Clambda for insulin stimulation of glucose uptake but not for Akt
activation in 3T3-L1 adipocytes. Mol Cell Biol 18, 6971–6982.

326. Kitamura, T., Ogawa, W., Sakaue, H., Hino, Y., Kuroda, S., Takata, M., Mat-
sumoto, M., Maeda, T., Konishi, H., Kikkawa, U. and Kasuga, M. (1998) Requirement
for activation of the serine–threonine kinase Akt (protein kinase B) in insulin stimula-
tion of protein synthesis, but not of glucose transport. Mol Cell Biol 18, 3708–3717.
327. Bandyopadhyay, G., Standaert, M. L., Sajan, M. P., Karnitz, L. M., Cong, L., Quon,
M. J. and Farese, R. V. (1999) Dependence of insulin-stimulated glucose transporter 4
translocation on 3-phosphoinositide-dependent protein kinase-1 and its target threonine-
410 in the activation loop of protein kinase C-zeta. Mol Endocrinol 13, 1766–1772.
328. Imamura, T., Huang, J., Usui, I., Satoh, H., Bever, J. and Olefsky, J. M. (2003) Insulin-
induced GLUT4 translocation involves protein kinase C-lambda-mediated functional
coupling between Rab4 and the motor protein kinesin. MolCellBiol23, 4892–4900.
329. Matsumoto, M., Ogawa, W., Akimoto, K., Inoue, H., Miyake, K., Furukawa, K.,
Hayashi, Y., Iguchi, H., Matsuki, Y., Hiramatsu, R., Shimano, H., Yamada, N.,
Ohno, S., Kasuga, M. and Noda, T. (2003) PKClambda in liver mediates insulin-
induced SREBP-1c expression and determines both hepatic lipid content and overall
insulin sensitivity. J Clin Invest 112, 935–944.
330. Baumann, C. A. and Saltiel, A. R. (2001) Spatial compartmentalization of signal
transduction in insulin action. Bioessays 23, 215–222.
331. Chunqiu Hou, J. and Pessin, J. E. (2003) Lipid raft targeting of the TC10 amino
terminal domain is responsible for disruption of adipocyte cortical actin. MolBiolCell
14, 3578–3591.
332. Maffucci, T., Brancaccio, A., Piccolo, E., Stein, R. C. and Falasca, M. (2003) Insulin
induces phosphatidylinositol-3-phosphate formation through TC10 activation. EMBO J
22, 4178–4189.
333. Inoue, M., Chang, L., Hwang, J., Chiang, S. H. and Saltiel, A. R. (2003) The exocyst
complex is required for targeting of Glut4 to the plasma membrane by insulin. Nature
422, 629–635.
334. Cohen, A. W., Combs, T. P., Scherer, P. E. and Lisanti, M. P. (2003) Role of caveolin
and caveolae in insulin signaling. Am J Physiol Endocrinol Metab 285, E1151–E1160.
335. Kanzaki, M. and Pessin, J. E. (2003) Insulin signaling: GLUT4 vesicles exit via the

exocyst. Curr Biol 13, R574–R576.
336. Feller, S. M. (2001) Crk family adaptors – signalling complex formation and biological
roles. Oncogene 20, 6348–6371.
337. Schaeffer, H. J. and Weber, M. J. (1999) Mitogen-activated protein kinases: specific
messages from ubiquitous messengers. Mol Cell Biol 19, 2435–2444.
338. Avruch, J., Khokhlatchev, A., Kyriakis, J. M., Luo, Z., Tzivion, G., Vavvas, D. and
Zhang, X. F. (2001) Ras activation of the Raf kinase: tyrosine kinase recruitment of
the MAP kinase cascade. Rec Prog Horm Res 56, 127–155.
339. Johnson, G. L. and Lapadat, R. (2002) Mitogen-activated protein kinase pathways
mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911–1912.
340. Kyriakis, J. M. and Avruch, J. (2001) The mammalian mitogen-activated protein kinase
signal transduction pathways activated by stress and inflammation. Physiol Rev 81,
807–869.
341. Denton, R. M. and Tavar
´
e, J. M. (1995) Does mitogen-activated-protein kinase have a
role in insulin action? The cases for and against. Eur J Biochem 227, 597–611.
342. Lazar, D. F., Wiese, R. J., Brady, M. J., Mastick, C. C., Waters, S. B., Yamauchi, K.,
Pessin, J. E., Cuatrecasas, P. and Saltiel, A. R. (1995) Mitogen-activated protein kinase
kinase inhibition does not block the stimulation of glucose utilization by insulin. JBiol
Chem 270, 20 801–20 807.
60 THE INSULIN RECEPTOR AND DOWNSTREAM SIGNALLING
343. Azpiazu, I., Saltiel, A. R., DePaoli-Roach, A. A. and Lawrence, J. C. (1996) Regula-
tion of both glycogen synthase and PHAS-I by insulin in rat skeletal muscle involves
mitogen-activated protein kinase-independent and rapamycin-sensitive pathways. JBiol
Chem 271, 5033–5039.
344. O’Brien, R. M. and Granner, D. K. (1996) Regulation of gene expression by insulin.
Physiol Rev 76, 1109–1161.
345. Frodin, M. and Gammeltoft, S. (1999) Role and regulation of 90 kDa ribosomal S6
kinase (RSK) in signal transduction. Mol Cell Endocrinol 151, 65–77.

346. Whitmarsh, A. J. and Davis, R. J. (1996) Transcription factor AP-1 regulation by
mitogen-activated protein kinase signal transduction pathways. JMolMed74, 589–607.
347. Hurd, T. W., Culbert, A. A., Webster, K. J. and Tavare, J. M. (2002) Dual role for
mitogen-activated protein kinase (Erk) in insulin-dependent regulation of Fra-1 (fos-
related antigen-1) transcription and phosphorylation. Biochem J 368, 573–580.
348. Shaw, P. E. and Saxton, J. (2003) Ternary complex factors: prime nuclear targets for
mitogen-activated protein kinases. Int J Biochem Cell Biol 35, 1210–1226.
349. Kolch, W. (2000) Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK
pathway by protein interactions. Biochem J 351, 289–305.
350. Garrington, T. P. and Johnson, G. L. (1999) Organization and regulation of mitogen-
activated protein kinase signaling pathways. Curr Opin Cell Biol 11, 211–218.
351. Morrison, D. K. (2001) KSR: a MAPK scaffold of the Ras pathway? J Cell Sci 114,
1609–1612.
352. Langlois, W. J., Sasaoka, T., Saltiel, A. R. and Olefsky, J. M. (1995) Negative
feedback regulation and desensitization of insulin- and epidermal growth factor-
stimulated p21ras activation. JBiolChem270, 25 320–25 323.
353. Dong, C., Waters, S. B., Holt, K. H. and Pessin, J. E. (1996) SOS phosphorylation and
disassociation of the Grb2–SOS complex by the ERK and JNK signaling pathways. J
Biol Chem 271, 6328–6332.
354. Zhao, H., Okada, S., Pessin, J. E. and Koretzky, G. A. (1998) Insulin receptor-
mediated dissociation of Grb2 from Sos involves phosphorylation of Sos by kinase(s)
other than extracellular signal-regulated kinase. JBiolChem273, 12 061–12 067.
355. Dhillon, A. S., Pollock, C., Steen, H., Shaw, P. E., Mischak, H. and Kolch, W. (2002)
Cyclic AMP-dependent kinase regulates Raf-1 kinase mainly by phosphorylation of
serine 259. Mol Cell Biol 22, 3237–3246.
356. Galetic, I., Maira, S. M., Andjelkovic, M. and Hemmings, B. A. (2003) Negative
regulation of ERK and Elk by protein kinase B modulates c-Fos transcription. JBiol
Chem 278, 4416–4423.
357. Gual, P., Baron, V., Lequoy, V. and Van Obberghen, E. (1998) The interaction of Janus
kinases JAK-1 and JAK-2 with the insulin receptor and insulin-like growth factor-1

receptor. Endocrinology 139, 884–893.
358. Sawka-Verhelle, D., Tartare-Deckert, S., Decaux, J. F., Girard, J. and Van Obberghen,
E. (2000) Stat 5B, activated by insulin in a Jak-independent fashion, plays a role in
glucokinase gene transcription. Endocrinology 141, 1977–1988.
359. Le, M. N., Kohanski, R. A., Wang, L. H. and Sadowski, H. B. (2002) Dual mechanism
of signal transducer and activator of transcription 5 activation by the insulin receptor.
Mol Endocrinol 16, 2764–2779.
360. Kimura, A., Mora, S., Shigematsu, S., Pessin, J. E. and Saltiel, A. R. (2002) The
insulin receptor catalyzes the tyrosine phosphorylation of caveolin-1. JBiolChem277,
30 153–30 158.
361. Najjar, S. (2002) Regulation of insulin action by CEACAM1. Trends Endocrinol Metab
13, 240–245.
REFERENCES 61
362. Myers, M. G., Mendez, R., Shi, P., Pierce, J. H., Rhoads, R. and White, M. F. (1998)
The COOH-terminal tyrosine phosphorylation sites on IRS-1 bind SHP-2 and negatively
regulate insulin signaling. JBiolChem273, 26 908–26 914.
363. Ogawa, W., Matozaki, T. and Kasuga, M. (1998) Role of binding proteins to IRS-1 in
insulin signalling. Mol Cell Biochem 182, 13–22.
364. Fukunaga, K., Noguchi, T., Takeda, H., Matozaki, T., Hayashi, Y., Itoh, H. and
Kasuga, M. (2000) Requirement for protein tyrosine phosphatase SHP-2 in insulin-
induced activation of c-Jun NH(2)-terminal kinase. JBiolChem275, 5208–5213.
365. Maegawa, H., Hasegawa, M., Sugai, S., Obata, T., Ugi, S., Morino, K., Egawa, K.,
Fujita, T., Sakamoto, T., Nishio, Y., Kojima, H., Haneda, M., Yasuda, H., Kikkawa, R.
and Kashiwagi, A. (1999) Expression of a dominant negative SHP-2 in transgenic mice
induces insulin resistance. JBiolChem274, 30 236–30 243.
366. Neel, B. G., Gu, H. and Pao, L. (2003) The ‘Shp’ing news: SH2 domain-containing
tyrosine phosphatases in cell signaling. Trends Biochem Sci 28, 284–293.
367. Kayali, A. G., Eichhorn, J., Haruta, T., Morris, A. J., Nelson, J. G., Vollenweider, P.,
Olefsky, J. M. and Webster, N. J. G. (1998) Association of the insulin receptor with
phospholipase Cγ (PLCγ) in 3T3-L1 adipocytes suggests a role for PLCγ in metabolic

signaling by insulin. JBiolChem273, 13 808–13 818.
368. Eichhorn, J., Kayali, A. G., Austin, D. A. and Webster, N. J. (2001) Insulin activates
phospholipase C-gamma 1 via a PI 3-kinase dependent mechanism in 3T3-L1
adipocytes. Biochem Biophys Res Commun 282, 615–620.
369. Lorenzo, M., Teruel, T., Hernandez, R., Kayali, A. G. and Webster, N. J. (2002)
PLCgamma participates in insulin stimulation of glucose uptake through activation
of PKCzeta in brown adipocytes. Exp Cell Res 278, 146–157.
370. Lemmon, M. A. and Ferguson, K. M. (2000) Signal-dependent membrane targeting by
pleckstrin homology (PH) domains. Biochem J 350, 1–18.
371. Chan, T. O., Rittenhouse, S. E. and Tsichlis, P. N. (1999) AKT/PKB and other D3
phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent
phosphorylation. Annu Rev Biochem 68, 965–1014.
372. Li, H. S., Shome, K., Rojas, R., Rizzo, M. A., Vasudevan, C., Fluharty, F., Santy, L.
C., Casanova, J. E. and Romero, G. (2003) The guanine nucleotide exchange factor
ARNO mediates the activation of ARF and phospholipase D by insulin. BMC Cell Biol
4, 13.
373. Jackson, T. R., Kearns, B. G. and Theibert, A. B. (2000) Cytohesins and centaurins:
mediators of PI 3-kinase-regulated Arf signaling. Trends Biochem Sci 25, 489–495.
374. Krugmann, S., Anderson, K. E., Ridley, S. H., Risso, N., McGregor, A., Coad-
well, J., Davidson, K., Eguinoa, A., Ellson, C. D., Lipp, P., Manifava, M., Ktis-
takis, N., Painter, G., Thuring, J. W., Cooper, M. A., Lim, Z. Y., Holmes, A. B.,
Dove, S. K., Michell, R. H., Grewal, A., Nazarian, A., Erdjument-Bromage, H.,
Tempst, P., Stephens, L. R. and Hawkins, P. T. (2002) Identification of ARAP3, a
novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on
phosphoinositide affinity matrices. Mol Cell 9, 95–108.
375. Dowler, S., Currie, R. A., Downes, C. P. and Alessi, D. (1999) DAPP1: a dual adaptor
for phosphotyrosine and 3-phosphoinositides. Biochem J 342, 7–12.
376. Anderson, K. E., Lipp, P., Bootman, M., Ridley, S. H., Coadwell, J., R
¨
onnstrand, L.,

Lennartsson, J., Holmes, A. B., Painter, G. F., Thuring, J., Lim, Z. Y., Erdjument-
Bromage, H., Grewal, A., Tempst, P., Stephens, L. R. and Hawkins, P. T. (2000)
DAPP1 undergoes a PI 3-kinase-dependent cycle of plasma-membrane recruitment and
endocytosis upon cell stimulation. Curr Biol 10, 1403–1412.
377. Welch, H. C., Coadwell, W. J., Stephens, L. R. and Hawkins, P. T. (2003) Phospho-
inositide 3-kinase-dependent activation of Rac. FEBS Lett 546, 93–97.
62 THE INSULIN RECEPTOR AND DOWNSTREAM SIGNALLING
378. Etienne-Manneville, S. and Hall, A. (2002) Rho GTPases in cell biology. Nature 420,
629–635.
379. Houslay, M. D. and Siddle, K. (1989) Molecular basis of insulin receptor function. Br
Med Bull 45, 264–284.
380. Dalle, S., Ricketts, W., Imamura, T., Vollenweider, P. and Olefsky, J. M. (2001)
Insulin and IGF-I receptors utilize different G-protein signaling components. JBiol
Chem 276, 15 688–15 695.
381. Imamura, T., Vollenweider, P., Egawa, K., Clodi, M., Ishibashi, K., Nakashima, N.,
Ugi, S., Adams, J. W., Brown, J. H. and Olefsky, J. M. (1999) G alpha-q/11 protein
plays a key role in insulin-induced glucose transport in 3T3-L1 adipocytes. Mol Cell
Biol 19, 6765–6774.
382. Usui, I., Imamura, T., Huang, J., Satoh, H. and Olefsky, J. M. (2003) Cdc42 is a Rho
GTPase family member that can mediate insulin signaling to glucose transport in 3T3-
L1 adipocytes. JBiolChem278, 13 765–13 774.
383. Sleight, S., Wilson, B. A., Heimark, D. B. and Larner, J. (2002) G(q/11) is involved
in insulin-stimulated inositol phosphoglycan putative mediator generation in rat liver
membranes: co-localization of G(q/11) with the insulin receptor in membrane vesicles.
Biochem Biophys, Res Commun 295, 561–569.
384. Romero, G. and Larner, J. (1993) Insulin mediators and the mechanism of insulin
action. Adv Pharmacol 24, 21–50.
385. Saltiel, A. R. (1996) Structural and functional roles of glycosylphosphoinositides.
Subcell Biochem 26, 165–185.
386. Muller, G., Jung, C., Frick, W., Bandlow, W. and Kramer, W. (2002) Interaction of

phosphatidylinositolglycan(-peptides) with plasma membrane lipid rafts triggers insulin-
mimetic signaling in rat adipocytes. Arch Biochem Biophys 408, 7–16.
387. Muller, G. and Frick, W. (1999) Signalling via caveolin: involvement in the cross-talk
between phosphoinositolglycans and insulin. Cell Mol Life Sci 56, 945–970.
388. Dumont, J. E., P
´
ecasse, F. and Maenhaut, C. (2001) Cross-talk and specificity in
signalling: are we cross-talking ourselves into general confusion? Cell Signal 13,
457–463.
389. Dumont, J. E., Dremier, S., Pirson, I. and Maenhaut, C. (2002) Cross-signalling, cell
specificity, and physiology. Am J Physiol Cell Physiol 283, C2–C28.
390. Pawson, T. and Nash, P. (2000) Protein–protein interactions define specificity in signal
transduction. Genes Dev 14, 1027–1047.
391. Whiteman, E. L., Chen, J. J. and Birnbaum, M. J. (2003) Platelet-derived growth factor
(PDGF) stimulates glucose transport in 3T3-L1 adipocytes overexpressing PDGF
receptor by a pathway independent of insulin receptor substrates. Endocrinology 144,
3811–3820.
392. Tengholm, A. and Meyer, T. (2002) A PI3-kinase signaling code for insulin-triggered
insertion of glucose transporters into the plasma membrane. Curr Biol 12, 1871–1876.
393. Khan, A. H. and Pessin, J. E. (2002) Insulin regulation of glucose uptake: a complex
interplay of intracellular signaling pathways. Diabetologia 45, 1475–1485.
394. Kim, J. J. and Accili, D. (2002) Signalling through IGF-I and insulin receptors: where
is the specificity? Growth Horm IGF Res 12, 84–90.
395. Dupont, J., Khan, J., Qu, B. H., Metzler, P., Helman, L. and LeRoith, D. (2001) Insulin
and IGF-1 induce different patterns of gene expression in mouse fibroblast NIH-3T3
cells: identification by cDNA microarray analysis. Endocrinology 142, 4969–4975.
396. Mulligan, C., Rochford, J., Denyer, G., Stephens, R., Yeo, G., Freeman, T., Siddle, K.
and O’Rahilly, S. (2002) Microarray analysis of insulin and IGF-1 receptor signalling
reveals the selective up-regulation of the mitogen HB-EGF by IGF-1. JBiolChem277,
42 480–42 487.

2
Insulin-mediated Regulation
of Glucose Metabolism
Daniel Konrad, Assaf Rudich and Amira Klip
2.1 Introduction
Insulin was identified in the early 1920s as the major hypoglycaemic hormone,
capable of restoring normal blood glucose levels in pancreatectomized animals
and insulin-deficient humans. This physiological action of insulin is brought
about by its effects on glucose metabolism in its ‘classical’ target organs,
namely liver, skeletal muscle and adipose tissue. Decades of intense scientific
effort involving complementary disciplines have unravelled cellular mechanisms
whereby insulin regulates glucose metabolism in these tissues, resulting in the
control of blood glucose in diverse physiological states. In this chapter we first
outline the actions of insulin as the master switch for whole body glucose distri-
bution and summarize its effects on the main biochemical pathways of glucose
metabolism. We then focus on the effect of insulin on glucose disposal in muscle
and fat. As glucose uptake is rate limiting for glucose metabolism in these tis-
sues, we describe in more detail the complex mechanisms through which insulin
regulates this process.
2.2 Insulin as a master regulator of whole body glucose
disposal
Direct and indirect regulation of glucose metabolism by insulin
in its classical target tissues
Insulin is more than an endocrine messenger for the transition from fasted- to
fed-state metabolism; it is in fact a required regulator in all physiological states.
Insulin Resistance. Edited by Sudhesh Kumar and Stephen O’Rahilly
 2005 John Wiley & Sons, Ltd ISBN: 0-470-85008-6
64 INSULIN-MEDIATED REGULATION OF GLUCOSE METABOLISM
During fasting, circulating insulin levels are 5–20 per cent of those measured
after a meal. These low circulating concentrations of the hormone are required

to maintain the balance with counter-regulatory hormones to prevent ketoacido-
sis. The brain and cells such as erythrocytes that rely solely on glucose as their
energy source consume glucose evenly in the fed and overnight fasted states.
1
Therefore, maintaining normoglycaemia despite fluctuations in the availability
of exogenous glucose relies on a coordinated regulation of glucose disposal and
endogenous glucose production. During fasting, the liver, and to a lesser degree
the kidney, release glucose to the blood, matching its utilization by glucose-
dependent tissues such as the brain. Under these conditions, glucose disposal
into skeletal muscle and adipocytes is low, where lipids are consumed as the
major fuel. Upon a meal, when circulating glucose and insulin levels rise, glu-
cose is disposed of from the blood into muscle, fat and liver.
1
These tissues
therefore constitute the ‘classical target organs’ for insulin action through which
the hypoglycaemic response of the hormone is directly achieved (Table 2.1).
In addition to increasing glucose uptake into skeletal muscle and adipose tis-
sue, insulin promotes glucose storage as either glycogen (mainly in muscle
and liver) or lipids (mainly in fat and liver). To avoid futile metabolic cycles,
insulin simultaneously inhibits the breakdown of these macromolecules through
glycogenolysis and lipolysis, respectively. Similarly, in the liver and kidney
endogenous glucose production is curbed by insulin through the inhibition of
glycogenolysis and gluconeogenesis.
3, 4
Research of recent years utilizing tissue-specific gene deletions of the insulin
receptor in animal models largely confirmed the direct effects of insulin on
glucose metabolism in its classical target organs. Mice lacking the insulin recep-
tor in the liver (liver insulin receptor knock-out (LIRKO) mice) fail to sup-
press endogenous glucose production during hyperinsulinaemic clamps.
5

Like-
wise, ablation of the insulin receptor gene in skeletal muscle (MIRKO mice)
blunts insulin-stimulated glucose transport and glycogen synthesis in this tissue.
6
Remarkably, glucose uptake into adipose tissue is elevated in MIRKO mice,
suggesting that insulin’s direct effects on its classical target tissues are coordi-
nated, allowing for complex adaptive responses and balances in the regulation
of whole body glucose metabolism, as discussed further below. Hence, insulin
can be viewed as a glucose flux regulator, promoting peripheral glucose uptake
and hepatic glucose storage during a meal, and allowing hepatic glucose output
while preventing ketoacidosis between meals.
On top of the major direct effects of insulin on glucose fluxes in its classical
target organs (Table 2.1), the hormone also engages indirect mechanisms in the
regulation of glucose metabolism. These include insulin-mediated alterations in
lipid and protein metabolism (described in detail in Chapters 3 and 4 of this
book) that in turn impact on glucose metabolism, coordination of glucose fluxes
between its various target tissues, and regulation of circulating factors involved
in cross-talk between skeletal muscle, adipose tissue and liver.
INSULIN AS A MASTER REGULATOR OF WHOLE BODY GLUCOSE DISPOSAL 65
Table 2.1 ‘Classical’ and ‘non-classical’ target organs for insulin-regulated glucose
metabolism
Main effect of insulin on glucose metabolism
Organ/tissue Direct Indirect
‘Classical targets’
Skeletal and cardiac
muscle
↑ glucose uptake
↑ glucose oxidation
↑ glycogen synthesis
↓ NEFA availability and

oxidation
Liver ↓ glucose output –
•↓glycogenolysis
•↓gluconeogenesis
↑ glycogen synthesis
↑ glycolysis
↑ lipogenesis
↑ hexose monophosphate shunt

↓ NEFA availability and
oxidation
Adipose tissue ↑ glucose uptake
↑ hexose monophosphate shunt

↑ lipogenesis
Regulation of adipokines
synthesis and/or secretion
↓ lipolysis
‘Non-classical targets’
Pancreatic beta cells ? Permissive effect on
glucose-stimulated insulin
secretion (phase 1 release)
Brain/CNS ? ↓ Food intake
Vascular cells ? ↑ blood flow (vasodilatation)
↑ capillary recruitment
↑ NO secretion
A ‘direct effect’ of insulin on glucose metabolism is defined as an insulin-stimulated change in the flux
of glucose through a specific metabolic pathway that is initiated by the insulin receptor in the same
tissue. An ‘indirect effect’ is the regulation of glucose metabolism in one organ resulting from the effect
of insulin on other macronutrients (such as lipids) or in other organs.


Insulin-stimulated lipogenesis consumes NADPH, and the resulting drop in NADPH/NADP
+
increases
the activity of G6PD, i.e. G6P flux through the shunt. In addition, insulin regulates the mRNA levels
of G6PD – the rate-limiting enzyme in this pathway.
2
Insulin is a key regulator of the interplay between glucose and fatty acids
metabolism, as follows. Insulin-mediated inhibition of lipolysis, i.e. the release
of non-esterified fatty acids (NEFAs) from adipose tissue, contributes to the
acute inhibition of hepatic glucose production induced by the hormone.
7, 8
This is brought about by lowering NEFA oxidation, since in this process high
intracellular ATP/ADP, NADH/NAD
+
and acetyl-CoA/CoA ratios are achieved,
providing the metabolite milieu required for gluconeogenesis. In addition, NEFA
availability to skeletal muscle also influences insulin-regulated glucose utiliza-
tion by this tissue. The original hypothesis of Randle
9
suggested that increased
NEFA availability as a fuel source to the muscle (as occurs physiologically dur-
ing fasting) blocks glycolysis through the elevated generation of acetyl-CoA and
66 INSULIN-MEDIATED REGULATION OF GLUCOSE METABOLISM
citrate, resulting in allosteric inhibition of pyruvate dehydrogenase and phospho-
fructokinase-1, respectively. The ensuing accumulation of glucose-6-phosphate
(G6P) would then secondarily diminish glucose uptake. However, while a glu-
cose–NEFA cycle probably exists, recent studies using nuclear magnetic res-
onance (NMR) spectroscopy demonstrate that, in skeletal muscle, increased
NEFA availability reduces, rather than elevates, intracellular G6P and free glu-

cose levels.
10, 11
These findings suggest that insulin-stimulated glucose uptake
is itself a primary site of inhibition by NEFA in skeletal muscle.
Further examples of the indirect actions of insulin emerge from knock-
out animal models. In particular, tissue-specific gene deletions have allowed
investigators to manipulate glucose flux in a single tissue and then assess the
ensuing changes in the non-targeted organs. As mentioned above, MIRKO mice
exhibited decreased insulin-stimulated glucose flux into the skeletal muscle,
accompanied by an increased glucose flux in adipose tissue.
6
Similarly, mice
lacking the insulin-responsive glucose transporter GLUT4 selectively in the adi-
pose tissue show not only reduced glucose uptake in fat cells but also blunted
insulin regulation of glucose metabolism in muscle and liver.
12
Such depen-
dency of glucose metabolism among the different organs suggests the existence
of mechanisms that mediate inter-organ cross-talk. An exciting development in
this regard has been the identification of adipose-derived factors (adipokines)
that modulate glucose metabolism and insulin responsiveness in muscle and the
liver.
13, 14
While factors such as tumour necrosis factor α and interleukin 6 are
not uniquely expressed in adipocytes, adiponectin and leptin are largely consid-
ered as adipose-specific gene products. Adiponectin (ACRP30) increases whole
body insulin sensitivity largely by suppressing glucose production in the liver, as
well as by increasing glucose uptake into skeletal muscle.
15, 16
Leptin, the prod-

uct of the obesity (ob) gene, signals through receptors in the hypothalamus to
decrease food intake and increase energy expenditure,
17
and may also act periph-
erally to regulate whole body insulin sensitivity.
18
Insulin positively regulates
both the gene expression and the secretion of leptin from adipose tissue,
19, 20
and may also regulate the gene expression of adiponectin.
21, 22
Affecting the cir-
culating concentrations of these regulatory factors provides a newly recognized
potent indirect mechanism through which insulin regulates glucose metabolism
in its classical target organs.
Non-classical targets of insulin in the regulation of total body glucose
metabolism
Although the major effect of insulin in controlling glucose metabolism is on its
classical target organs (muscle, liver and fat), virtually every cell type expresses
the insulin receptors. This raises the possibility that additional sites exist for
insulin action on carbohydrate metabolism. Tissue-specific ablation of the insulin
receptor has provided new insights about ‘non-classical’ target tissues for insulin
action (Table 2.1). Target tissues include pancreatic β-cells, the central nervous
INSULIN-MEDIATED REGULATION OF GLUCOSE METABOLIC PATHWAYS 67
system and vascular cells. The findings suggest that these tissues may exert
important effects on glucose metabolism at the whole body level. For example,
mice lacking insulin receptors in β-cells manifest impaired glucose-mediated
insulin secretion. Conversely, mice in which the insulin receptor was ablated in
neuronal cells exhibit elevated food intake and diet-induced obesity, suggesting
that insulin delivers an anorexogenic input to the central nervous system.

23
Such
a role of insulin in the brain was suggested in early studies where the hormone
was administered intra-cerebroventricularly to monkeys.
24
Finally, vascular cells
are a target for insulin-induced vasodilatation and capillary recruitment that, by
enhancing glucose delivery, may complement the hormone’s direct stimulatory
effect on glucose uptake in muscle.
25
Given that quantitatively β-cells, neuronal
and vascular cells have only a minor contribution to insulin-stimulated whole
body glucose disposal, these studies suggest that the actions of insulin in ‘non-
classical insulin targets’ are indirectly involved in the regulation of total body
glucose metabolism. It will be interesting to see whether in addition insulin
regulates glucose metabolism in these sites.
In summary, insulin engages both ‘classical’ and ‘non-classical’ target organs
in orchestrating the control of glucose metabolism (Table 2.1). In its classical
target organs insulin directly modulates glucose uptake, metabolism and pro-
duction. In addition, the hormone affects glucose metabolism secondarily to
alterations in the metabolism of other macronutrients, and by utilizing complex
inter-organ cross-talk mechanisms.
2.3 Insulin-mediated regulation of glucose metabolic
pathways
Entry of the hydrophilic glucose molecule into the cell through a lipid mem-
brane requires a ‘gateway’ offered by glucose transporters (discussed later in
this chapter). Once in the cytosol, glucose is phosphorylated into glucose-6-
phosphate, and from this initial step its biochemical fate is diverse. Glucose-6-
phosphate is catabolized through glycolysis, the hexose monophosphate shunt
and mitochondrial oxidation, yielding high-energy compounds such as ATP and

NAD(P)H. Alternatively, glucose can be stored in polymer form (glycogen) or
converted to triglycerides. In addition, glucose can be metabolized through sev-
eral quantitatively minor pathways: it is a precursor for de novo synthesis of
nucleotides and certain amino acids, it can be converted to other sugars and alco-
hols (e.g. sorbitol) and it is required for the generation of complex compounds
such as glycoproteins and glycolipids.
At the cellular level, insulin regulates the flow of glucose through these
biochemical pathways by two basic mechanisms:
(a) by increasing uptake from the blood, as described in Section 2.4;
(b) by affecting regulatory enzymes in the various pathways of glucose
metabolism, as outlined next.
68 INSULIN-MEDIATED REGULATION OF GLUCOSE METABOLISM
Table 2.2 Major target proteins of insulin in the regulation of glucose metabolism, and the
main mechanism(s) of regulation
Biochemical
process Protein
Major mechanism of
regulation by insulin Reference
Stimulatory effect by insulin
Glucose uptake GLUT4 Translocation from intracellular
pools to the plasma membrane
26
Increased activity 27
Expressional regulation? 28
Glucose
phosphorylation
Glucokinase Transcriptional activation 29
Hexokinase II Transcriptional activation 30
Glycolysis Phospho-fructokinase 2 Reversible phosphorylation? 31
Allosteric activation

Phosphofructokinase 1 Allosteric activation
Phosphorylation and actin binding 32
Pyruvate kinase Transcriptional/post-transcriptional
activation
33
Dephosphorylation
Glycogenesis Glycogen synthase Dephosphorylation:
inhibited GS kinase (GSK3) 34
stimulated dephosphorylation
(PP1) 35
Glucose oxidation Pyruvate dehydrogenase Dephosphorylation by inhibition
of PDK-4/2 expression 36
Allosteric activation
Lipogenesis Acetyl CoA carboxylase Transcriptional activation 37
Allosteric activation
Reversible phosphorylation?
Inhibitory effect by insulin
Glycogenolysis Glycogen phosphorylase Dephosphorylation 38, 39
GP-kinase Dephosphorylation
Gluconeogenesis G6Pase Transcriptional repression 40
Acute inhibition by 3-PIPs?
PEPCK Transcriptional repression
Pyruvate carboxylase Transcriptional repression 41
GLUT4 – glucose transporter 4, GP-kinase – glycogen phosphorylase kinase, G6Pase –glucose-6-
phosphatase, GSK3 – glycogen synthase kinase 3, PDK – pyruvate dehydrogenase (PDH) kinase,
PEPCK – phosphoenolpyruvate carboxykinase, 3-PIPs –3

-phosphoinositide phosphates, PP1 –pro-
tein phosphatase 1.
? – ambiguity exists regarding the precise effect of insulin or its physiological relevance.

Enzyme regulation is achieved by changes in the phosphorylation state and/or
in expression levels. The result is a change in K
m
and/or V
max
in the first
case, or only V
max
in the second. In addition, the rise in glucose flux alters the
intracellular concentration of metabolites that in turn act as allosteric modulators,
and may regulate the expression levels of specific enzymes. Frequently, these
GLUCOSE UPTAKE INTO SKELETAL MUSCLE – THE RATE-LIMITING STEP 69
different mechanisms operate in a concerted fashion, translating metabolic and
hormonal information into both short and long term regulation of enzymatic
activity. Short term (seconds to minutes) regulation is frequently achieved by
allosteric modulation and reversible phosphorylation, whereas long term (hours
to days) regulation largely employs alterations in gene and protein expression.
Table 2.2 summarizes the major molecular mechanism(s) engaged by insulin in
regulating its major protein targets.
An example of combined allosteric modulation, covalent modifications and
expressional regulation is offered by the pyruvate dehydrogenase complex
(PDH). This large enzymatic complex catalyses the irreversible oxidative
decarboxylation of pyruvate to form acetyl CoA, linking glycolysis to the
mitochondrial citric acid cycle. PDH is negatively regulated allosterically mainly
by its products acetyl CoA and NADH, curbing energy production from
glucose when NEFA are abundant as a fuel source. In addition, reversible
phosphorylation is achieved by at least four PDH kinases and two phosphatases,
which respectively decrease or increase the overall catalytic activity of the
complex. Insulin rapidly decreases the expression level of PDH kinases 4 and
2, reducing the phosphorylation input on PDH and ultimately elevating its

catalytic activity.
The above sections discussed the complex mechanisms utilized by insulin to
regulate glucose metabolism and its homeostasis in the context of total body
fuel metabolism. Among these, the stimulation of glucose uptake by insulin
into skeletal muscle remains quantitatively at the centre of the hypoglycaemic
actions of this hormone under normal physiological conditions. Impairment of
this process calls into action extreme adaptive responses to maintain glucose
homeostasis, in the form of compensatory hyperinsulinaemia and/or glucose
funnelling into alternative sites (as demonstrated by the MIRKO mice). De-
compensation of these mechanisms results in pathological manifestations (e.g.
diabetes). We next focus on the cellular and molecular mechanisms by which
insulin stimulates the uptake of glucose into skeletal muscle.
2.4 Glucose uptake into skeletal muscle – the rate-limiting
step in glucose metabolism
As discussed above, glucose entering muscle cells encounters various fates, but
it rarely accumulates as free glucose in the sarcoplasm.
42–44
This observation
has led to the concept that, under both fasting and fed conditions, glucose
transport across the membrane of the muscle fibre is rate limiting for glucose
utilization. This notion was further confirmed by the use of magnetic resonance
spectroscopy, which allows detection of intracellular glucose-6-phosphate
43
as
well as intracellular glucose levels.
10
However, under certain physiological
conditions (e.g. exercise)
45
or in other tissues (e.g. cardiomyocytes)

46
steps
70 INSULIN-MEDIATED REGULATION OF GLUCOSE METABOLISM
beyond glucose transport such as glucose phosphorylation might become
rate limiting.
Does GLUT4 dictate glucose uptake in muscle and fat cells?
The GLUT family comprises 13 members, but only seven of these (GLUTs
1–4, 6, 8 and 11) have demonstrated glucose transport activity.
47
Muscle and
fat cells express predominantly GLUT4. From this expression pattern as well as
functional studies showing that GLUT4 translocates to the plasma membrane in
response to insulin, GLUT4 is generally believed to mediate insulin-stimulated
glucose uptake. This notion was further confirmed recently by experiments using
GLUT4 gene ablation or a rather selective inhibitor of GLUT4 (the HIV protease
inhibitor indinavir), as outlined below. Mice lacking GLUT4 have diminished
glucose uptake in response to insulin or exercise,
48, 49
and mice lacking GLUT4
selectively in skeletal muscle
50
or in adipose tissues
12
have impaired glucose
and insulin tolerance. Similarly, heterozygous GLUT4-null mice are severely
insulin resistant and develop diabetes.
51
Overall, these findings underline the importance of GLUT4 for insulin-
and contraction-dependent glucose uptake. In addition, muscle-specific GLUT4
knockout mice demonstrate the important regulatory role of skeletal muscle

in glucose homeostasis.
50
Surprisingly, homozygous GLUT4-null mice had
normal glucose tolerance even though they showed impaired insulin tolerance,
suggesting insulin resistance. The mechanism by which homozygous GLUT4-
null mice are protected from diabetes is still unclear. The most likely explanation
is that compensatory mechanisms are induced.
52, 48
For example, other GLUT
isoforms may be expressed at higher levels, which then compensate for
GLUT4. Although no up-regulation of GLUT1, GLUT3 or GLUT5 could be
detected,
52, 48
glucose uptake into isolated soleus muscle was mediated by a
saturable glucose-transport process and blocked by the classical inhibitor of
GLUTs, cytochalasin B.
48
Thus glucose uptake into soleus muscle from GLUT4-
null mice appears to be mediated by some other member of the GLUT family
(potentially GLUT8).
Genetic ablation of GLUT4 has confirmed its importance for normal insulin
sensitivity; however, it does not reveal the quantitative contribution of GLUT4
to glucose influx into normal tissues, since compensatory mechanisms in the
affected tissue are induced. Until recently, glucose uptake through a specific
GLUT isoform could not be directly assessed given the lack of inhibitors with
sufficient selectivity for any given GLUT. The HIV protease inhibitor indinavir
was recently found to selectively block GLUT4-mediated glucose uptake into
Xenopus laevis oocytes exogenously expressing different GLUTs.
53
The IC

50
of indinavir on glucose uptake was much lower in oocytes expressing GLUT4
compared with those expressing GLUT2, GLUT1, GLUT3 or a GLUT8 mutant
directed to the cell surface.
54
Using this approach, we studied the contribution

×