Tải bản đầy đủ (.pdf) (22 trang)

Modeling of Combustion Systems A Practical Approach 1 pot

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (7.23 MB, 22 trang )

533
Appendix A
Fuel and Combustion Properties
© 2006 by Taylor & Francis Group, LLC
534 Modeling of Combustion Systems: A Practical Approach
TABLE A.1
Physical Constants of Typical Gaseous Fuel Mixture Components
Specific Heat
Capacity, C
p
60rF &
14.696 psia
(Btu/Ib
m
/rF)
Latent Heat of
Vaporization
14.696 psia &
Boiling Point
(Btu/Ib
m
)
Heating Value Unit Volume per Unit Volume of Combustible Unit Mass per Unit Mass of Combustible
Theoretical
Air Required
(Ib
m
/10,000
Btu)
Flammbility Limits
(vol% in air


mixture)
Boiling
Point
14.696
psia
(rF)
Vapor
Pressure
100rF
(psia)
Gas Density
Ideal Gas, 14.696 psia, 60rF Btu/scf Btu/Ib
m
Required for Combustion Flue Gas Products
Required for
Combustion Flue Gas Products
No.
Fuel Gas
Component
Chemical
Formula
Molecular
Weight
Specific
Gravity
(Air = 1)
Gas
Density
(Ib
m

/ft
3
)
Specific
Volume
(ft
3
/Ib
m
)
LHV
(Net)
HHV
(Gross)
LHV
(Net)
HHV
(Gross) O
2
N
2
Air CO
2
H
2
ON
2
SO
2
O

2
N
2
Air CO
2
H
2
ON
2
SO
2
Lower Upper No.
Paraffin (alkane) Series (C
n
H
2n2
)
 0HWKDQH &+

  ³ 
        
     ³     
 ³ 
  
 (WKDQH &

+

  ³ 
        

     ³     
 ³ 
  
 3URSDQH &

+

   
        
     ³     
 ³ 
  
 Q%XWDQH &

+

  
 
      
  
   ³ 
   
 ³ 
  
 ,VREXWDQH &

+

  
 

      
  
   ³ 
   
 ³ 
  
 Q3HQWDQH &

+

  
 
      
  
   ³ 
   
 ³ 
  
 ,VRSHQWDQH &

+

  
 
      
  
   ³ 
   
 ³ 
  

 1HRSHQWDQH &

+

  
 
      
  
   ³ 
   
 ³ 
  
 Q+H[DQH &

+

  
 
      
  
   ³ 
   
 ³ 
  
Napthene (cycloalkane) Series (C
n
H
2n
)
 &\FORSHQWDQH &


+

  
 
      
  
   ³ 
   
 ³ 
³ ³ 
 &\FORKH[DQH &

+

  
 
      
  
   ³ 
   
 ³ 
  
Olefin Series (C
n
H
2n
)
 (WKHQH(WK\OHQH &


+

  ³ 
        
     ³     
 ³ 
  
 3URSHQH3URS\OHQH &

+

   
        
     ³     
 ³ 
  
 %XWHQH%XW\OHQH &

+

  
 
      
  
   ³ 
   
 ³ 
  
 ,VREXWHQH &


+

  
 
      
  
   ³ 
   
 ³ 
 ³ 
 3HQWHQH &

+

  
 
      
  
   ³ 
   
 ³ 
  
Aromatic Series (C
n
H
2n6
)
 %HQ]HQH &

+


  
 
      
  
   ³ 
   
 ³ 
  
 7ROXHQH &

+

  
 
      
  
   ³ 
   
 ³ 
  
 R;\OHQH &

+

  
           
   ³ 
     ³ 
  

 P;\OHQH &

+

  
           
   ³ 
     ³ 
  
 S;\OHQH &

+

  
           
   ³ 
     ³ 
  
Additional Fuel Gas Components
 $FHW\OHQH &

+

  ³ 
³          
   ³ 
     ³ 
  
 0HWK\ODOFRKRO &+


2+            
      ³ 
   
 ³ 
  
 (WK\ODOFRKRO &

+

2+            
      ³ 
   
 ³    
 $PPRQLD 1+

   
     
     ³   ³    ³ 
 ³    
 +\GURJHQ +

  ³ 
  
  
     ³ 
 ³    ³  
³   

 2[\JHQ 2


  ³ 
    ³ ³
³ ³ ³ ³
³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ 
 1LWURJHQ 1

  ³ 
    ³³³³
³³³³³³³
³³³³³³³
³ ³³
 &DUERQPRQR[LGH &2
  ³ 
  
  
   
  ³  ³ ³  
 ³  ³
   
 &DUERQGLR[LGH &2

  ³ 
    ³³³³
³³³³³³³
³³³³³³³
³ ³³
 +\GURJHQVXOÀGH +

6    
  

  
     ³ 
   
 ³  
    
 6XOIXUGLR[LGH 62

  
 
   ³³³³
³³³³³³³³³³³³³³
³ ³³
 :DWHUYDSRU +

2         ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³
³ ³ ³
³ ³ 
 $LU ³   ³ 
    ³³³³
³³³
³³³³³
³³³³³³³
³³
© 2006 by Taylor & Francis Group, LLC
Fuel and Combustion Properties 535
TABLE A.2
Combustion Data for Hydrocarbons
Hydrocarbon Formula
Higher Heating
Value (vapor)

(Btu lb
m
−1
)
Theor. Air/Fuel
Ratio, by Mass
Max. Flame
Speed,
(ft s
−1
)
Adiabatic Flame
Temp. (in air)
(°°
°°
F)
Ignition Temp.
(in air)
(°°
°°
F)
Flash
Point
(°°
°°
F)
Flammability Limits
(in air)
(% by volume)
Paraffins or Alkanes

Methane CH
4
23875 17.195 1.1 3484 1301 Gas 5.0 15.0
Ethane C
2
H
6
22323 15.899 1.3 3540 968–1166 Gas 3.0 12.5
Propane C
3
H
8
21669 15.246 1.3 3573 871 Gas 2.1 10.1
n-Butane C
4
H
10
21321 14.984 1.2 3583 761 −76 1.86 8.41
iso-Butane C
4
H
10
21271 14.984 1.2 3583 864 −117 1.80 8.44
n-Pentane C
5
H
12
21095 15.323 1.3 4050 588 <−40 1.40 7.80
iso-Pentane C
5

H
12
21047 15.323 1.2 4055 788 <−60 1.32 9.16
Neopentane C
5
H
12
20978 15.323 1.1 4060 842 Gas 1.38 7.22
n-Hexane C
6
H
14
20966 15.238 1.3 4030 478 –7 1.25 7.0
Neohexane C
6
H
14
20931 15.238 1.2 4055 797 –54 1.19 7.58
n-Heptane C
7
H
16
20854 15.141 1.3 3985 433 25 1.00 6.00
Triptane C
7
H
16
20824 15.151 1.2 4035 849 — 1.08 6.69
n-Octane C
8

H
18
20796 15.093 — — 428 56 0.95 3.20
iso-Octane C
8
H
18
20770 15.093 1.1 — 837 10 0.79 5.94
Olefins or Alkenes
Ethylene C
2
H
4
21636 14.807 2.2 4250 914 Gas 2.75 28.6
Propylene C
3
H
6
21048 14.807 1.4 4090 856 Gas 2.00 11.1
Butylene C
4
H
8
20854 14.807 1.4 4030 829 Gas 1.98 9.65
iso-Butene C
4
H
8
20737 14.807 1.2 — 869 Gas 1.8 9.0
n-Pentene C

5
H
10
20720 14.807 1.4 4165 569 — 1.65 7.70
(Continued)
© 2006 by Taylor & Francis Group, LLC
536 Modeling of Combustion Systems: A Practical Approach
TABLE A.2 (CONTINUED)
Combustion Data for Hydrocarbons (Continued)
Hydrocarbon Formula
Higher Heating
Value (vapor)
(Btu lb
m
−1
)
Theor. Air/Fuel
Ratio, by Mass
Max. Flame
Speed,
(ft s
−1
)
Adiabatic Flame
Temp. (in air)
(°°
°°
F)
Ignition Temp.
(in air)

(°°
°°
F)
Flash
Point
(°°
°°
F)
Flammability Limits
(in air)
(% by volume)
Aromatics
Benzene C
6
H
6
18184 13.297 1.3 4110 1044 12 1.35 6.65
Toluene C
7
H
8
18501 13.503 1.2 4050 997 40 1.27 6.75
p-Xylene C
8
H
10
18663 13.663 — 4010 867 63 1.00 6.00
Other Hydrocarbons
Acetylene C
2

H
2
21502 13.297 4.6 4770 763–824 Gas 2.50 81
Naphthalene C
10
H
8
17303 12.932 — 4100 959 174 0.90 5.9
Note: Based largely on: “Gas Engineers’ Handbook,” American Gas Association, Inc., Industrial Press, 1967. For heating value in J kg
−1
, multiply the value
in Btu lb
m
−1
by 2324. For flame speed in ms
−1
, multiply the value in fts
−1
by 0.3048.
REFERENCES
American Institute of Physics Handbook, 2nd ed., D.E. Gray, Ed., McGraw-Hill Book Company, 1963.
Chemical Engineers’ Handbook, 4th ed., R.H. Perry, C.H. Chilton, and S.D. Kirkpatrick, Eds., McGraw-Hill Book Company
, 1963.
Handbook of Chemistry and Physics, 53rd ed., R.C. Weast, Ed., The Chemical Rubber Company
, 1972; gives the heat of combustion of 500 organic compounds.
Handbook of Laboratory Safety, 2nd ed., N.V. Steere, Ed., The Chemical Rubber Company
, 1971.
Physical Measurements in Gas Dynamics and Combustion, Princeton University Press, 1954.
© 2006 by Taylor & Francis Group, LLC
Fuel and Combustion Properties 537

TABLE A.3
Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors,
Including Fuels and Refrigerants, English and Metric Units
N
ote: The properties of pure gases are given at 25°C (77°F, 298 K) and atmospheric pressure (except as stated).
From: Kreith, F. The CRC Press Handbook of Thermal Engineering, CRC Press, Boca Raton, FL, 2000.
© 2006 by Taylor & Francis Group, LLC
538 Modeling of Combustion Systems: A Practical Approach
TABLE A.3 (CONTINUED)
Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors,
Including Fuels and Refrigerants, English and Metric Units
© 2006 by Taylor & Francis Group, LLC
Fuel and Combustion Properties 539
TABLE A.3 (CONTINUED)
Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors,
Including Fuels and Refrigerants, English and Metric Units
© 2006 by Taylor & Francis Group, LLC
540 Modeling of Combustion Systems: A Practical Approach
TABLE A.3 (CONTINUED)
Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors,
Including Fuels and Refrigerants, English and Metric Units
© 2006 by Taylor & Francis Group, LLC
Fuel and Combustion Properties 541
TABLE A.3 (CONTINUED)
Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors,
Including Fuels and Refrigerants, English and Metric Units
© 2006 by Taylor & Francis Group, LLC
542 Modeling of Combustion Systems: A Practical Approach
TABLE A.3 (CONTINUED)
Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors,

Including Fuels and Refrigerants, English and Metric Units
© 2006 by Taylor & Francis Group, LLC
Fuel and Combustion Properties 543
TABLE A.4
© 2006 by Taylor & Francis Group, LLC
544 Modeling of Combustion Systems: A Practical Approach
TABLE A.4 (CONTINUED)
© 2006 by Taylor & Francis Group, LLC
Fuel and Combustion Properties 545
TABLE A.4 (CONTINUED)
© 2006 by Taylor & Francis Group, LLC
Fuel and Combustion Properties 546
TABLE A.4 (CONTINUED)
© 2006 by Taylor & Francis Group, LLC
Fuel and Combustion Properties 547
TABLE A.5
Thermodynamic Properties of Selected Compounds
(Coefficients for Heat Capacity Equation: C
p
= a
0
+ a
1
T + a
2
T
2
+ a
3
T

3
, Enthalpy, and Free Energy)
Formula Name
a
0
a
1
a
2
a
3
ΔΔ
ΔΔ
H
f
ΔΔ
ΔΔ
G
f
J/mol K J/mol K
2
J/mol K
3
J/mol K
4
J/mol J/mol
NO Nitric oxide 2.935E+01 –9.370E–04 9.747E–06 –4.187E–09 9.043E+04 8.675E+04
NO
2
Nitrogen dioxide 2.423E+01 4.863E–02 –2.081E–05 2.930E–10 3.387E+04 5.200E+04

N
2
Nitrogen 3.115E+01 –1.357E–02 2.608E–05 –1.168E–08 0.000E+00 0.000E+00
N
2
O Nitrous oxide 2.162E+01 7.281E–02 –5.778E–05 1.830E–08 8.160E+04 1.037E+05
O
2
Oxygen 2.811E+01 –3.680E–06 1.746E–05 –1.065E–08 0.000E+00 0.000E+00
HCl Hydrogen chloride 3.067E+01 –7.201E–03 1.246E–05 –3.898E–09 –9.236E+04 –9.533E+04
H
2
Hydrogen 2.714E+01 9.274E–03 –1.381E–05 7.645E–09 0.000E+00 0.000E+00
H
2
O Water vapor 3.224E+01 1.924E–03 1.055E–05 –3.596E–09 –2.420E+05 –2.288E+05
H
2
S Hydrogen sulfide 3.194E+01 1.435E–03 2.432E–05 –1.176E–08 –2.018E+04 –3.308E+04
NH
3
Ammonia 2.731E+01 2.383E–02 1.707E–05 –1.185E–08 –4.572E+04 –1.616E+04
SO
2
Sulfur dioxide 2.385E+01 6.699E–02 –4.961E–05 1.328E–08 –2.971E+05 –3.004E+05
SO
3
Sulfur trioxide 1.921E+01 1.374E–01 –1.176E–04 3.700E–08 –3.960E+05 –3.713E+05
CO Carbon monoxide 3.087E+01 –1.283E–02 2.789E–05 –1.272E–08 –1.106E+05 –1.374E+05
CO

2
Carbon dioxide 1.980E+01 7.344E–02 –5.602E–05 1.715E–08 –3.938E+05 –3.946E+05
CH
4
Methane 1.925E+01 5.213E–02 1.197E–05 –1.132E–08 –7.490E+04 –5.087E+04
C
2
H
4
Ethylene 3.806E+00 1.566E–01 –8.348E–05 1.755E–08 5.234E+04 6.816E+04
C
2
H
6
Ethane 5.409E+00 1.781E–01 –6.938E–05 8.713E–09 –8.474E+04 –3.295E+04
C
3
H
4
Propadiene 9.906E+00 1.977E–01 –1.182E–04 2.782E–08 1.923E+05 2.025E+05
C
3
H
4
Methyl acetylene 1.471E+01 1.864E–01 –1.174E–04 3.224E–08 1.856E+05 1.946E+05
C
3
H
6
Cyclopropane –3.524E+01 3.813E–01 –2.881E–04 9.035E–08 5.334E+04 1.045E+05

C
3
H
6
Propylene 3.710E+00 2.343E–01 –1.160E–04 2.205E–08 2.043E+04 6.276E+04
C
3
H
8
Propane –4.224E+00 3.063E–01 –1.586E–04 3.215E–08 –1.039E+05 –2.349E+04
C
4
H
4
Vinyl acetylene 6.757E+00 2.841E–01 –2.265E–04 7.461E–08 3.048E+05 3.062E+05
C
4
H
6
1-Butyne 1.255E+01 2.744E–01 –1.545E–04 3.405E–08 1.653E+05 2.022E+05
C
4
H
6
2-Butyne 1.593E+01 2.381E–01 –1.070E–04 1.735E–08 1.464E+04 1.856E+05
C
4
H
6
1,2-Butadiene 1.120E+01 2.724E–01 –1.468E–04 3.089E–08 1.623E+05 1.986E+05

C
4
H
6
1,3-Butadiene –1.678E+00 3.419E–01 –2.340E–04 6.335E–08 1.102E+05 1.508E+05
C
4
H
8
1-Butene –2.994E+00 3.532E–01 –1.990E–04 4.463E–08 –1.260E+02 7.134E+04
C
4
H
8
2-Butene, cis 4.396E–01 2.953E–01 –1.018E–04 –6.160E–10 –6.990E+03 6.590E+04
C
4
H
8
2-Butene, trans 1.832E+01 2.564E–01 –7.013E–05 –8.989E–09 –1.118E+04 6.301E+04
C
4
H
8
Cyclobutane –5.025E+01 5.025E–01 –3.558E–04 1.047E–07 2.667E+04 1.101E+05
C
4
H
8
Isobutylene 1.605E+01 2.804E–01 –1.091E–04 9.098E–09 –1.691E+04 5.811E+04

C
4
H
10
n-Butane 9.487E+00 3.313E–01 –1.108E–04 –2.822E–09 –1.262E+05 –1.610E+04
C
4
H
10
Isobutane –1.390E+00 3.847E–01 –1.846E–04 2.895E–08 –1.346E+05 –2.090E+04
From Reid, R.C., Prausnitz, J.M., and Poling, B.E., The Properties of Liquids and Gases, 4th ed., McGraw-Hill,
New York, 1987, Appendix A.
© 2006 by Taylor & Francis Group, LLC
548 Modeling of Combustion Systems: A Practical Approach
TABLE A.6
Heat Capacity vs. Temperature for Selected Compounds, J/mol K
Temperature, °C
Formula Name 0 50 100 200 300 400 500 1000 1500
NO Nitric oxide 29.74 29.92 30.14 30.65 31.23 31.86 32.52 35.32 34.99
NO
2
Nitrogen dioxide 35.97 37.78 39.49 42.61 45.32 47.62 49.52 53.02 46.66
N
2
Nitrogen 29.15 29.09 29.11 29.33 29.74 30.27 30.85 32.04 23.97
N
2
O Nitrous oxide 37.57 39.73 41.69 45.07 47.82 50.03 51.83 58.43 71.08
O
2

Oxygen 29.19 29.57 29.99 30.89 31.84 32.77 33.62 34.43 23.63
HCl Hydrogen chloride 29.55 29.51 29.52 29.64 29.90 30.28 30.75 33.65 35.35
H
2
Hydrogen 28.80 28.95 29.07 29.25 29.36 29.46 29.59 32.34 42.78
H
2
O Water vapor 33.48 33.84 34.24 35.13 36.13 37.22 38.37 44.37 48.77
H
2
S Hydrogen sulfide 33.91 34.55 35.25 36.82 38.54 40.34 42.15 48.92 45.39
NH
3
Ammonia 34.85 36.39 37.96 41.15 44.34 47.47 50.46 60.86 57.17
SO
2
Sulfur dioxide 38.72 40.76 42.63 45.85 48.45 50.52 52.13 56.13 60.69
SO
3
Sulfur trioxide 48.72 52.58 56.03 61.81 66.30 69.70 72.24 79.88 99.37
CO Carbon monoxide 29.19 29.21 29.30 29.70 30.28 30.99 31.74 33.49 24.90
CO
2
Carbon dioxide 36.03 38.26 40.29 43.82 46.72 49.08 51.02 57.89 69.50
CH
4
Methane 34.15 36.96 39.78 45.40 50.93 56.31 61.48 81.66 86.21
C
2
H

4
Ethylene 40.71 46.28 51.53 61.07 69.44 76.75 83.09 104.08 116.85
C
2
H
6
Ethane 49.06 56.01 62.66 75.07 86.34 96.52 105.66 137.68 151.65
C
3
H
4
Propadiene 55.65 62.39 68.66 79.93 89.63 97.91 104.96 127.43 143.92
C
3
H
4
Methyl acetylene 57.52 63.77 69.59 80.04 89.05 96.82 103.55 128.26 155.85
C
3
H
6
Cyclopropane 49.26 60.94 71.62 90.24 105.67 118.44 129.10 169.68 238.75
C
3
H
6
Propylene 59.50 68.05 76.13 90.93 104.04 115.59 125.71 159.49 177.37
C
3
H

8
Propane 68.26 79.28 89.66 108.60 125.28 139.90 152.64 195.01 219.48
C
4
H
4
Vinyl acetylene 68.98 77.43 85.11 98.37 109.23 118.12 125.50 155.29 214.32
C
4
H
6
1-Butyne 76.67 86.24 95.20 111.40 125.48 137.64 148.08 181.74 203.17
C
4
H
6
2-Butyne 73.34 82.28 90.78 106.47 120.51 133.01 144.07 181.43 198.43
C
4
H
6
1,2-Butadiene 75.28 84.94 94.01 110.49 124.92 137.47 148.33 183.80 204.87
C
4
H
6
1,3-Butadiene 75.54 86.51 96.61 114.41 129.34 141.76 152.06 185.05 222.02
C
4
H

8
1-Butene 79.54 91.87 103.41 124.30 142.47 158.20 171.75 216.22 246.42
C
4
H
8
2-Butene, cis 73.49 85.21 96.42 117.30 136.13 152.90 167.61 210.12 200.55
C
4
H
8
2-Butene, trans 82.94 93.55 103.76 122.98 140.54 156.39 170.48 212.53 202.35
C
4
H
8
Cyclobutane 62.59 78.51 93.15 118.94 140.59 158.72 173.96 228.85 305.79
C
4
H
8
Isobutylene 84.68 95.57 105.96 125.26 142.63 158.14 171.83 214.97 220.94
C
4
H
10
n-Butane 91.65 104.88 117.53 141.14 162.44 181.43 198.09 245.86 232.84
C
4
H

10
Isobutane 90.50 104.62 117.96 142.37 163.91 182.75 199.07 248.91 261.74
Based on Reid, R.C., Prausnitz, J.M., and Poling, B.E., The Properties of Liquids and Gases, 4th ed., McGraw-
Hill, New York, 1987, Appendix A.
© 2006 by Taylor & Francis Group, LLC
Fuel and Combustion Properties 549
FIGURE A.1
Heat capacity vs. temperature for polyatomic gases.
Temperature, ºC
Heat Capacity, J/mol K
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500
50
100
150
200
250
300
1, 2-butadiene and 1-butyne
1,3-butadiene
2-butene, cis
2-butyne
2-butene, trans
1-butene
vinyl acetylene
propylene
propadiene
methyl acetylene
ethane
isobutylene
n-butane

isobutane
cyclobutane
© 2006 by Taylor & Francis Group, LLC
550 Modeling of Combustion Systems: A Practical Approach
FIGURE A.2
Heat capacity vs. temperature for triatomic and other gases.
Temperature, ºC
Heat Capacity, J/mol K
20
30
40
50
60
70
80
90
100
110
120
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500
ethylene
methane
nitrous oxide
carbon dioxide
nitrogen dioxide
ammonia
water vapor
hydrogen sulfide
© 2006 by Taylor & Francis Group, LLC
Fuel and Combustion Properties 551

FIGURE A.3
Heat capacity vs. temperature for diatomic and other gases.
20
25
30
35
40
45
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500
Temperature, ºC
Heat Capacity, J/mol K
hydrogen
hydrogen chloride
nitric oxide
nitrogen
carbon dioxide
oxygen
© 2006 by Taylor & Francis Group, LLC
552 Modeling of Combustion Systems: A Practical Approach
TABLE A.7
Adiabatic Flame Temperatures
Air
C°F°leuF
H
2
3807 2097
CH
4
3542 1950
C

2
H
2
4104 2262
C
2
H
4
3790 2088
C
2
H
6
3607 1986
C
3
H
6
3742 2061
C
3
H
8
3610 1988
C
4
H
10
3583 1973
80126283OC

© 2006 by Taylor & Francis Group, LLC
Fuel and Combustion Properties 553
TABLE A.8
Volumetric Analysis of Typical Gaseous Fuel Mixtures
Fuel Gas
Component
Refinery Gases (Dry) Waste Gases
Natural Gas LPG
Cracked
Gas
Coking
Gas
Reforming
Gas
FCC
Gas
Refinery Gas
Sample 1
Refinery Gas
Sample 2
PSA
Gas
Flexicoking
Gas
Tulsa Alaska Netherlands Algeria Propane Butane
CH
4
93.4% 99% 81% 87% — — 65% 40% 28% 32% 36% 53% 17% 1%
C
2

H
4
— — — — — — 3% 3% 7% 7% 5% 2% — —
C
2
H
6
2.7% — 3% 9% — — 16% 21% 28% 9% 18% 19% — —
C
3
H
6
— — — — — — 2% 1% 3% 15%
8% 6% — —
C
3
H
8
0.6% — 0.4% 2.7% 100% — 7% 24% 22% 25% 20% 14% — —
C
4
H
8
— — — — — 100% 1% — — —
— — — —
C
4
H
10
0.2% — 0.1% 1.1% — — 3% 7% 7% 0% 2% 1% — —

C
5
& Higher — — — — — — 1% — — — — — — —
H
2
— — — — — — 3% 4% 5% 6% 3% 3% 28% 21%
CO — — — — — — — — — —
— — 10% 20%
CO
2
0.7% — 0.9% — — — — — — — — — 44% 10%
N
2
2.4% 1% 14% 0% — — — — — 7% 8% 3% <1% 45%
H
2
O — — — — — — — — — — — — <1% 3%
O
2
—— — ———
—— —— —
— — —
H
2
S —— — ————— —— — — — —
Total 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Data compiled from a variety of sources.
© 2006 by Taylor & Francis Group, LLC
554 Modeling of Combustion Systems: A Practical Approach
TABLE A.9

Physical Constants of Typical Gaseous Fuel Mixtures
Fuel Gas
Component
Refinery Gases (Dry) Waste Gases
Natural Gas LPG
Cracked
Gas
Coking
Gas
Reforming
Gas
FCC
Gas
Refinery Gas
Sample 1
Refinery Gas
Sample 2
PSA
Gas
Flexicoking
Gas
Tulsa Alaska Netherlands Algeria Propane Butane
Molecular weight 17.16 16.1 18.51 18.49 44.1 58.12 22.76 28.62 30.21 29.18 28.02 24.61 25.68 23.73
Lower heating value (LHV), Btu/SCF 913 905 799 1025 2316 3010 1247 1542 1622 1459 1389 1297 263 131
Higher heating value (HHV), Btu/SCF 1012 1005 886 1133 2517 3262 1369 1686 1769 1587 1515 1421 294 142
Specific gravity
(14.696 psia/60°F, Air = 1.0)
0.59 0.56 0.64 0.64 1.53 1.1 0.79 0.99 1.05 1.01 0.97
0.85 0.89 0.82
Wobbe number, HHV/(SG

1/2
) 1318 1343 1108 1416 2035 3110 1540 1694 1726 1579 1538
1541 312 157
Isentropic coefficient (Cp/Cv) 1.30 1.31 1.31 1.28 1.13 1.10 1.24 1.19 1.19 1.20 1.21
1.23 1.33 1.38
Stoichiometric air required, SCF/MMBtu 10554 10567 10554 10525 10369 10371 10402 10379 10322 10234 10311 10375 9667 8265
Stoichiometric air required,
lb
m
/MMBtu
805 806 805 803 791 791 794 792 787 781 787 792 738 630
Air required for 15% excess air,
SCF/MMBtu
12138 12152 12138 12104 11925 11926 11962 11936 11870 11769 11858
11931 11117 9505
Air required for 15% excess air,
lb
m
/MMBtu
923 924 923 920 907 907 910 908 903 895 902 907 845 723
Volume of dry combustion products,
SCF/MMBtu
10983 10956 11141 10953 10962 10996 10890 10909 10871 10847 10911 10904 11722 13517
Weight of dry combustion products,
lb
m
/MMBtu
865 862 876 863 870 874 861 864 862 860 864 862 985 1103
Volume of wet combustion products,
SCF/MMBtu

13257 13258 13415 13163 12788 12757 12935 12862 12771 12689 12821
12902 14198 15585
Weight of wet combustion products,
lb
m
/MMBtu
973 971 984 968 957 958 958 957 952 948 864 957 1102 1201
Adiabatic flame temperature, °F 3306 3308 3284 3317 3351 3351 3342 3348 3359 3371 3353 3345 3001 2856
Note: All values calculated using 60°F fuel gas and 60°F, 50% relative humidity combustion air.
© 2006 by Taylor & Francis Group, LLC

×