Tải bản đầy đủ (.pdf) (33 trang)

DNA Methylation: Basic Mechanisms - Part 4 ppsx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (477.57 KB, 33 trang )

94
B. F. Van
y
ushin
t
h
e maize en
d
osperm, genes
f
o
r
α
-zeins an
d
α
-tu
b
u
l
ins met
h
y
l
ate
d
in sporo
-
ph
y
tic diploid tissues b ecome undermeth


y
lated in the triploid endosperm,
and the demeth
y
lation correlatin
g
with
g
ene expression is often restricted t
o
t
h
e two c
h
romosomes o
f
materna
l
origin (Lun
d
et a
l
. 1995a,
b
). I
n
Ara
b
i
d

op
-
sis
the paternall
y
inherited
MEA
alleles are transcriptionall
y
silent in both
y
oung em
b
ryo an
d
en
d
osperm.
MEA
gene imprinte
d
in t
he
Ara
b
i
d
opsis en-
dosperm enc odes a SET-domain pr otein of the Pol
y

comb
g
roup that re
g
ulates
ce
ll
pro
l
i
f
eration
b
y exerting a gametop
h
ytic materna
l
contro
ld
uring see
d
development.
ddm
1 m
utat
i
o
n
sa
r

eab
l
eto
r
escue
mea
seeds b
y
functionall
y
r
eactivatin
g
paternall
y
inherited MEA alleles durin
g
seed development. Thus
,
t
h
e maintenance o
f
t
h
e genomic imprint at t
he
m
e
a

l
ocus requires zygotic
D
DM1 activit
y
(Vielle-Calzada et al. 1999). Imprintin
g
of th
e
MEA
Pol
y
com
b
gene is co ntro
ll
e
d
in t
h
e
f
ema
l
e gametop
h
yte
b
y an tagonism
b

etween t
he
two DNA-modif
y
in
g
enz
y
mes, MET1 meth
y
ltransferase and DME
g
l
y
cos
y
-
l
ase (Xiao et a
l
. 2003). DME DNA g
l
ycosy
l
ase activates materna
l
MEA
all
e
l

e
expression in the central cell of the female
g
ametoph
y
te, the pro
g
enitor of th
e
endos
p
erm. Maternal mutan
t
dme
or
mea
a
ll
e
l
es
r
esu
l
t
in
seed abo
r
t
i

o
n
.
Mutations that suppres
s
dme
seed abo
r
t
i
o
nh
a
v
ebee
nf
ou
n
dto
r
es
i
de
in
the MET1 meth
y
ltransferase
g
ene
.

MET1
functions u
p
stream of, or at
,
MEA
a
n
d
is require
df
or DNA met
h
y
l
ation o
f
t
h
ree regions in t
he
MEA
p
romoter in
s
eeds (Xiao et al. 2003). Parental imprintin
g
in A
. thaliana
i

nvolves the activit
y
o
f
t
h
eDNA
MET1
g
ene. P
l
ants trans
f
orme
d
wit
h
an antisens
e
MET1
cons
t
ruc
t
h
ave h
y
pometh
y
lated

g
enomes and show alterations in the behaviour of their
g
ametes in crosses with wild-t
y
pe plants. A h
y
bridization barrier between 2
x
A. thaliana
(when used as a seed parent) and 4x A
. arenosa
(
when used as
a
pollen parent) can be o vercome b
y
increasin
g
maternal ploid
y
butrestored b
y
h
ypomet
h
y
l
ation. T
h

us,
h
ypomet
h
y
l
ation restores t
h
e
h
y
b
ri
d
ization
b
arrier
throu
g
h paternalization of endosperm. Manipulation of DNA meth
y
lation ca
n
b
esu
ffi
cient to erect
h
y
b

ri
d
ization
b
arriers, o
ff
ering a potentia
l
mec
h
anis
m
for speciation and a means of controllin
gg
ene flow between species (Bushell
et al. 2003).
Th
e
A
rabid o
p
sis FWA
g
ene displa
y
s imprinted (maternal ori
g
in-specific)
expression associated with heritable hypomethylation of repeats around tran-
s

cription starting sites in en
d
osperm. T
he
F
WA
imprint
d
epen
d
sont
h
e main
-
tenance DNA methyltransferase MET1 and is not established by allele-specifi
c
d
e novo met
h
y
l
ation
b
ut
b
y materna
l
gametop
h
yte-speci


c gene activation
,
which depends on a DNA
g
l
y
cos
y
lase
g
ene, DEMETE
R
(
Kinoshita et al. 2004
).
D
NA met
h
y
l
ation is essentia
lf
or genome management in p
l
ants: It contro
l
s
the activit
y

of transposable elements and introduced DNA se
g
ments and is
r
espo nsible for transgene silencing (Kooter et al. 1999; Kumpatla and Hal
l
1
999; Meyer 1999). Met
h
y
l
ation o
f
t
h
e

rst untrans
l
ate
d
exon an
d
5

-en
d
o
f
DNA Meth

y
lation in Plants
95
th
eintronint
h
e maize u
b
i
q
uitin 1
p
romoter com
pl
ex an
d
con
d
ensation o
f
t
he chromatin in re
g
ions containin
g
trans
g
enes correlate with transcriptional
t
rans

g
ene silencin
g
in barle
y
(Men
g
et al. 2003)
.
T
h
e
h
omozygous
dd
m1 (
f
or
d
ecrease in DNA met
h
y
l
ation) mutation o
f
Arabido
p
sis
r
esults in

g
enomic DNA h
y
pometh
y
lation and the release of si-
l
encing in various genes. W
h
en t
he
dd
m1 mutation was intro
d
uce
d
into a
n
Arabido
p
sis cell line carr
y
in
g
inactivated tobacco retrotransposon Tto1, this
el
ement
b
ecame
h

ypomet
h
y
l
ate
d
an
d
transcriptiona
ll
yan
d
transpositiona
ll
y
active. Therefore, the inactivation of re trotransposons and the silencin
g
o
f
repeated
g
enes have mechanisms in common (Hirochika et al. 2000). A re-
m
ar
k
a
bl
e
f
eature o

f
t
h
e
ddm
1
mutation is t
h
at it in
d
uces
d
eve
l
o
p
menta
l
a
b
nor-
m
alities b
y
causin
g
heritable chan
g
es in other loci. One of th
e

ddm
1-in
duced
a
b
norma
l
ities is cause
db
y insertion o
f
CAC1, an en
d
ogenous CACTA
f
ami
l
y
t
ransposon. This class of Arabido
p
sis
e
lements transposes and increases i
n
copy num
b
er at
h
ig

hf
requencies speci

ca
ll
yint
he
dd
m1
h
ypomet
h
y
l
atio
n
back
g
round. Thus, the
DDM
1
g
ene not onl
y
epi
g
eneticall
y
ensur es proper
g

ene expression, but also stabilizes transposon behaviour, possibl
y
throu
gh
chromatin remodellin
g
or DNA meth
y
lation (Miura et al. 2001). Robertson’
s
m
utator trans
p
osons in the A rabido
p
sis
g
enome are heavil
y
meth
y
lat ed an
d
inactive. T
h
ese e
l
ements
b
ecome

d
emet
h
y
l
ate
d
an
d
active in t
h
ec
h
romatin-
remodellin
g
mutant
ddm1
, which lost the heterochromatic DNA meth
y
latio
n
(
Singer et a
l
. 2001). T
h
us, DNA transposons in p
l
ants are regu

l
ate
db
yc
h
ro
-
m
atin remodellin
g
. Since
g
ene silencin
g
and paramu tation are also re
g
ulated
b
y
DDM1
,theepi
g
enetic silencin
g
is considered to be related to transposo
n
re
g
ulation (Sin
g

er et al. 2001). Plant S1 SINE retroposons mainl
y
inte
g
rate in
hy
pometh
y
lated DNA re
g
ionsandare tar
g
eted b
y
meth
y
lases; meth
y
lationca
n
th
en sprea
df
rom t
h
e SINE into

an
k
ing genomic sequences, creating

d
ista
l
epi
g
enetic modifications. This meth
y
lation spreadin
g
is vectoriall
y
directe
d
upstream or
d
ownstream o
f
t
h
eS1e
l
ement, suggesting t
h
at it cou
ld b
e
f
aci
l
i-

t
ated when a potentiall
yg
ood meth
y
latable sequence is sin
g
le stranded durin
g
D
NA replication, particularly when located on the lagging strand. Replicatio
n
of a short meth
y
lated DNA re
g
ion could th us lead to the de novo meth
y
latio
n
of upstream or downstream adjacent sequences (Arnaud et al. 2000)
.
DNA met
h
y
l
ation in

uences t
h

emo
b
i
l
ity o
f
transposons. T
h
ein

uence
s
eems to be associated, particularly, with different affinity for Ac transposase
b
in
d
ing to
h
o
l
o-,
h
emi- an
d
unmet
h
y
l
ate
d

transposon en
d
s. In petunia ce
ll
s
,
a holometh
y
lated Ds is unable to excise from a nonreplicatin
g
vector, an
d
rep
l
ication restor es excision. A Ds e
l
ement
h
emimet
h
y
l
ate
d
on one DNA
s
trand transposes in the absence of replication, whereas hemimeth
y
lation o
f

t
he complementary strand causes an inhibition of Ds excision. In the activ
e
h
emimet
h
y
l
ate
d
state, t
h
eDsen
d
s
h
ave a
h
ig
hb
in
d
ing a
ffi
nity
f
or t
h
e trans-
9

6B.F.Van
y
ushin
posase, w
h
ereas
b
in
d
ing to inactive en
d
sisstrong
l
yre
d
uce
d
(Ros an
d
Kunze
2001). Hi
g
h-frequenc
y
transposition of endo
g
enous CACTA transposons in
A
rabid o
p

sis
C
ACTA elements was detected in
cmt3met
1 double mutants. Sin-
gl
emutantsineit
h
er
m
et
1
or
c
mt
3
w
ere muc
hl
ess e
ff
ective in mo
b
i
l
ization
,
despite si
g
nificant induction of CACTA transcript accumulation. Thus, CG

a
n
d
non-CG met
h
y
l
ation systems re
d
un
d
ant
l
y
f
unction
f
or immo
b
i
l
izatio
n
of transposons (Kato et al. 2003). DNA meth
y
lation in the Tam3 end re
g
ions
in
A

ntirr
h
inu
m
t
en
d
e
d
to suppress t
h
e excision activity, an
d
t
h
e
d
egree o
f
meth
y
lation was dependent on the chromosomal position (Kitamura et al
.
2001).
P
aramutation an
d
mutator
(
Mu

)
trans
p
oson inactivation in maize are
l
inked mechanisticall
y
(Lisch et al. 2002). A muta tion of a
g
ene, modifie
r
o
fp
aramutation 1 (
m
op
1
)
,w
h
ic
hp
revents
p
aramutation at t
h
ree
d
i
ff

erent
l
oci in maize, can reverse meth
y
lation of mutator elements. In mo
p1
muta
n
t
b
ac
k
groun
d
s, met
h
y
l
ation o
f
nonautonomou
s
Mu
e
l
ements can
b
e reverse
d
even in the absence of the re

g
ulator
y
MuDR
e
l
e
m
e
n
t.
MuDR
meth
y
lation is
s
e
p
arable fro
m
Mu
D
R
s
ilencin
g
because removal o f meth
y
lation does no
t

cause
imm
ed
i
ate
r
eact
iv
at
i
o
n
.
Th
e
m
o
p
1
m
utation does not alter the meth
y
la
-
tion of certain other transposable elements includin
g
those
j
ust upstream o
f

ap
aramuta
ble
b
1
g
ene. T
h
us, t
h
e mop
1
gene acts on a su
b
set o
f
epigenetica
ll
y
r
e
g
ulated seq uences in the maize
g
enome, and paramutation an
d
Mu
e
l
e

m
e
n
t
met
h
y
l
ation require a common
f
actor (Lisc
h
et a
l
. 2002)
.
Due to
kn
o
wn r
eact
i
o
n
o
f
t
h
eo
xi

dat
iv
e
m
5
Cd
eamination con
j
u
g
ate
d
wit
h
c
y
tosine meth
y
lation (Mazin et al. 1985), DNA meth
y
lation is an essential
muta
g
enic
f
actor t
h
at is responsi
bl
e

f
or a we
ll
-
k
nown p
h
enomeno n o
f
CG an
d
CNG suppressions that are common for man
y
plant
g
enes (Lund et al. 2003).
T
h
us, DNA met
h
y
l
ation is an important
f
actor o
f
p
l
ant ev o
l

ution.
DNA meth
y
lation ma
y
be essentiall
y
modulated b
y
various biolo
g
ical (vi
-
ra
l
,
b
acteria
lf
unga
l
, parasitic p
l
ant in
f
ections) or a
b
iotic
f
actors t

h
at may
in

uence p
l
ant
g
rowt
h
an
dd
eve
l
opment. Interestin
gly
,t
h
eC
h
erno
byl
ra
d
i-
ation accident resulted in a
g
lobal DNA h
y
permeth

y
lation in some plant
s
investi
g
ated (Kovalchuk et al. 2003). Fun
g
al infections most stron
g
l
y
distort
meth
y
lation in repetitive butnot unique sequences in plant
g
enome (Guseinov
an
d
Vanyus
h
in 1975). By t
h
is met
h
o
d
,
f
ungi, viruses an

d
ot
h
er in
f
ective agents
ma
y
switch ov er the
g
ene transcription pro
g
ram in the host plant mostl
y
i
n
f
avour o
f
t
h
e respective in
f
ective agent. On t
h
eot
h
er
h
an

d
,p
l
ants are a
bl
et
o
modif
y
viral DNA that is not inte
g
rated into the plant
g
enome. A few da
ys
a
f
ter inocu
l
ation into turni
pl
eaves, t
h
e unenca
p
si
d
ate
d
cau

l
i

ower mosaic
virus DNA was found to be in a meth
y
lated stat e at almost all HpaII/Msp
I
s
ites (Tan
g
and Leisner 1998). In fact, proper DNA meth
y
lation ma
y
stabi
-
l
ize
f
oreign DNA in
h
ost p
l
ant (Rogers an
d
Rogers 1992). T
h
e
f

oreign DN
A
DNA Meth
y
lation in Plants
97
intro
d
uce
d
into
b
ar
l
ey ce
ll
s was a
bl
e to persist t
h
roug
h
at
l
east two p
l
an
t
g
enerations. Transformation of barle

y
cells was defined b
y
showin
g
initiation
o
f transcription at the proper site on the barle
y
promoter for the chimeric
g
ene in a
l
eurone tissue
f
rom
b
ot
h
a primary trans
f
ormant an
d
its progeny
,
and b
y
tissue-specific expression (aleurone
g
reater than leaf) in the pro

g
en
y.
T
h
is persistence t
h
roug
h
many mu
l
tip
l
es o
f
ce
ll d
ivision is consi
d
ere
d
a
s
f
ormall
y
equivalent to transformation, re
g
ardless of whether the DNA wa
s

c
h
ro mosoma
ll
yintegrate
d
or carrie
d
as an episome,
b
ut
d
oes not necessar-
il
y
rep resent stable inte
g
ration into the
g
enome, since the forei
g
nDNAwa
s
f
requentl
y
rearran
g
ed or lost (Ro
g

ers and Ro
g
ers 1992). The forei
g
nDN
A
w
as most sta
bl
ew
h
en
pl
asmi
d
DNA use
d
in trans
f
ormation
l
ac
k
e
d
a
d
enin
e
m

eth
y
lation but had complete meth
y
lation of c
y
tosine residues in the CG at
Hpa II sites; a
d
enine met
h
y
l
ation a
l
one was associate
d
wit
h
mar
k
e
df
oreig
n
DNA instabilit
y
. Thus, barle
y
cellshaveas

y
stem that identifies DNA lackin
g
th
e proper met
h
y
l
ation pattern an
d
causes its
l
oss
f
rom active
l
y
d
ivi
d
ing c e
ll
s
(Ro
g
ers and Ro
g
ers 1992). These intri
g
uin

g
data on forei
g
n DNA meth
y
latio
n
in plant cells ma
y
resemble a host restriction-modification phenomenon tha
t
is common in prokar
y
otes
.
3
Adenine DNA Methylation
3
.1
N
6
-Meth
y
ladenine in DNA of Eukar
y
ote
s
N
6
-

Meth
y
ladenine (m
6
A
) occurs as aminor base in DNAof various or
g
anisms
.
It was

rst
d
etecte
d
in
E
.co
li
D
NA 50 years ago (Dunn an
d
Smit
h
1955).
Then it was shown to be obvious in most bacterial DNA (Van
y
ushin et al.
1968; Barras an
d

Marinus 1989). It
h
as a
l
so
b
een
f
oun
d
in DNA o
f
a
l
gae
(Pa
kh
omova et a
l
. 1968; Hattman et a
l
. 1978; Ba
b
in
g
er et a
l
. 2001) an
d
t

h
eir
viruses (Que et al. 1997; Nelson et al. 1998), fun
g
i(Bur
y
anov et al. 1970;
R
o
g
ers et a
l
. 1986), an
d
protozoa (Gutierrez et a
l
. 2000) inc
l
u
d
in
g
T
etra
hy
men
a
(Gorovsk
y
et al. 1973; Kirnos et al. 1980; Pratt and Hattman 1981)

,
Crithidia
(Zaitseva et a
l
. 1974)
,
Paramecium (Cummings et a
l
. 1974),
O
xytric
h
a
(
Ra
e
and S
p
ear 1978),
T
rypanosoma cruz
i
(
Ro
j
as and Galanti 1990), and Stylonychia
(Ammermann et a
l
. 1981). In DNA o
f

various a
l
gae,
N
6
-d
imet
h
ya
d
enine wa
s
d
etecte
d(
Pa
kh
omova 1974
)
.A
b
out 0.8% o
f
a
d
enine resi
d
ues are
f
oun

d
a
s
m
6
AinDNAo
f
t
h
e transcriptiona
ll
y active macronuc
l
ei o
f
T
etra
h
ymena
(Gorovs
ky
et a
l
. 1973; Kirnos et a
l
. 1980). A met
hyl
ation site is
5


-
NA T-3

(Bromber
g
et al. 1982), and about 3% meth
y
lation sites are GATC (Harrison
et a
l
. 1986; Karrer an
d
Van Nu
l
an
d
1998)
.
9
8B.F.Van
y
ushin
T
h
ea
d
enine met
h
y
l

ate
d
GATC sites are pre
f
erentia
ll
y
l
ocate
d
in
l
in
k
e
r
D
NA, unmeth
y
lat ed sites are
g
enerall
y
in DNA of nucleosome cores, and
h
istone H1 is not required for the maintenance of normal meth
y
lation pat-
terns (Karrer an
d

Van Nu
l
an
d
2002). It was suggeste
d
t
h
at met
h
y
l
ate
d
sites
ma
y
reflect a distribution of nucleosome positions, onl
y
some of which pro
-
vi
d
e accessi
b
i
l
ity to a
d
enine DNA met

h
y
l
trans
f
erase (Karrer an
d
Van Nu
-
l
and 2002). However, the enz
y
me meth
y
latin
g
adenine residues i
n
T
etrah
y
-
men
a
DNA
h
as not yet
b
een iso
l

ate
d
an
d
its amino aci
d
sequence is un-
kn
o
wn
.
DN A
o
f
t
h
es
lim
e
m
ou
l
d
P
h
y
sarum flavicomum
beco
m
es se

n
s
i
t
iv
e
to t
h
e
D
p
nI restriction endonuclease durin
g
enc
y
stment. This ma
y
be du
e
to t
h
ea
pp
earance o
fm
6
A resi
d
ues in GATC se
q

uences in t
h
is DNA (Z
hu
and Henne
y
1990). Earl
y
data on the presence of m
6
A
in mammalian s
p
erm
D
NA were am
b
iguous (Unger an
d
Venner 1966), an
d
attempts to
d
etect an
d
iso
l
ate t
h
is minor

b
ase
f
rom DNA o
f
man
y
inverte
b
rates an
d
verte
b
rates
were unsuccess
f
u
l
(Vanyus
h
in et a
l
. 1970; Law
l
ey et a
l
. 1972; Fantappie e
t
a
l

. 2001). Nevert
h
e
l
ess, it was
j
u
dg
e
df
rom t
h
e
d
i
ff
erent resistance o
f
ani
-
mal DNA to r estriction endonucleases sensitive to meth
y
lation of adenine
resi
d
ues
(
Ta
q
I,

M
bo
I
an
d
S
au3AI) t
h
at some
g
enes
(
Myo
-
D1) (Ka
y
et a
l
.
1
994)—steroid-5
-
α
-reductase
g
enes 1 and 2 (Re
y
es et al. 1997)—of mam
-
ma

l
s (mouse, rat) mig
h
t con tain
m
6
A
resi
d
ues. T
h
is in
d
irect
l
y suggests t
h
at
anima
l
sma
yh
ave a
d
enine DNA met
hyl
trans
f
erases. It is interestin
g

t
h
at a
d-
d
ition o
f
N
6
-met
h
y
ld
eoxya
d
enosine (Me
d
A
d
o ) to C6.9 g
l
ioma ce
ll
s triggers
a
d
i
ff
erentiation process an
d

t
h
e expression o
f
t
h
eo
l
i
g
o
d
en
d
ro
gl
ia
l
mar
k
er
2

,3

-c
y
clic nucleotide 3

-

phosphor
y
lase. The differentiation induced b
y
N
6
-
met
hyld
eox
y
a
d
enosine was a
l
so o
b
serve
d
on p
h
eoc
h
romoc
y
toma an
d
ter-
atocarcinoma cell lines and on d
y

sembr
y
oplastic neuroepithelial tumou
r
ce
ll
s (Rate
l
et a
l
. 2001). T
h
e precise mec
h
anism
b
yw
h
ic
h
mo
d
i

e
d
nu-
cleoside induces cell differentia tion is still unclear, but it is consider ed to
b
ere

l
ate
d
to ce
ll
cyc
l
emo
d
i

cations. T
h
e incu
b
ation o
f
C2C12 myo
bl
ast
s
in the presence of MedAdo induces m
y
o
g
enesis (Charles et al. 2004). It
i
s
r
e

m
a
rk
ab
l
et
h
at m
6
A was detected b
y
a method based on HPLC cou
-
p
l
e
d
to e
l
ectrospra
y
ionization tan
d
em mass spectrometr
y
in t
h
eDNA
f
ro

m
M
edAdo-treated cells (it remains undetectable in D NA from control cells)
.
F
urt
h
ermore, Me
d
A
d
oregu
l
ates t
h
e expression o
f
p21, myogenin, mTOR an
d
M
HC. Interestin
g
l
y
, in the pluripotent C2C12 cell line, MedAdo drives the
d
i
ff
erentiation towar
d

s myogenesis on
l
y(C
h
ar
l
es et a
l
. 2004). T
h
ese resu
l
ts
point to
N
6
-met
hyld
eox
y
a
d
enosine as a nove
l
in
d
ucer o
f
m
y

o
g
enesis an
d
f
urt
h
er exten
d
st
h
e
d
i
ff
erentiation potentia
l
ities o
f
t
h
is met
h
y
l
ate
d
nuc
l
eo

-
s
i
de.
m
6
A has been f ound in DNA of hi
g
her plants (Van
y
ushin et al. 1971;
Buryanov et a
l
. 1972). It may
b
e present in p
l
asti
d
(amy
l
op
l
ast) DNA (Ngern-
DNA Meth
y
lation in Plants
99
p
rasirtsiri et a

l
. 1988). In w
h
eat see
dl
ings it is present in
h
eavy
(
ρ
= 1.718 g
/
cm
3
)
mitoc
h
on
d
ria
l
DN A (Van
y
us
h
in et a
l
. 1988; A
l
e

k
san
d
rus
hk
ina et a
l
.
1990; Kirnos et al. 1992a, b). Similar mtDNA co ntainin
gm
6
A
w
e
r
ea
l
so
f
ou
n
d
in many ot
h
er
h
ig
h
er p
l

ants inc
l
u
d
ing various arc
h
egoniates (mosses,
f
erns,
and others) and an
g
iosperms (monocots, dicots; Kirnos et al. 1992a). Th
e
synt
h
esis o
f
t
h
is unusua
l
DN A ta
k
es p
l
ace main
l
y in speci

cvacuo

l
ar vesi-
c
l
es containin
g
mitoc
h
on
d
ria, an
d
it is a sort o
f
a
g
in
g
in
d
ex in w
h
eat an
d
o
t
h
er p
l
ants (Kirnos et a

l
. 1992
b
;Ba
k
eeva et a
l
. 1999; Vanyus
h
in et a
l
. 2004)
.
T
h
ereissomein
d
irect evi
d
ence (
b
ase
d
on t
h
ecomparisono
f
pro
d
ucts o

f
DNA h
y
drol
y
sis with restriction endonucleases
Mbo
I
a
n
d
S
a
u
3A) that some
a
d
enine resi
d
ues in zein genes o
f
corn can
b
e met
h
y
l
ate
d
(Pintor-Toro 1987)

.
Th
e
D
R
M2
g
ene
in
Arabido
p
sis
w
as found to be meth
y
lated at both adenin
e
resi
d
ues in some GATC sequences an
d
at t
h
e int erna
l
cytosine resi
d
ues in
C
CGG sites (Ashapkin et al. 2002). Thus, two differen t s

y
stems of the
g
enome
m
o
d
i

cation exist in
h
ig
h
er p
l
ants. It is a
b
so
l
ute
l
yun
k
nown
h
ow t
h
ese sys
-
t

ems ma
y
interact and to what de
g
ree the
y
are interdependent. It appear
s
t
hat adenine meth
y
lation ma
y
influence the c
y
tosine modification and vic
e
versa. In terestin
g
l
y
, the adenine meth
y
lation of th
e
DRM2
g
ene observed i
s
m

ost prominent in wild-t
y
pe plants and appears to be diminished b
y
the
p
resence o
f
antisens
e
METI
transgenes. Since METI
d
oes not possess a
d
enine
D
NA meth
y
ltransferase activit
y
, its action on adenine meth
y
lation is evi-
d
ent
l
y a secon
d
ary e

ff
ect me
d
iate
d
t
h
roug
h
a
d
enine DNA met
h
y
l
trans
f
erase
or some other factors. An
y
wa
y
, we have to keep in mind the idea that ther
e
may exist a new sophisticated type of interdependent regulation of gene func
-
tionin
g
in plants, based on the combinator
y

hierarch
y
of certain chemicall
y
and biolo
g
icall
y
different meth
y
lation s of the
g
enome
.
3
.
2
A
den
i
ne DNA Meth
y
ltransferases
m
6
A is formed in DNA due to the reco
g
nition and meth
y
lation of respec

-
t
ive a
d
enine resi
d
ues in certain sequences
by
speci

ca
d
enine DNA met
hyl-
t
ransferases. Adenine DNA meth
y
ltransferases of b acterial ori
g
in can als
o
m
et
h
y
l
ate cytosine resi
d
ues in DNA wit
h

t
h
e
f
ormation o
fm
4
C(Je
l
tsc
h
2001).
The com
p
arison of
p
rotein structures
p
rovides evidence for an evolution-
ary
l
in
kb
etween wi
d
e
l
y
d
iverge

d
su
bf
ami
l
ies o
fb
acteria
l
DN
A
N
6
-a
d
enin
e
m
et
hyl
trans
f
erases an
d
ar
g
ues a
g
ainst t
h

ec
l
ose
h
omo
l
o
gy
o
f
N
6
-
a
d
enine an
d
N
4
-
cytosine met
h
y
l
trans
f
erases (Bujnic
k
i 1999–2000).
Enz

y
matic DNA met
hyl
ationinpro
k
ar
y
otes an
d
eu
k
ar
y
otes p
l
a
y
sanim-
p
ortant role in the re
g
ulation of man
yg
enetic processes includin
g
transcrip-
t
ion, rep
l
ication, DNA repair an

d
gene transposition (Razin an
d
Riggs 1980).
100
B
.F.Van
y
ushi
n
It is a
l
so an integrative e
l
ement o
fh
ost restriction-mo
d
i

cation system in
bacteria and some lower eukar
y
otes (Arber 1974).
A
denine DNA meth
y
ltransferases of eukar
y
otes could be inherited fro

m
s
ome pro
k
aryotic ancestor. T
h
ey may
b
e
h
omo
l
ogous to
k
nown pro
k
ary
-
otic DNA-(amino)meth
y
ltransferases due to the ver
y
conservative nature of
D
NA met
h
y
l
trans
f

erases in genera
l
. ORFs
f
or putative a
d
enine DNA met
h
y
l-
transferases were found in nuclear but not mitochondrial DNA of protozo
a
(
L
eis
h
mania major),
f
ungi (
S
acc
h
aromyces cerevisiae
,
Sc
h
izosacc
h
aromyce
s

p
ombe), hi
g
her plants(A
. thaliana
)
, and animals
(
Droso
p
hila melano
g
aster,
Caenorhabditis ele
g
ans
,
H
omo sa
p
ien
s
; Shornin
g
and Van
y
ushin 2001)
.
T
h

ere is not
h
ing current
l
y
k
nown a
b
out t
h
e ORF expression
d
etecte
d
or
activit
y
of respective eukar
y
otic proteins encoded in these or
g
anisms. Th
e
enzymatic activity o
f
t
h
ese DNA met
h
y

l
trans
f
erases may
b
every
l
imite
d
as is
true, for example, with the transcription of the Droso
p
hila melano
g
aster
C
5
-
cytosine-DNA met
h
y
l
trans
f
erase gene [t
h
is insect DNA contains an extreme
l
y
l

ow amount o
f
5-met
hyl
c
y
tosine (Gow
h
er et a
l
. 2000), an
d
t
h
e DNA met
hyl
-
transferase
g
ene is a component of a transposon-similar element expresse
d
on
ly
in t
h
e ear
ly
sta
g
es o

f
em
b
r
y
onic
d
eve
l
opment] (L
yk
oeta
l
. 2000)
.
The amino acid sequenc es of putative eukar
y
otic DNA-(amino)meth
y
l-
trans
f
erases (S
h
orning an
d
Vanyus
h
in 2001) are very
h

omo
l
ogous to eac
h
other, as well as to real DNA-(amino)meth
y
ltransferases of eubacteria, h
y
po-
t
h
etica
l
met
h
y
l
trans
f
erases o
f
arc
h
ae
b
acteria an
d
puta tive HemK-proteins o
f
eu

k
ar
y
otes (Bu
j
nic
k
ian
d
Ra
dl
ins
k
a 1999). T
h
ese putative eu
k
ar
y
otic a
d
enin
e
D
NA meth
y
ltransferases (ORF) share conservative motifs (I, IV) specific fo
r
D
NA-(amino)meth

y
ltransferases and motifs II, III, V, VI and X. Motif I (it
takes part in bindin
g
of the methionine part of the
S
-adenos
y
lmethionine
mo
l
ecu
l
ean
d
is speci

c
f
or a
ll
A
d
oMet-
d
epen
d
ent met
h
y

l
trans
f
erases) was
detected in all eukar
y
otic ORFs found. The amino acid composition of the cat-
a
l
ytic centre in a
ll
putative DNA-(amino)met
h
y
l
trans
f
erases is practica
ll
yt
h
e
s
ame; it is extremel
y
conservative and does not have an
y
mutations. It seem
s
that if mutations in the catal

y
tic centre of these enz
y
mes occurred, the
y
eithe
r
would be effectivel
y
repaired or the mutants would be lethal. Motifs V, VI
and X in eukar
y
otic ORFs detected are more similar to analo
g
ous motifs i
n
D
NA-(amino)-met
h
y
l
trans
f
erases
f
rom grou
p
g
. In most ORFs
d

etecte
d,
t
he
conservative motifs specific for DNA-(amino)meth
y
ltransferases occup
y
less
t
h
an
h
a
lf
o
f
t
h
etota
l
amino aci
d
sequence. Six o
f
t
h
ese ORFs
h
ave a re

l
ative
l
y
l
ar
g
e N-terminal part (about 170–200 amino acid residues) located in fron
t
o
f
t
h
e conservative moti
f
s
.
It cannot be ruled out that the
g
ene of the putative DNA-(amino)meth
y
l
-
transferase is located in a block of genes regulating the replication of mi-
toc
h
on
d
ria
l

DNA. In
f
u
ll
y sequence
d
mitoc
h
on
d
ria
l
genomes o
f
eu
k
aryote
s
DNA Meth
y
lation in Plant
s
1
01
(t
h
e
l
iverwor
t

Marc
h
antia po
l
ymorp
ha
,
A
ra
b
i
d
opsis t
h
a
l
ian
a
,sugar
b
eet, t
he
al
g
a Chr
y
sodid
y
mus s
y

nuroideus
)
the nucleotide sequences with si
g
nificant
homolo
gy
to
g
enes of prokar
y
otic DNA-(amino)meth
y
ltransferases were no
t
o
b
serve
d
(S
h
orning an
d
Vanyus
h
in 2001). It is most pro
b
a
bl
et

h
at an enzyme
encoded in the nucleus is trans
p
orted somehow into mitochondria. Putativ e
p
roteins AAF52125 o
f
Drosop
h
i
l
ame
l
anogaster
a
n
d
BAB02202 o
f
A
ra
b
i
d
opsi
s
thaliana
m
i

g
ht have a si
g
nal peptide for mitochondrial transportation o
n
th
e N-en
d
.Ot
h
er ORFs
f
or
h
ypot
h
etica
l
DNA-(amino)met
h
y
l
trans
f
erases o
f
eukar
y
otes do not have distinct si
g

nal peptides on the N-end; but, in fact, thi
s
d
oes not mean that the
y
do no t hav e them. Si
g
nal peptides ma
y
be present o
n
th
e C-en
d
an
dd
i
ff
erent
f
rom
k
nown N-termina
l
signa
l
s may occur (DeLa
b
r
e

et al. 1999).
Th
e

rst eu
k
aryotic (p
l
ant
)
N
6
-a
d
enine DNA met
h
y
l
trans
f
erase
(
wa
d
m
-
t
as
e
)

iso
l
ate
d
was
f
rom t
h
e vacuo
l
ar vesic
l
e
f
raction o
f
a
g
in
g
w
h
eat co
l
eopti
l
e
(Fe
d
oreyeva an

d
Vanyus
h
in 2002). T
h
e vesic
l
es appear in p
l
ant apoptoti
c
ce
ll
s, are enric
h
e
d
wit
h
Ca
2+
an
d
contain active
ly
rep
l
icatin
g
mitoc

h
on
-
d
ria (Bakeeva et al. 1999; Van
y
ushin 2004). In the presence of
S
-
adenos
y
l
-
l
-
met
h
ionine, t
h
e enz
y
me
d
enovomet
hyl
ates t
h
e

rst a

d
enine resi
d
ue in
t
he TG
A
TCA sequence in the sin
g
le-stranded (ss)DNA or dsDNA substrates,
b
ut it pre
f
ers sing
l
e-stran
d
e
d
structures. W
h
eat a
d
enine DNA met
h
y
l
trans
-
f

erase is a M
g
2+
-
or
C
a
2
+
-d
epen
d
ent enz
y
me wit
h
a maximum activit
y
at pH
7
.5–8.0. A
b
out 2–3 mM CaC
l
2
o
r MgC
l
2
i

nt
h
e reaction mixture is nee
d
e
df
or
th
e maxima
l
DNA met
hyl
ation activit
y
.T
h
e enz
y
me is stron
gly
in
h
i
b
ite
dby
eth
y
lenediaminetetraacetate (EDTA). The optimal concentration of AdoMe
t

in DNA met
hyl
ation wit
h
w
a
d
mtas
e
is a
b
out 10
µ
M. Wa
d
mtase
e
nco
d
e
d
in t
he
w
heat nuclear DNA ma
y
be homolo
g
ous to th
e

A
. thaliana
ORF (GenBank
,
B
AB02202.1), w
h
ic
h
mig
h
t
b
e ascri
b
e
d
to putative a
d
enine DNA met
h
y
l
trans-
ferases (Shornin
g
and Van
y
ushin 2001). The meth
y

lated adenine residues
f
oun
d
in Gm
6
ATC site s o
f
a
DRM2
gene inanuc
l
ear DNA o
f
A. t
h
a
l
iana(As
h
a
p-
k
in et a
l
. 2002) cou
ld b
e a constituent part o
f
a sequence TGATCA reco

g
nize
d
and meth
y
lated b
y
wheat adenine DNA meth
y
ltransferase. Unfortunatel
y
,w
e
d
onot
k
now w
h
et
h
er a
d
enine DNA met
hyl
trans
f
erase i
n
A
ra

b
i
d
o
p
sis ce
ll
s
h
a
s
t
he same site specificit
y
as it has in wheat plants
.
S
ince
w
a
d
mtas
e
is
f
oun
d
in vesic
l
es wit

h
mitoc
h
on
d
ria
l
active
l
y-rep
l
icatin
g
DNA, its maximal activit
y
is associated with mtDNA replication and it prefer
s
t
o met
h
y
l
ate ssDNA, t
h
is enzyme seems to operate main
l
ywit
h
rep
l

icatin
g
m
tDNA. Simi
l
ar to t
h
e
k
nown
d
am enz
y
me contro
ll
in
g
p
l
asmi
d
rep
l
ication
in
b
acteria
,
w
a

d
mtas
e
seems to contro
l
re
pl
ication o
f
mtDNA t
h
at are re
p
re-
sente
d
main
ly by
circu
l
ar mo
l
ecu
l
es in w
h
eat see
dl
in
g

s (Kirnos et a
l
. 1992a,
b
)
.
A
s mitochondria could be evolutionaril
y
of bacterial ori
g
in, the bacterial con
-
t
ro
lf
or p
l
asmi
d
rep
l
ication
b
ya
d
enine DNA met
h
y
l

ation seems to
b
e acquire
d
102
B
.F.Van
y
ushi
n
b
yp
l
ant ce
ll
s, an
d
it is pro
b
a
bl
y use
df
or t
h
econtro
l
o
f
mitoc

h
on
d
ria rep
l
ica-
tion.
3
.
3
Putat
i
ve Role of Aden
i
ne DNA Meth
y
lat
i
on
i
n Plants
Un
f
ortunate
ly
,t
h
e
f
unctiona

l
ro
l
eo
f
a
d
enine DNA met
hyl
ation in p
l
ants an
d
ot
h
er
h
ig
h
er eu
k
aryotes is un
k
nown. T
h
ere are some
d
ata avai
l
a

bl
es
h
owin
g
t
h
at t
h
ec
h
aracter o
f
transcription o
f
man
y
p
l
ant
g
enes an
d
t
h
emorp
h
o
l
o

gy
and development of transformed plant cells and the plants are drasticall
y
c
h
ange
d
a
f
ter intro
d
uction into t
h
em o
f
genetic constructs wit
h
expresse
d
g
enes of prokar
y
otic adenine DNA meth
y
ltransferases. For example, in tro-
d
uction an
d
expression o
f

t
h
e
b
acteria
l
a
d
enine DNA met
h
y
l
trans
f
erase
(
d
am
)
g
ene is accompanie
dby
GATC sequence met
hyl
ation in DNA o
f
trans
g
enic
to

b
acco p
l
ants an
d
c
h
anges in t
h
e
l
ea
f
an
d
in

oresc ence morp
h
o
l
ogy. T
h
ee
f
-

cienc
y
o

f
a
d
enine DNA met
hyl
ation was
d
irect
ly
proportiona
l
to expression
le
v
e
l
so
f
t
h
e
dam
construct, and meth
y
lation of all GATC sites was observed
i
na
h
i
ghly

expressin
gl
ine
.
Increasin
g
expression levels of the enz
y
me in different plants correlated
wit
h
increasing
l
ya
b
norma
l
p
h
enotypes a
ff
ecting
l
ea
f
pigmentation, apica
l
dominance and leaf and floral structure
(
van Blokland et al. 1998

)
.More
-
over
,
d
a
m
-met
h
y
l
ation o
f
promoter regions in constructs wit
h
p
l
ant gene
s
for alcohol deh
y
dro
g
enase, ubiquitin and actin r esults in an increase in the
transcription of these
g
enes in tobacco and wheat tissues (Graham and Larki
n
1

995). T
h
is pre
l
iminar
y
met
hyl
ation o
f
promoters is a
l
so important
f
or tran
-
s
cri
p
tion of
P
R
1
a
n
d
PR
2
g
enes in constructs introduced into tobacco proto

-
p
l
asts
b
ye
l
ectroporation (Bro
d
zi
k
an
d
Hennig 1998). A
d
enine met
h
y
l
ation o
f
the AG-motif sequence AGATCCAA in the promoter of NtM
y
b2 (a re
g
ulato
r
o
f
t

h
eto
b
acco retrotransposon Tto1)
b
y
b
acteria
ld
am met
h
y
l
ase en
h
ance
s
a
ctivit
y
of the AG-motif-bindin
g
pr otein (AGP1) in tobacco cells (Su
g
imoto et
a
l. 2003). The presence of meth
y
lated adenine residues in the sequence GAT
C

s
cattered in the reporter plasmid introduced into intact barle
y
aleurone la
y
er
s
by
a particle bombardment increased transcription from hormone-re
g
ulated
α
-
amy
l
ase promoters two- to

ve
f
o
ld
, regar
dl
ess o
f
t
h
e promot er strengt
h,
andproperhormonalre

g
ulation of transcription was maintained (Ro
g
ers an
d
Rogers 1995). T
h
e met
h
y
l
ate
d
a
d
enine e
ff
ect was simi
l
ar w
h
en t
h
e amount o
f
reporter construct DNA used was varied over a 20-fold ran
g
e, be
g
innin

g
with
an amount t
h
at gave on
l
y a sma
ll
increment o
f
expression.
Simi
l
ar transcription-en
h
ancin
g
e
ff
ects
f
or met
hyl
ate
d
a
d
enine resi
d
ues

in DNA were seen with the CaMV 35S, maize Adh1 and maize ubi
q
uitin
p
ro-
moters (Rogers an
d
Rogers 1995). It was s
h
own t
h
at some proteins present in
DNA Meth
y
lation in Plant
s
1
03
wh
eat germ nuc
l
ear extracts
b
oun
d
pre
f
erentia
ll
ytoa

d
enine-met
h
y
l
ate
d
DNA
rather than c
y
tosine-meth
y
lated DNA. It seems that enhanced transcriptio
n
o
f nuclear
g
enes in barle
y
due to the presence of
m
6
A residues in the vicinit
y
of
active promoters may
b
eme
d
iate

db
ym
6
ADNA-
b
in
d
ing protein (Roger
s
and Ro
g
ers 1995).
H
ence, met
h
y
l
ation o
f
a
d
enine resi
d
ues in DNA may contro
l
gene expre s
-
sion in plants. This all means that adenine DNA meth
y
lation in plants i

s
not an inci
d
enta
l
or unexpecte
d
event, an
d
it may p
l
ay a signi

cant p
h
ysio
-
lo
g
ical role. It was h
y
pothesized that modulation of meth
y
lation of adenin
e
residues b
y
incorporation of c
y
tokinins (N

6
-deriva tives of adenine) into DN
A
m
ay serve as a mec
h
anism o
f
p
h
yto
h
ormona
l
regu
l
ation o
f
gene expres-
sion and cellular differentiation in plants (Van
y
ushin 1984). C
y
tokinins (6
-
b
enzy
l
aminopurine) can incorporate into t
h

eDNAo
f
p
l
ants (Ku
d
ryas
h
ov
a
an
d
Van
y
us
h
in 1986) an
d
Tet ra
hy
mena p
y
ri
f
ormi
s
(
Mazin an
d
Van

y
us
h
in
1986). In
f
act, 6-
b
enzy
l
aminopurine in
h
i
b
its p
l
asti
d
DNA met
h
y
l
ation i
n
s
y
camore ce
ll
cu
l

ture an
d
in
d
uces in t
h
ese ce
ll
st
h
e exp ression o
f
enz
y
me
s
i
nvolved in photos
y
nthesis (N
g
ernprasirtsiri and Akazawa 1990). It cannot b
e
r
u
l
e
d
out t
h

at in t
h
is particu
l
ar case, c
y
to
k
inin ma
yb
einvo
l
ve
d
in re
g
u
l
atio
n
o
f adenine DNA meth
y
lation in a plastid
.
T
h
e
d
ata s

h
owing t
h
at a
d
enine DNA met
h
y
l
ation may
b
einvo
l
ve
d
in a con
-
t
ro
lf
or persistence o
ff
orei
g
nDNAinap
l
ant ce
ll
is o
f

specia
l
interest. Un
-
l
i
k
e cytosine met
h
y
l
ation, t
h
ea
d
enine met
h
y
l
ation a
l
one is associate
d
wit
h
m
ar
k
e
df

orei
g
n DNA insta
b
i
l
it
y
(Ro
g
ers an
d
Ro
g
ers 1992). P
l
ant ce
ll
s seem t
o
haveas
y
stem discriminatin
g
between adenine and c
y
tosine DNA modifica
-
t
ions, an

d
t
h
e speci

c enz
y
mes resem
bl
in
g
to some extent
b
acteria
l
restrictio
n
e
ndonucleases could be res
p
onsible for selective elimina tion of im
p
ro
p
riate
ad
enine met
h
y
l

ate
d
DNA. Recent
l
ywe
h
ave iso
l
ate
df
rom w
h
eat see
dl
ing
s
a
few s
p
ecific AdoMet-, C
a
2
+
,M
g
2
+
-de
p
endent endonucleases discriminat-

ing
b
etween met
h
y
l
ate
d
an
d
unmet
h
y
l
ate
d
DNAs (Fe
d
oreyeva an
d
Vanyus
h
in
2
004; B.F. Van
y
ushin, unpublished). This ma
y
also indicate on the presence of
R

-M s
y
stem in hi
g
her plants.
4
C
o
ncl
u
s
io
ns
DNA met
hyl
ation contro
l
sp
l
ant
d
eve
l
opment an
d
is invo
l
ve
d
in

g
ene si-
l
encing an
d
parenta
l
imprinting. It ta
k
es part in contro
lf
or transgenes an
d
f
orei
g
n DNA. Severe distortions in DNA meth
y
lation are accompanied b
y
es
-
sential chan
g
es in plant
g
rowth a nd morpholo
gy
. But unlike animals where
d

mt1
k
noc
k
out resu
l
ts in a
bl
oc
k
o
fd
eve
l
opment an
d
is most
l
y
l
et
h
a
l
,p
l
ant
s
104
B

.F.Van
y
ushi
n
l
ac
k
ing ana
l
ogous enzyme MET1 survive. It seems t
h
at ot
h
er,
l
ess-speci
fic
D
NA meth
y
ltransferases or specific modifications of proteins surroundin
g
the DNA meth
y
lation site ma
y
compensate for the absence of MET1. Plants
h
ave a system o
f

siRNA gene si
l
encing conjugate
d
wit
h
aRNA-
d
irecte
d
DNA
meth
y
lation carried out b
y
enz
y
mes capable of performin
g
CNG and un-
con v en tiona
l
met
h
y
l
ations. T
h
is system is consi
d

ere
d
amec
h
anism
f
or t
he
control of viral infections and even for plant immunit
y
to viral infections, but
t
h
e exact mec
h
anisms o
f
t
h
ese events nee
d
to
b
einvestigate
d
muc
hf
urt
h
er

.
Therei sno doubtthat DNA meth
y
lationisonl
y
an inte
g
ral part of acomple
x
sy
stem in an ensemble of unique structures that control
g
ene activit
y
mostl
y
carrie
d
out in c
h
romatin, w
h
i
l
e
b
eing c
l
ose
l

yinter
d
epen
d
ent on t
h
e
h
iston
e
code. The control of DNA meth
y
lation in a cell ma
y
exist at least at three levels
:
(
1) enzyme(s) activity, (2) CH
3
-
d
onors an
d
(3) avai
l
a
b
i
l
ity o

f
t
h
esu
b
strat
e
D
NA to
b
emo
d
i

e
d
in a

uctuatin
g
c
h
romatin structure.
Some p
l
ant DNA met
h
y
l
trans

f
erases are unique, t
h
ey contain t
h
e conser
-
vative u
b
iquitin association (UBA)
d
omain an
d
seem to
b
econtro
ll
e
d
in a ce
ll
c
y
cle b
y
ubiquitin-mediated protein de
g
radation or (and) the ubiquitiniza-
tion ma
y

a
l
ter t
h
ece
ll
u
l
ar
l
oca
l
ization o
f
t
h
ese enz
y
mes
d
ue to respectiv
e
external si
g
nals, the cell c
y
cle or transposon (or retroviral) activit
y
.
Al

ong wit
h
cytosine met
h
y
l
ation, t
h
e met
h
y
l
ation o
f
a
d
enine in p
l
ant DN
A
was observed and specific adenine DNA meth
y
ltransferase was described. The
s
ame p
l
ant gene ma y
b
e met
h

y
l
ate
d
at
b
ot
h
t
h
ea
d
enine an
d
cytosine resi
d
ues.
The functional role of adenine DNA meth
y
lation is still unknown. An
y
wa
y
,
two different s
y
stems of the
g
enome modification based on meth
y

lation o
f
adenines and c
y
tosines exist in hi
g
her plants. It is
y
et unknown how thes
e
sy
stems ma
y
interact and to what de
g
ree the
y
are interdependent. It appear
s
t
h
at a
d
enine met
h
y
l
ation ma y in

uence cytosine mo

d
i

cation an
d
vice versa,
and mutual control for these
g
enome modifications ma
y
be a part of th
e
epigenetic contro
l
o
f
gene activity in p
l
ants
.
The specific endonucleases discriminatin
g
between DNA meth
y
lated and
unmethylated at adenine and cytosine residues seem to be present in plants
.
It means that plants ma
y
have a restriction-modification s

y
stem
.
Further investigation of chromatin and the interaction of DNA-modifyin
g
enzymes wit
h
various
f
actors or proteins, inc
l
u
d
ing
h
ormone-receptor co m-
p
lexes, is a most im
p
ortant task towards the resolution of the
p
roblem of time
,
p
l
ace an
d
ro
l
eo

f
DNA met
h
y
l
ations in a p
l
ant ce
ll.
A
c
k
now
l
e
d
gement
s
T
h
is wor
k
was supporte
d
in part
b
yt
h
e Russian Foun
d

ation
f
or
B
asic Researc
h
(grant No. 02-04-48005) an
d
Ministry o
f
In
d
ustry, Science an
d
Tec
h
-
n
o
l
ogies (grant No. NSH-1019.2003.4.).
DNA Meth
y
lation in Plant
s
1
05
Re
f
erences

Aleksandrushkina NI, Kudr
y
ashova IB, Kirnos MD, Van
y
ushin BF (1990) S
y
nthesis
o
f

h
eavy” minip
l
asmi
d
-
l
i
k
e mitoc
h
on
d
ria
l
DNA an
d
its a
d
enine met

h
y
l
ation
in co
l
eopti
l
ean
d
initia
ll
ea
f
o
f
w
h
eat see
dl
ings: in

uence o
f
p
h
yto
h
ormones
.

Bioc
h
emistry (Mosc) 55:2038–2045
Ammermann D, Stein
b
ruc
k
G, Baur R, Wo
hl
ert H (1981) Met
h
y
l
ate
db
ases in t
h
eDNA
o
f
t
h
eci
l
iate Sty
l
onyc
h
ia myti
l

us. Eur J Ce
ll
Bio
l
24:154–15
6
Arber W (1974) DNA modification and restriction. Pro
g
Nucleic Acid Res Mol Bio
l
14
:
1–
37
Arnaud P, Goubel
y
C, Pelissier T, Dera
g
on JM (2000) SINE retroposons can be used in
vivo as nucleation centers for de novo meth
y
lation. Mol Cell Biol 20:3434–344
1
As
h
ap
k
in VV, Antoniv TT, Vanyus
h
in BF (1993) Mu

l
tip
l
enuc
l
ear protein
b
in
d
ing to
135
b
psu
b
repeat e
l
ement o
f
w
h
eat ri
b
osoma
l
intergenic spacer. Bioc
h
em Mo
l
Bio
l

I
nt 30:755–76
1
Ashapkin VV, Kutueva LI, Van
y
ushin BF (2002) The
g
ene for domains rearran
g
e
d
meth
y
ltransferase (DRM2) in Arabidopsis thaliana plants is meth
y
lated at both
c
y
tosine and adenine residues. FEBS Lett 532:367–372
As
h
i
k
awa I (2001) Surveying CpG met
h
y
l
ation at
5


-CCGG in t
h
e genomes o
f
ric
e
cu
l
tivars. P
l
ant Mo
l
Bio
l
45:31–39
Aufsa tz W, Mette MF, van der Winden
J
, Matzke A
J
M, Matzke M
(
2002a
)
RNA-directe
d
DNA meth
y
lation in Arabidopsis. Proc Na tl Acad Sci USA 99 Suppl 4:16499–1650
6
Aufsatz W, Mette MF, van der Winden J, Matzke M, Matzk e AJ (2002b) HDA6, a

p
utative
histone deacet
y
lase needed to enhance DNA meth
y
lation induced b
y
double-
s
tran
d
e
d
RNA. EMBO J 21:6832–6841
Babin
g
er P, Kobl I, Ma
g
es W, Schmitt R (2001) A link between DNA meth
y
lation and
epi
g
enetic silencin
g
in trans
g
enic Volvox carteri. Nucleic Acids Res 29:1261–1271
Bae SH, Cheon

g
HK, Cheon
g
C, Kan
g
S, Hwan
g
DS, Choi BS (2003) Structure an
d
d
y
namics of hemimeth
y
lated GATCsites: implications for DNA-SeqA reco
g
nition.
J
Biol Chem 278:45987–45993
Ba
k
eeva LE, Kirnos MD, A
l
e
k
san
d
rus
hk
ina NI, Kazimirc
h

yu
k
SB, S
h
orning BYu, Za
-
myatnina VA, Yaguz
h
ins
k
y LS, Vanyus
h
in BF (1999) Su
b
ce
ll
u
l
ar reorganizatio
n
o
f
mitoc
h
on
d
ria pro
d
ucing
h

eavy DNA in aging w
h
eat co
l
eopti
l
es. FEBS Let
t
457:
122

12
5
Ballestar E, Wolffe AP (2001) Meth
y
l-CpG-bindin
g
proteins tar
g
etin
g
specific
g
en
e
re
p
ression. Eur J Biochem 268:1–6
Barras F, Marinus MG (1989) T
h

e great GATC: DNA met
h
y
l
ationinE.co
l
i. Tren
d
s
G
enet 5:139–14
5
Bartee L, Ben
d
er J (2001) Two Ara
b
i
d
opsis met
h
y
l
ation-
d
e

ciency mutations con
f
er
on

l
ypartia
l
e
ff
ects on a met
h
y
l
ate
d
en
d
ogenous gene
f
ami
l
y. Nuc
l
eic Aci
d
sRe
s
2
9
:2127–213
4
Bartee L, Mala
g
nac F, Bender J (2001) Arabidopsis cmt3 chromometh

y
lase mutations
block non-CG meth
y
lation and silencin
g
of an endo
g
enous
g
ene. Genes De
v
1
5:
1
753
–1
758
Bashkite EA, Kirnos MD, Kir
y
anov GI, Aleksandrushkina NI, Van
y
ushin BF (1980
)
Replication and meth
y
lation of DNA in the tobacco suspension culture cells an
d
auxin influence. Biochemistr
y

(Mosc) 45:1448–1456
106
B
.F.Van
y
ushi
n
B
aurens FC, Nicolleau J, Le
g
avre T, Verdeil JL, Monteuuis O (2004) Genomic DNA
met
h
y
l
ation o
f
juveni
l
ean
d
mature Acacia mangium micropropagate
d
in vitr
o
wit
h
re
f
erence to

l
ea
f
morp
h
o
l
ogy as a p
h
ase c
h
ange mar
k
er. Tree P
h
ysio
l
24:401–
4
0
7
B
en
d
er J (2001) A vicious cyc
l
e: RNA si
l
encing an
d

DNA met
h
y
l
ation in p
l
ants. Ce
ll
106:12
9
–13
2
B
er
g
A, Meza TJ, Mahic M, Thorstensen T,Kristiansen K, Aalen RB (2003)Ten members
of the Arabidopsis
g
ene famil
y
encodin
g
meth
y
l-CpG-bindin
g
domain protein
s
are transcriptionall
y

activ e and at least one, AtMBDH, is crucial for normal
d
eve
l
opment. Nuc
l
eic Aci
d
s Res 31:5291–5304
B
ernacc
h
ia G, Primo A, Giorgetti L, Pitto L, Ce
ll
a R (1998) Carrot DNA-met
h
y
l
-
trans
f
erase isenco
d
e
db
y twoc
l
asses o
f
genes wit

hd
i
ff
ering patterns o
f
expression
.
P
l
ant J 13:317–32
9
B
estor TH (1992) Activation o
f
mamma
l
ian DNA met
h
y
l
trans
f
erase
b
yc
l
eavage o
f
aZn
b

in
d
ing regu
l
atory
d
omain. EMBO J 11:2611–261
7
B
estor TH (1998) Met
h
y
l
ation meets acety
l
ation. Nature 393:311–31
2
B
ezdek M, Koukalova B, Kuhrova V, V
y
skot B (1992) Differential sensitivit
y
of CG
and CCG DNA sequences to ethionine-induced h
y
pometh
y
lation of the Nicotiana
tabacum
g

enome. FEBS Lett 300:268–27
0
B
ianchi MW, Viotti A (1988) DNA meth
y
lation and tissue specific transcription of
stora
g
e protein
g
enes of maize. Plant Mol Biol 11:203–21
4
B
ir
d
A (1992) T
h
e essentia
l
so
f
DNA met
h
y
l
ation. Ce
ll
70:5–8
B
ir

d
A, Wo
lff
e AP (1999) Met
h
y
l
ation-in
d
uce
d
repression—
b
e
l
ts,
b
races, an
d
c
h
ro-
matin. Ce
ll
99:451–45
4
B
ourc’his D, Bestor TH (2002) Helicase homolo
g
ues maintain c

y
tosine meth
y
lation in
plants and mammals. Bioessa
y
s 24:297–299
B
rodzik R, Henni
g
J (1998) Adenine meth
y
lation of GATC sequences re
g
ulates activit
y
of tobacco PR-1 and PR-2 promoters in electroporated protoplasts. Plant Ph
y
siol
Bioc
h
em 36:401–40
6
B
rom
b
erg S, Pratt K, Hattman S (1982) Sequence speci

city o
f

t
h
eDNAa
d
enin
e
met
h
y
l
ase in t
h
e protozoan Tetra
h
ymena t
h
ermop
h
i
l
a. J Bacterio
l
150:993–99
6
B
rutnell TP, Della
p
orta SL (1994) Somatic inactivation and reactivation of Ac associ
-
ated with chan

g
es in c
y
tosine meth
y
lation and transposase expression. Genetics
1
38:
21
3
–22
5
B
u
j
nicki JM (1999–2000) Comparison of protein structures reveals monoph
y
letic ori
-
gin o
f
t
h
eA
d
oMet-
d
epen
d
ent met

h
y
l
trans
f
erase
f
ami
l
yan
d
mec
h
anistic conver-
gence rat
h
er t
h
an recent
d
i
ff
erentiation o
f
N4-cytosine an
d
N6-a
d
enine DNA
met

h
y
l
ation. In Si
l
ico Bio
l
1:175–18
2
B
ujnicki JM,RadlinskaM (1999)Is theHemK family ofputative S-adenosylmethionine
-
d
epen
d
ent met
h
y
l
trans
f
erases a “missing”
ζ
s
ubfamil
y
of adenine meth
y
ltrans-
ferases? A h

y
pothesis. IUBMB Life 48:247–24
9
B
urn JE, Smyt
h
DR, Peacoc
k
WJ, Dennis ES (1993) Genes con
f
erring
l
ate

owering in
Ara
b
i
d
opsis t
h
a
l
iana. Genetica 90:147–15
5
B
uryanov YI, I
l
yin AV, S
k

rya
b
in GK (1970) On
d
etection o
f
6-met
h
y
l
aminopurine in
DNA of fun
g
us Mucor hiemalis. Dokl Akad Nauk SSSR 195:728–73
0
DNA Meth
y
lation in Plant
s
1
07
Bur
y
anov YI, Eroshina NV, Va
g
abova LM, Iliin AV (1972) On the detection of
6-met
h
y
l

aminopurine in DNA o
fh
ig
h
er p
l
ant po
ll
en. Do
kl
A
k
a
d
Nau
k
SSS
R
20
6
:992–994
Bus
h
e
ll
C, Spie
l
man M, Scott RJ (2003) T
h
e

b
asis o
f
natura
l
an
d
arti

cia
l
postzygotic
h
y
b
ri
d
ization
b
arriers in Ara
b
i
d
opsis species. P
l
ant Ce
ll
15:1430–144
2
Buzek J,Ebert I, Ruffini-Casti

g
lione M,Sirok
y
J, V
y
skot B,Greilhuber J(1998)Structure
and DNA meth
y
lation pattern of part iall
y
heterochromat inised endosperm nuclei
in Ga
g
ea l utea (Liliaceae). Planta 204:506–51
4
Cao X, Jacobsen SE (2002) Locus-specific control of as
y
mmetric and CpNpG meth
y
-
lation b
y
the DRM and CMT3 meth
y
ltransferase
g
enes. Proc Natl Acad Sci USA
99 Supp
l
4:16491–1649

8
Cao X, Springer NM, Muszyns
k
i
l
MG, P
h
i
ll
ips RL, Kaepp
l
er S, Jaco
b
sen SE (2000)
Conserve
d
p
l
ant genes wit
h
simi
l
arity to mamma
l
ian
d
enovoDNAmet
h
y
l

trans
-
f
erases. Proc Nat
l
Aca
d
Sci USA 97:4979–498
4
Cao X, Aufsatz W, Zilberman D, Mette MF, Huan
g
MS, Ma tzke M, Jacobsen SE (2003
)
Role of the DRM and CMT3 meth
y
ltransferases in RNA-directed DNA meth
y
la-
tion.
C
urr Biol 13:2212–221
7
Casti
lh
oA,NevesN,Ru

ni-Castig
l
ione M, Viegas W, Hes
l

op-Harrison JS (1999) 5-
Met
h
y
l
cytosine
d
istri
b
ution an
d
genome organization in tritica
l
e
b
e
f
ore an
d
a
f
te
r
treatment wit
h
5-azacyti
d
ine. J Ce
ll
Sci 112:4397–440

4
C
h
an SW, Zi
lb
erman D, Xie Z, Jo
h
ansen LK, Carrington JC, Jaco
b
sen SE (2004) RNA
s
ilencin
gg
enes control de novo DNA meth
y
lation. Science 303:1336
Charles MP, Ravanat JL, Adamski D, D’Orazi G, Cadet J, Favier A, Ber
g
er F, Wion
D
(2004) N(6)-Meth
y
ldeox
y
adenosine, a nucleoside commonl
y
found in prokar
y-
otes, induces C2C12 m
y

o
g
enic differentiation. Biochem Bioph
y
s Res Commun
3
14
:
4
76
–4
8
2
C
h
au
dh
ury AM, Ko
l
tunow A, Payne T, Luo M, Tuc
k
er MR, Dennis ES, Peacoc
k
W
J
(2001) Contro
l
o
f
ear

l
y see
dd
eve
l
opment. Annu R ev Ce
ll
Dev Bio
l
17:677–69
9
C
h
en Z, Pi
k
aar
d
CS (1997) Epigenetic si
l
encing o
f
RNA po
l
ymerase I transcription:
aro
l
e
f
or DNA met
h

y
l
ation an
dh
istone mo
d
i

cation in nuc
l
eo
l
ar
d
ominance
.
G
enes Dev 11:2124–213
6
Chopra S, Cocciolone SM, Bushman S, San
g
ar V, McMullen MD, Peterson T (2003) The
maize unstable factor for oran
g
e1 is a dominant epi
g
enetic modifier of a tissue
s
pecificall
y

silent allele of pericarp color1. Genetics 163:1135–114
6
C
h
voj
k
aL,Su
l
imova GE, Bu
l
ga
k
ov R, Bas
hk
ite EA, Vanyus
h
in BF (1978) C
h
anges in
t
h
e 5-met
h
y
l
cytosine content in p
l
ant DNA associate
d
wit

hfl
owering gra
d
ient
.
Bioc
h
emistry (Mosc) 43:996–1000
C
l
ar
k
SJ, Harrison J, Frommer M (1995) CpNpG met
h
y
l
ation in mamma
l
ian ce
ll
s. Na
t
G
enet 10:20–27
Colot V, Rossi
g
nol JL (1999) Eukar
y
otic DNA meth
y

lation as an evolutionar
y
device
.
Bioessa
y
s 21:402–411
Cui H, Fedoroff NV (2002) Inducible DNA demeth
y
lation mediated b
y
the maize
s
u
pp
ressor-mutator trans
p
oson-encoded Tn
p
A
p
rotein. Plant Cell 14:2883–289
9
Cummin
g
s DJ, Tait A, Godard JM (1974) Meth
y
lated bases in DNA from Parameciu
m
aurelia. Biochim Bioph

y
s Acta 374:1–11
108
B
.F.Van
y
ushi
n
D
eLabre ML, Nett JH, Trum
p
ower BL (1999) The cleaved
p
rese
q
uence is not re
q
uired
f
or import o
f
su
b
unit 6 o
f
t
h
ecytoc
h
rome

b
c1 comp
l
ex into yeast mitoc
h
on
d
ria
or assem
bl
yintot
h
ecomp
l
ex. FEBS Lett 449:201–20
5
D
emi
dk
ina NP, Kiryanov GI, Vanyus
h
in BF (1979) Met
h
y
l
ation o
f
new
l
y-synt

h
esize
d
DNA in t
h
e mouse
fib
ro
bl
ast ce
ll
cu
l
ture. Bioc
h
emistry (Mosc) 44:1416–142
5
D
ennis ES, Bi
l
o
d
eau P, Burn J, Finnegan EJ, Genger R, He
ll
iwe
ll
C, Kang BJ, S
h
e
l-

d
on CC, Peacoc
k
WJ (1998) Met
h
y
l
ation contro
l
st
h
e
l
ow temperature in
d
uction
of flowerin
g
in Arabidopsis. S
y
mp Soc Exp Biol 51:97–10
3
D
eplus R, Brenner C, Bur
g
ers WA, Putmans P, Kouzarides T, de Launoit Y, Fuks F
(2002) Dnmt3L is a transcriptional repressor that recruits histone deacet
y
lase.
N

uc
l
e
i
c
A
c
i
ds
R
es 30:383
1–
3838
D
unn DB, Smit
h
JD (1955) Occurrence o
f
a new
b
ase in t
h
e
d
eoxyri
b
onuc
l
eic aci
d

o
f
a strain o
f
Bacterium co
l
i. Nature 175:336–337
Eh
r
l
ic
h
KC (1993) C
h
aracterization o
f
DBPm, a p
l
ant protein t
h
at
b
in
d
stoDNA
containin
g
5-meth
y
lc

y
tosine. Biochim Bioph
y
s Acta 1172:108–11
6
E
hrlich KC, Car
y
JW, Ehrlich M (1992) A broad bean cDNA clone encodin
g
aDNA
-
b
in
d
in
g
protein resem
bl
in
g
mamma
l
ian CREB in its sequenc e speci

cit
y
an
d
DNA met

hyl
ation sensitivit
y
. Gene 117:169–17
8
F
antappie MR, Gimba ER, Rum
j
anek FD (2001) Lack of D NA meth
y
lation in Schisto-
soma mansoni. Exp Parasito
l
98:162–16
6
F
e
d
oreyeva LI, Vanyus
h
in BF (2002) N6-a
d
enine DNA-met
h
y
l
trans
f
erase in w
h

eat
see
dl
ings. FEBS Lett 514:305–30
8
F
edoroff NV (1995) DNA meth
y
lation and activit
y
of the maize Spm transposable
element. Curr To
p
Microb iol Immunol 197:143–16
4
F
inne
g
an EJ, Dennis ES (1993) Isolation and identification b
y
sequence homolo
gy
o
f
aputativec
y
tosine meth
y
ltransferase from Arabidopsis thaliana. Nucleic Acid
s

R
es 21:2383–2388
F
inne
g
an EJ, Ko vac KA (2000) Plant DNA meth
y
ltransferases. Plant Mol Biol 43:189–
21
0
F
inne
g
an EJ, Peacock WJ, Dennis ES (1996) Reduced DNA meth
y
lation in Arabidopsi
s
thaliana resul t s in abnormal
p
lant develo
p
ment. Proc Natl Acad Sci USA 93:8449–
8
45
4
F
innegan EJ, Genger RK, Kovac K, Peacoc
k
WJ, Dennis ES (1998a) DNA met
h

y
l
atio
n
an
d
t
h
epromotiono
ffl
owering
b
y verna
l
ization.ProcNat
l
Aca
d
Sci USA 95:5824

582
9
F
inne
g
an EJ, Gen
g
er RK, Peacock WJ , Dennis ES (1998b) DNA meth
y
lation in plants.

Annu Rev Plant Ph
y
siol Plant Mol Biol 49:223–24
7
F
inne
g
an EJ, Peacock WJ, Dennis ES (2000) DNA meth
y
lation, a ke
y
re
g
ulator of plan
t
d
eve
l
opment an
d
ot
h
er processes. Curr Opin Genet Dev 10:217–223
F
innegan EJ, S
h
e
ld
on CC, Jar
d

inau
d
F, Peacoc
k
WJ, Dennis ES (2004) A c
l
uster o
f
Ara
b
i
d
opsis genes wit
h
acoor
d
inate response to an environmenta
l
stimu
l
us
.
Curr Bio
l
14:911–916
F
issc
h
er U, Weis
b

ee
k
P, Smee
k
ens S (1996) A to
b
acco nuc
l
ear protein t
h
at pre
f
erentia
lly
b
in
d
s t o unmet
h
y
l
ate
d
CpG-ric
h
DNA. Eur J Bioc
h
em 235:585–592
F
ojtova M, Kovari

k
A, Votru
b
aI,Ho
l
y A (1998) Eva
l
uation o
f
t
h
eimpacto
f
S
-
a
d
enosy
lh
omocysteine meta
b
o
l
ic poo
l
s on cytosine met
h
y
l
ation o

f
t
h
eto
b
acco
genome. Eur J Bioc
h
em 252:347–35
2
DNA Meth
y
lation in Plant
s
10
9
Fo
j
tova M, K ovarik A, Mat
y
asek R (2001) C
y
tosine meth
y
lation of plastid
g
enome in
h
ig
h

er p
l
ants. Fact or arte
f
act? P
l
ant Sci 160:585–59
3
Fraga MF, Ro
d
riguez R, Cana
l
MJ (2002) Genomic DNA met
h
y
l
ation-
d
emet
h
y
l
ation
d
uring aging an
d
reinvigoration o
f
Pinus ra
d

iata. Tree P
h
ysio
l
22:813–816
Fransz P, De Jong JH, Lysa
k
M, Castig
l
ione MR, Sc
h
u
b
ert I (2002) Interp
h
ase c
h
romo-
s
omes in Ara
b
i
d
opsis are organize
d
as we
ll d
e

ne

d
c
h
romocenters
f
rom w
h
ic
h
euc
h
romatin
l
oops emanate. Proc Nat
l
Aca
d
Sci USA 99:14584–1458
9
Fre
d
iani M, Gira
ld
i E, Castig
l
ione MR (1996) Distri
b
ution o
f
5-met

h
y
l
cytosine-ric
h
regions in t
h
e metap
h
ase c
h
romosomes o
f
Vicia
f
a
b
a. C
h
romosome Res 4:141–146
Fuji
k
awa N, Kurumiza
k
aH,Nure
k
iO,Tana
k
a Y, Yamazoe M, Hiraga S, Yo
k

oyama
S
(2004) Structura
l
an
db
ioc
h
emica
l
ana
l
yses o
fh
emimet
h
y
l
ate
d
DNA
b
in
d
ing
b
y
t
h
e SeqA protein. Nuc

l
eic Aci
d
s Res 32:82–9
2
Fukuda T, Sakai M, Takano H, Ono K, Takio S (2004) H
y
permeth
y
lation of retro-
trans
p
osons in the liverwort Marchantia
p
aleacea var. di
p
tera. Plant Cell Re
p
22:5
9
4–5
9
8
Fu
l
nece
k
J, Matyase
k
R, Kovari

k
A, Bez
d
e
k
M (1998) Mapping o
f
5-met
h
y
l
cytosine
resi
d
ues in Nicotiana ta
b
acum 5S rRNA genes
b
y genomic sequencing. Mo
l
Gen
G
enet 259:133–14
1
Fulnecek J, Mat
y
asek R, Kovarik A (2002) Distribution of 5-meth
y
lc
y

tosine residues i
n
5
S rRNA
g
enes in Arabidopsis thaliana and Secale cereale. Mol Genet Genomic
s
2
68:5
1
0

5
1
7
Ga
l
wei
l
er L, Con
l
an RS, Ma
d
er P, Pa
l
me K, Moore I (2000) Tec
h
nica
l
a

d
vance: t
he
DNA-
b
in
d
ing activity o
f
ga
l
4isin
h
i
b
ite
db
y met
h
y
l
ation o
f
t
h
ega
l
4
b
in

d
ing site
in p
l
ant c
h
romatin. P
l
ant J 23:143–15
7
Gendrel A-V, Li
pp
man Z, Yordan C, Colot V, Martienssen RA (2002) De
p
endenc
e
of heterochromatic histone H3 meth
y
lation patterns on the Arabidopsis
g
en
e
DDM 1.
S
cience 2
9
7:1871–187
3
Genger RK, Kovac KA, Dennis ES, Peacoc
k

WJ, Finnegan EJ (1999) Mu
l
tip
l
eDN
A
met
h
y
l
trans
f
erase genes in Ara
b
i
d
opsis t
h
a
l
iana. P
l
ant Mo
l
Bio
l
41:269–27
8
Gorovs
k

y MA, Hattman S, P
l
eger GL (1973) [N 6]met
h
y
l
a
d
enine in t
h
enuc
l
ear DNA
o
f
eucaryote, Tetra
h
ymena pyri
f
ormis. J Ce
ll
Bio
l
56:697–701
Gou
b
e
l
yC,Arnau
d

P, Tat ou t C , He s
l
op-Harrison JS, Deragon JM (1999) S1 SINE retro-
posons are meth
y
lated at s
y
mmetrical and non-s
y
mmetrical positions in Brassic
a
napus: identification of a preferred tar
g
et site for as
y
mmetrical meth
y
lation. Plant
Mo l Biol 3
9
:243–25
5
Gowher H, Leismann O, Jeltsch A (2000) DNA of Drosophila melano
g
aster contains
5
-met
h
y
l

cytosine. EMBO J 19:6918–692
3
Gra
h
am MW, Lar
k
in PJ (1995) A
d
enine met
h
y
l
ation at
d
am sites increases transient
gene expr ession in p
l
ant ce
ll
s. Transgenic Res 4:324–33
1
Gruen
b
aum Y, Nave
h
-Many T, Ce
d
ar H (1981) Sequence speci

city o

f
met
h
y
l
ation i
n
h
ig
h
er p
l
ant DNA. Nature 292:860–862
Guo HS, Lopez-Mo
y
a JJ, Garcia JA (1999) Mitotic stabilit
y
of infection-induced re
-
s
istance to plum pox pot
y
virus associated with trans
g
ene silencin
g
and DNA
meth
y
lation. Mol Plant Microbe Interact 12:103–11

1
Guseinov VA, Van
y
ushin BF (1975) Content and localization of 5-meth
y
lc
y
tosine i
n
DNA of health
y
and wilt-infected cotton plants. Biochim Bioph
y
s Acta 395:229

238
1
1
0
B
.F.Van
y
ushi
n
G
useinov VA, Kir
y
anov GI, Van
y
ushin BF (1975) Intra

g
enome distribution of 5-
met
h
y
l
cytosine in DNA o
fh
ea
l
t
h
yan
d
wi
l
t-in
f
ecte
d
cotton p
l
ants (Gossypium
h
irsutum L.). Mo
l
Bio
l
Rep 2:59–63
G

utierrez JC, Ca
ll
ejas S, Bornique
l
S, Martin-Gonza
l
ez A (2000) DNA met
h
y
l
ation in
ci
l
iates: imp
l
ications in
d
i
ff
erentiation processes. Int Micro
b
io
l
3:139–146
H
arrison GS, Findl
y
RC, Karrer KM (1986) Site-specific meth
y
lation of adenine in

the nuclear
g
enome of a eukar
y
ote, Tetrah
y
mena thermophila. Mol Cell Bio
l
6:
2
36
4–2
370
H
as
h
i
d
a SN, Kitam ura K, Mi
k
ami T, Kis
h
ima Y (2003) Temperature s
h
i
f
tcoor
d
inate
ly

c
h
anges t
h
eactivityan
d
t
h
e met
h
y
l
ation state o
f
transposon Tam3 in Antirr
h
inum
majus. P
l
ant P
h
ysio
l
132:1207–121
6
H
attman S, Kenny C, Berger L, Pratt K (1978) Comparative stu
d
yo
f

DNA met
h
y
l
ation
in three unicellular eucar
y
otes. J Bacteriol 135:1156–115
7
H
endrich B, Bird A (2000) Mammalian meth
y
ltransferases and meth
y
l-CpG-bindin
g
domains: proteins involved in DNA meth
y
lation. Curr Top Microbiol Immunol
24
9
:55–7
4
H
eni
k
o
ff
S, Comai L (1998) A DNA met
h

y
l
trans
f
erase
h
omo
l
ogous wit
h
ac
h
romo
d
-
omain existsinmu
l
tip
l
epo
l
ymorp
h
ic
f
orms in Ara
b
i
d
opsis.Genetics 149:307–31

8
H
iroc
h
i
k
aH,O
k
amoto H, Ka
k
utani T (2000) Si
l
encing o
f
retrotransposons in Ara
-
b
i
d
opsis an
d
reactivation
b
yt
h
e
dd
m1 mutation. P
l
ant Ce

ll
12:357–369
H
o
ll
i
d
ay R, Pug
h
JE (1975) DNA mo
d
i

cation mec
h
anisms an
d
gene activity
d
urin
g
develo
p
ment. Science 187:226–232
I
namdar NM, Ehrlich KC, Ehrlich M (1991) CpG meth
y
lation inhibits bindin
g
of

several sequence-specific DNA-bindin
g
proteins from pea, wheat, so
y
bean and
cau
lifl
o
w
e
r
.
Pl
a
n
t
M
o
lBi
o
l1
7:
111–12
3
J
ac
k
son JP, Lin
d
rot

h
AM, Cao X, Jaco
b
sen SE (2002) Contro
l
o
f
CpNpG DNA met
h
y
l
a-
tion b
y
the KRYPTONITE histone H3 meth
y
ltransferase. Nature 416:556–560
J
acobsen SE, Me
y
erowitz EM (1997) H
y
permeth
y
lated SUPERMAN epi
g
enetic alleles
in Arabido
p
sis. Science 277:1100–1103

J
aco
b
sen SE, Sa
k
ai H, Finnegan EJ, Cao X, Meyerowitz EM (2000) Ectopic
h
yperme-
t
hyl
ation o
ffl
ower-speci

c
g
enes in Ara
b
i
d
opsis. Curr Bio
l
10:179–186
J
aenisc
h
R, Bir
d
A (2003) Epi
g

enetic re
g
u
l
ation o
fg
ene expression:
h
ow t
h
e
g
enom
e
integrates intrinsic an
d
environmenta
l
signa
l
s. Nat Genet 33:245–252
J
anouse
k
B, Matsunaga S, Kejnovs
k
yE,ZiuvovaJ,Vys
k
ot B (2002) DNA met
h

y
l
a-
tion anal
y
sis of a male reproductive or
g
an specific
g
ene (MROS1) durin
g
polle
n
develo
p
ment. Genome 45:930–93
8
J
eddeloh JA, Bender J, Richards EJ (1998) The DNA meth
y
lation locus DDM 1 i
s
required for maintenance of
g
ene silencin
g
in Arabidopsis. Genes Dev 12:1714–
1
7
25

J
e
l
tsc
h
A (2001) T
h
e cytosine N4-met
h
y
l
trans
f
erase M.PvuII a
l
so mo
d
i

es a
d
enine
resi
d
ues. Bio
l
C
h
em 382:707–710
J

ones L, Hamilton A
J
, Voinnet O, Thomas CL, Maule A
J
, Baulcombe DC
(
1999
)
RNA
-
DNA interactions and DNA meth
y
lation in post-transcriptional
g
ene silencin
g
.
Plant
C
ell 11:22
9
1–230
1
J
ones L, Ratc
l
i
ff
F, Bau
l

com
b
e DC (2001) RNA-
d
irecte
d
transcriptiona
l
gene si
l
encing
in p
l
ants can
b
ein
h
erite
d
in
d
epen
d
ent
l
yo
f
t
h
eRNAtriggeran

d
requires Met1
f
or maintenance. Curr Bio
l
11:747–757
DNA Meth
y
lation in Plant
s
11
1
Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsber
g
er N, Strouboulis J,
Wo
lff
e AP (1998) Met
h
y
l
ate
d
DNA an
d
MeCP2 recruit
h
istone
d
eacety

l
ase to
repress transcr
i
pt
i
on. Nat Genet 19:187–19
1
Ka
k
utani T (2002) Epi-a
ll
e
l
es in p
l
ants: in
h
eritance o
f
epigenetic in
f
ormation ov e
r
generations. P
l
ant Ce
ll
P
h

ysio
l
43:1106–1111
Kakutani T, J eddeloh JA, Flowers SK, Munakata K, Richards EJ (1996) Develo
p
menta
l
abnormalities and epimutations associated with DNA h
y
pometh
y
lation muta
-
tions. Proc Natl Acad
S
ci
US
A
9
3:12406–1241
1
Ka
k
utani T, Muna
k
ata K, Ric
h
ar
d
sEJ,Hiroc

h
i
k
a H (1999) Meiotica
ll
yan
d
mitoti-
ca
ll
y sta
bl
ein
h
eritance o
f
DNA
h
ypomet
h
y
l
ation in
d
uce
db
y
dd
m1 mutation o
f

Ara
b
i
d
opsis t
h
a
l
iana. Genetics 151:831–838
Kankel MW, Ramse
y
DE, Stokes TL, Flowers SK, Haa
g
JR, Jeddeloh JA, Riddle NC
,
Ve rb sk
y
ML, Richards EJ (2003) Arabidopsis MET1 c
y
tosine meth
y
ltransferase
mutants.
G
enetics 163:110
9
–112
2
Kanno T, Mette MF, Krei
l

DP, Au
f
satz W, Matz
k
eM,Matz
k
e AJ (2004) Invo
l
vement
o
f
putative SNF2 c
h
romatin r emo
d
e
l
ing protein DRD1 in RNA-
d
irecte
d
DNA
met
h
y
l
ation. Curr Bio
l
14:801–805
Karrer KM, Van N u

l
an
d
TA (1998) Position e
ff
ect ta
k
es prece
d
ence over target se
-
quence in
d
etermination o
f
a
d
enine met
h
y
l
ation patterns in t
h
enuc
l
ear genom
e
of a eukar
y
ote, Tetrah

y
mena thermophila. Nucleic Acids Res 26:4566–4573
Karrer KM, Van Nuland TA (2002) Meth
y
lation of adenine in the nuclear DNA of
Tet rah
y
mena is internucleosomal and independent of histone H1. Nucleic Acids
R
es 30:
1
36
4–1
370
Kato M, Miura A, Ben
d
er J, Jaco
b
sen SE, Ka
k
utani T (2003) Ro
l
eo
f
CG an
d
non-C
G
met
h

y
l
ation in immo
b
i
l
ization o
f
transposons in Ara
b
i
d
opsis. Curr Bio
l
13:421

42
6
Ka
y
PH, Pereira E, Marlo w SA, Turbett G, Mitchell CA, Jacobsen PF, Hollida
y
R,
Papadimitriou JM (1994) Evidence fo r adenine meth
y
lation within the mouse
m
y
o
g

enic
g
ene M
y
o-D1. Gene 151:89–95
Kimura H, Shiota K (2003) Meth
y
l-CpG-bindin
g
protein, MeCP2, is a tar
g
et molecule
for maintenance DNA meth
y
ltransferase, Dnmtl. J Biol Chem 278:4806–481
2
Kinos
h
ita T, Miura A, C
h
oi Y, Kinos
h
ita Y, Cao X, Jaco
b
sen SE, F isc
h
er RL, Ka
k
utani T
(2004) One-way contro

l
o
f
FWA imprinting in Ara
b
i
d
opsis en
d
osperm
b
yDNA
met
h
y
l
ation. Science 303:521–523
Kirnos MD, Mer
k
u
l
ova NA, Bor
kh
senius SN, Vanyus
h
in BF (1980) C
h
aracter o
f
macronuc

l
eus DNA met
h
y
l
ationinprotozoanTetra
h
ymena pyri
f
ormis. Do
kl
A
k
a
d
Nau
k
SSSR 255:225–227
Kirnos MD, A
l
e
k
san
d
rus
hk
ina NI, Vanyus
h
in BF (1981) 5-Met
h

y
l
cytosine in pyrim-
i
d
ine sequences o
f
p
l
ant an
d
anima
l
DNA: speci

city o
f
DNA met
h
y
l
ation. Bio-
c
h
emistry (Mosc) 46:1458–147
4
Kirnos MD, Ba
k
eeva LE, Vo
lk

ova SA, Ganic
h
eva NI, Vanyus
h
in BF (1983a) Mito-
c
h
on
d
ria
l
nature o
f
new
l
y
f
orme
d
DNA in aging co
l
eopti
l
es o
f
etio
l
ate
d
w

h
ea
t
s
ee
dl
ings. Bioc
h
emistry (Mosc) 48:1505–151
2
Kirnos MD, Volkova SA, Ganicheva NI, Kudr
y
ashova IB, Van
y
ushin BF (1983b) S
y
n
-
chronous periodic DNA s
y
nthesis in coleoptile and initial leaf of etiolated whea
t
s
eedlin
g
s: nature and ratio between nuclear and mitochondrial DNA s
y
nthesis
.
Biochemistr

y
(Mosc) 48:1587–1595
1
1
2
B
.F.Van
y
ushi
n
K
irnos MD, Ganicheva NI, Kutueva LI, Van
y
ushin BF (1984a) Non-replicative s
y
nthesi
s
an
d
met
h
y
l
ation o
f
DNA
d
uring ce
ll
cyc

l
eince
ll
so
f
initia
ll
ea
f
o
f
etio
l
ate
d
w
h
eat
see
dl
ings. Bioc
h
emistry (Mosc) 49:1690–1702
K
irnos MD, Kutueva LI, Ganic
h
eva NI, Vanyus
h
in BF (1984
b

) Non-semiconservativ
e
c
h
aracter o
f
rep
l
icative DNA met
h
y
l
ation in meristem ce
ll
so
f
w
h
eat see
dl
ing
initia
ll
ea
f
:
f
ormation o
f
un

d
ermet
h
y
l
ate
d
sites an
d
t
h
e
d
i
ff
erent speci

city o
f
met
h
y
l
ation o
f
t
h
eDNArep
l
ication

f
ragments. Bioc
h
emistry (Mosc) 49:1357

1
366
K
irnos MD, Art
y
ukovska
y
a NA, Alexandrushkina NI, Ashapkin VV, Van
y
ushin B
F
(1986) Effect of ph
y
tohormones on replicative and post-replicative meth
y
lation
of nuclear DNA durin
g
S-phase of cell c
y
cle in the initial leaf cells of the etiolate
d
w
h
eat see

dl
ings. Bioc
h
emistry (Mosc) 51:1875–188
5
K
irnos MD, A
l
exan
d
rus
hk
ina NI, Kutueva LI, Artyu
kh
ovs
k
aya NA, Vanyus
h
in BF
(1987) Post-rep
l
icative met
h
y
l
ation is a
d
iscrete step o
f
nuc

l
ear DNA met
h
y
l
atio
n
in t
h
ece
ll
cyc
l
eo
f
initia
ll
ea
f
ce
ll
so
f
w
h
eat see
dl
ings. In

uence o

f
temperature
,
p
h
yto
h
ormones, in
h
i
b
itors o
f
trans
l
ation, transcription an
d
DNA met
h
y
l
ation
.
Biochemistr
y
(Mosc) 52:625–637
K
irnos MD, Alexandrushkina NI, Kutueva LI, Van
y
ushin BF (1988) Replicative an

d
post-replicative meth
y
lation of nuclear DNA modulates as
y
mmetr
y
of its com
-
plementar
y
chains in respect of the 5-meth
y
lc
y
tosine content durin
g
consequen
t
cell c
y
cles in the wheat seedlin
g
initial leaf cells. Biochemistr
y
(Mosc) 53:355–36
7
K
irnos MD, Alexandrushkina NI, Gorem
y

kin VV, Kudr
y
ashovaIB,Van
y
ushin B
F
(1992a) “Hea vy” mitoc
h
on
d
ria
l
DNA in
h
ig
h
er p
l
ants. Bioc
h
emistry (Mosc)
57:15
66
–157
3
K
irnos MD, A
l
exan
d

rus
hk
ina NI, Zagors
k
aya GYa, Kireev II, Vanyus
h
in BF (1992
b
)Su
-
perproduction of heav
y
minicircular mitochondrial DNA in a
g
in
g
wheat coleop
-
tiles. FEB
S
Lett 2
9
8:10
9
–11
2
K
ir
y
anov GI, Isaeva LV, Kirnos MD, Ganicheva NI, Van

y
ushin BF (1982) Replicativ
e
DNA meth
y
lation in L-cells: influence of S-isobut
y
ladenosine and c
y
cloheximid
e
an
d
possi
bl
e existence o
f
two DNA-met
h
y
l
ases. Bioc
h
emistry (Mosc) 47:153–161
K
is
h
imoto N, Sa
k
ai H, Jac

k
son J, Jaco
b
sen SE, Meyerowitz EM, Dennis ES, Finnegan EJ
(2001) Site speci

city o
f
t
h
e Ara
b
i
d
opsis METI DNA met
h
y
l
trans
f
erase
d
emon
-
strate
d
t
h
roug
hh

ypermet
h
y
l
ation o
f
t
h
e superman
l
ocus. P
l
ant Mo
l
Bio
l
46:171

183
K
itamura K, Hashida SN, Mikami T, Kishima Y
(
2001
)
Position effect of the excision
frequenc
y
of the Antirrhinum transposon Tam3: implications for the de
g
ree o

f
position-dependen tmeth
y
lation in theendsof the element. Plant Mol Biol 47:475–
4
90
Kl
öti A, He X, Potry
k
us I, Ho
h
n T, Fütterer J (2002) Tissue-speci

csi
l
encing o
f
a trans-
g
ene in rice. Proc Natl Acad Sci USA 99:10881–10886
K
omatsu M,Shimamoto K,K
y
ozuka J (2003)Two-stepre
g
ulationand continuousretro
-
transposition of the rice LINE-t
y
pe retrotransposon Karma. Plant Cell 15:1934–

1
9
4
4
K
ooter JM, Matz
k
e MA, Me
y
er P (1999) Listenin
g
to t
h
esi
l
ent
g
enes: trans
g
ene si
l
enc-
in
g
,
g
ene re
g
ulation and patho
g

en control. Trends Plant Sci 4:340–347
DNA Meth
y
lation in Plant
s
11
3
Kovalchuk O, Burke P, Arkhipov A, Kuchma N, James SJ, Kovalchuk I, Po
g
ribn
y
I (2003)
Genome
h
ypermet
h
y
l
ation in Pinus si
l
vestris o
f
C
h
erno
b
y
l
—a mec
h

anism
f
or
ra
d
iation a
d
aptation? Mutat Res 529:13–20
Kovari
k
A, Matyase
k
R, Leitc
h
A, Gaz
d
ovaB,Fu
l
nece
k
J, Bez
d
e
k
M (1997) Varia
b
i
l
it
y

in CpNpG met
h
y
l
ation in
h
ig
h
er p
l
ant genomes. Gene 204:25–3
3
KovarikA,KoukalovaB,LimKY,Mat
y
asekR,LichtensteinCP,LeitchAR,BezdekM
(2000a) Comparative anal
y
sis of DNA m eth
y
lation in tobacco heterochromatic
s
e
q
uences. Chromosome Res 8:527–54
1
Kovarik A, Van Houdt H, Hol
y
A, Depicker A (2000b) Dru
g
-induced h

y
pometh
y
lation
o
f
a posttranscriptiona
ll
ysi
l
ence
d
transgene
l
ocus o
f
to
b
acco
l
ea
d
stopartia
l
re
l
ease o
f
si
l

encing. FEBS Lett 467:47–5
1
Kriaucionis S, Bir
d
A (2004) T
h
emajor
f
orm o
f
MeCP2
h
asanove
l
N-terminus
generate
db
ya
l
ternative sp
l
icing. Nuc
l
eic Aci
d
s Res 32:1818–1823
Ku
d
ryas
h

ova IB, Vanyus
h
in BF (1986) Incorporation o
f
cy to
k
inins in DNA o
f
w
h
ea
t
s
eedlin
g
s. Biochemistr
y
(Mosc) 51:321–327
Kumpatla SP, Hall TC (1998) Lo n
g
evit
y
of 5-azac
y
tidine-mediated
g
ene expression
and re-establishmen t of silencin
g
in trans

g
enic rice. Plant Mol Biol 38:1113–1122
Kumpatla SP, Hall TC (1999) Or
g
anizational complexit
y
of a rice trans
g
ene locu
s
s
usceptible to meth
y
lation-based silencin
g
. IUBMB Life 48:459–467
Kutueva LI, As
h
ap
k
in VV, Vanyus
h
in BF (1996) T
h
e met
h
y
l
ation pattern o
f

a cytosine
DNA-met
h
y
l
trans
f
erase gene in Ara
b
i
d
opsis t
h
a
l
iana p
l
ants. Bioc
h
em Mo
l
Bio
l
I
nt 40:347–35
3
Lauria M, Rupe M, Guo M, Kranz E, Pirona R, Vio t ti A, Lun
d
G (2004) Extensiv
e

maternal DNA h
y
pometh
y
lation in the endosperm of Zea ma
y
s. Plant Cell 16:510–
5
22
Law RD, Suttle JC (2003) Transient decreases in meth
y
lation at
5

-CCGG
-
3

s
e
q
uences
in potato (So
l
anum tu
b
erosum L.) meristem DNA
d
uring progression o
f

tu
b
ers
t
h
roug
hd
ormancy prece
d
et
h
e resumption o
f
sprout growt
h
.P
l
ant Mo
l
Bio
l
51
:4
3
7–447
Law
l
ey PD, Crat
h
orn AR, S

h
a
h
SA, Smit
h
BA (1972) Biomet
h
y
l
ation o
fd
eoxyri
b
onu-
cleic acid in cultured human tumor cells (HeLa). Meth
y
lated bases other than
5
-meth
y
lc
y
tosine not detected. Biochem J 128:133–138
Lawrence RJ, Pikaard CS (2003) Trans
g
ene-induced RNA interference: a strate
gy
fo
r
overcomin

gg
ene redundanc
y
in pol
y
ploids to
g
enerate loss-of-function muta
-
tions. Plant
J
36:114–12
1
Lawrence RJ, Ear
l
ey K, Pontes O, Si
l
va M, C
h
en ZJ, Neves N, Viegas W, Pi
k
aar
d
C
S
(2004) A concerte
d
DNA met
h
y

l
ation/
h
istone met
h
y
l
ation switc
h
regu
l
ates rRNA
gene
d
osage contro
l
an
d
nuc
l
eo
l
ar
d
ominance. Mo
l
Ce
ll
13:599–60
9

Li G, Ha
ll
TC, Ho
l
mes-Davis R (2002) P
l
ant c
h
romatin:
d
eve
l
opment an
d
gene contro
l.
Bioessa
y
s 24:234–243
Lindroth AM, Cao X,
J
ackson
J
P,ZilbermanD,McCallumCM,HenikoffS,
J
acobsen SE
(2001) Requirement of chromometh
y
lase3 for maintenance of CpXpG meth
y

la
-
tion.
S
cience 2
9
2:2077–2080
Lippman Z, Gen
d
re
l
AV, B
l
ac
k
M, Vaug
h
nMW,De
dh
ia N, McCom
b
ie WR, Lavine K,
Mitta
l
V, May B, Kassc
h
au KD, Carrington JC, Doerge RW, Co
l
ot V, Martienssen R
(2004) Ro

l
eo
f
transposa
bl
ee
l
ements in
h
eteroc
h
romatin an
d
epigenetic contro
l.
N
ature 430:471–47
6
1
1
4
B
.F.Van
y
ushi
n
L
isch D, Care
y
CC, Dorweiler JE, Chandler VL (2002) A mutation that prevents para-

mutation in maize a
l
so reverses Mutator transposon met
h
y
l
ation an
d
si
l
encing
.
Proc Nat
l
Aca
d
Sci USA 99:6130–613
5
L
iu B, Wen
d
e
l
JF (2003) Epigenetic p
h
enomena an
d
t
h
eevo

l
ution o
f
p
l
ant a
ll
opo
l
y-
p
l
oi
d
s. Mo
l
P
h
y
l
ogenet Evo
l
29:365–37
9
L
iu ZL, Han FP, Tan M, Shan XH, Don
g
YZ, Wan
g
XZ, Fedak G, Hao S, Liu B (2004

)
Activation of a rice endo
g
enous retrotransposon Tos17 in tissue culture is accom-
panied b
y
c
y
tosine demeth
y
lation and causes heritable alteration in meth
y
latio
n
pattern of flankin
gg
enomic re
g
ions. Theor Appl Genet 109:200–209
L
o Schiavo F, Pitto L, Giuliano G, Torti G, Nutti Ronchi V, Marazziti D, Ver
g
ara MR
,
Orse
ll
i S, Terzi M (1989) DNA met
h
y
l

ation o
f
em
b
ryonic carrot ce
ll
cu
l
ture an
d
its
variations as cause
db
y mutation,
d
i
ff
erentiation,
h
ormones an
dh
ypomet
h
y
l
ating
d
rugs. T
h
eor App

l
Genet 77:325–331
L
uc
h
nia
k
P, M a
l
uszyns
k
aJ,O
l
szews
k
a MJ (2002) Di
ff
erent DNA met
h
y
l
ation patter
n
in A an
d
Bc
h
romosomes o
f
Crepis capi

ll
aris
d
etecte
db
y in situ nic
k
-trans
l
ation
.
Comparison wit
h
mo
l
ecu
l
ar met
h
o
d
s. Fo
l
ia Histoc
h
em Cyto
b
io
l
40:325–330

L
und G, Ciceri P, Viotti A (1995a) Maternal-specific demeth
y
lation and expression of
specific alleles of zein
g
enes in the endosperm of Zea ma
y
s L. Plant J 8:571–581
L
und G, Messin
g
J, Viotti A (1995b) Endosperm-specific demeth
y
lation and activatio
n
of s
p
ecific alleles of
α
-
tu
b
u
l
in genes o
f
Zea mays L. Mo
l
Gen Genet 246:716–722

L
un
d
G, Lauria M, G u
ldb
erg P, Zaina S (2003) Dup
l
ication-
d
epen
d
ent CG suppressio
n
of the seed stora
g
e protein
g
enes of maize. Genetics 165:835–84
8
L
uo S, Preuss D (2003) Strand-biased DNA meth
y
lation associated with centromeri
c
re
g
ions in Arabidopsis. Proc Natl Acad Sci USA 100:11133–11138
L
y
k

o F (2001) DNA met
h
y
l
ation
l
earns to

y. Tren
d
s Genet 17:169–172
L
y
k
o F, Ramsa
h
oye BH, Jaenisc
h
R (2000) DNA met
h
y
l
ationinDrosop
h
i
l
ame
l
ano-
g

aster. Nature 408:538–540
M
adlun
g
A, Masuelli RW, Watson B, Re
y
nolds SH, Davison J, Comai L (2002) Remodel-
in
g
of DNA meth
y
lation and phenot
y
pic and transcriptional chan
g
es in s
y
ntheti
c
Arabidopsis allotetraploids. Plant Ph
y
siol 129:733–746
M
allor
y
AC, El
y
L, Smith TH, Marathe R, Anandalakshmi R, Fa
g
ard M, Vaucheret H

,
Pruss G, Bowman L, Vance VB (2001) HC-Pro suppression of trans
g
ene silencin
g
e
l
iminates t
h
e sma
ll
RNAs
b
ut not transgene met
h
y
l
ation or t
h
emo
b
i
l
esigna
l.
P
l
ant Ce
ll
13:571–58

3
M
arinitch DV, Vorob
y
ev IA, Holmes JA, Zakharchenko NS, D
y
achenko OV, Bur
y-
anov YI, Shevchuk TV (2004) H
y
permeth
y
lation of 5

-region o
f
t
h
e
h
uman ca
l-
citonin gene in
l
eu
k
emias: structura
lf
eatures an
dd

iagnostic signi

cance. Bio
-
c
h
emistry (Mosc) 69:340–349
M
artienssen RA, Co
l
ot V (2001) DNA met
h
y
l
ation an
d
epigenetic in
h
eritance in p
l
ants
an
dfil
amentous
f
ungi. Science 293:1070–1074
M
at
h
ieu O, Picar

d
G, Tourmente S (2002a) Met
h
y
l
ation o
f
a euc
h
romatin-
heterochromatin transition re
g
ion in Arabidopsis thaliana chromosome 5 left
arm.
C
hromosome Res 10:455–46
6
M
athieu O, Yuk awa Y, Su
g
iura M, Picard G, Tourmente S (2002b) 5S rRNA
g
ene
s
expression is not in
h
i
b
ite
db

y DNA met
h
y
l
ation in Ara
b
i
d
opsis. P
l
ant J 29:313–
323
DNA Meth
y
lation in Plant
s
11
5
Matzke M, Aufsatz W, Kanno T, Daxin
g
er L, Papp I, Mette MF, Matzke AJM (2004) Ge
-
netic ana
l
ysis o
f
RNA -me
d
iate
d

transcriptiona
l
gene si
l
encing. Bioc
h
im Biop
h
y
s
A
cta 1677:129–14
1
Matz
k
e MA, Mette MF, Matz
k
e AJ (2000) Transgene si
l
encing
b
yt
h
e
h
ost genom
e
d
e
f

ense: imp
l
ications
f
or t
h
eevo
l
ution o
f
epigenetic contro
l
mec
h
anisms in p
l
ants
a
n
d
v
e
r
teb
r
ates.
Pl
a
n
t

M
o
lBi
o
l4
3:
4
0
1–41
5
Mazin AL, Van
y
ushin BF (1986) Incorporation of c
y
tokinin (6-benz
y
laminopurine)
in DNA of Tetrah
y
mena p
y
riformis. Izv Akad Nauk SSSR Biol 1:122–124
Mazin AL, Gima
d
ut
d
inov OA, Tur
k
in SI, Burtseva NN, Vanyus
h

in BF (1985) Non-
enzymatic DNA met
h
y
l
ation
b
y S-a
d
enosy
l
met
h
ionine resu
l
ting in
f
ormation o
f
minor 5-met
h
y
l
cytosine an
d
t
h
ymine
f
rom cytosine resi

d
ues. Mo
l
Bio
l
(Mos
k)
19
:
903

91
4
McClintock B (1967) Genetic s
y
stems re
g
ulatin
gg
ene expression durin
g
development
.
Dev Biol Su
pp
l 1:84–11
2
Melquist S, Bender J (2003) Transcription from an upstream promoter controls meth
y
-

lation si
g
nalin
g
from an inverted repeat of endo
g
enous
g
enes in Arabidopsis
.
G
enes Dev 17:2036–204
7
Meng L, Bregitzer P, Z
h
ang S, Lemaux PG (2003) Met
h
y
l
ation o
f
t
h
e exon/intron regio
n
in t
h
eU
b
i1 promoter comp

l
ex corre
l
ates wit
h
transgene si
l
encing in
b
ar
l
ey. P
l
an
t
Mo
l
Bio
l
53:327–34
0
Mette MF, Au
f
satz W, van
d
er Win
d
en J, Matz
k
e MA, Matz

k
e AJ (2000) Transcriptiona
l
s
i
l
encing an
d
promoter met
h
y
l
ation triggere
db
y
d
ou
bl
e-stran
d
e
d
RNA. EMBO
J
19
:5
19
4–5
201
Meyer P (1995) DNA met

h
y
l
ation an
d
transgene si
l
encing in Petunia
h
y
b
ri
d
a. Curr
To
p
Microbiol Immunol 197:15–2
8
Me
y
er P (1999) The role of chromatin remodelin
g
in trans
g
ene silencin
g
and plan
t
develo
p

ment. In vitro Cell Dev Biol Plant 35:29–36
Meyer P, Nie
d
en
h
o
f
I, ten Lo
h
uis M (1994) Evi
d
ence
f
or cytosine met
h
y
l
ation o
f
non-
s
ymmetrica
l
sequences in transgenic Petunia
h
y
b
ri
d
a. EMBO J 13:2084–2088

Miura A, Yone
b
a yas
h
i S, Wa tana
b
e K, Toyama T, S
h
ima
d
aH,Ka
k
utani T (2001
)
Mo
b
i
l
ization o
f
transposons
b
yamutationa
b
o
l
is
h
ing
f

u
ll
DNA met
h
y
l
ation in
Arabido
p
sis. Nature 411:212–21
4
Mont
g
omer
y
MK (2004) RNA interference: historical overview and si
g
nificance. M eth
-
ods
M
o
lBi
o
l2
65:3
–2
1
More
l

J-B, Mourrain P, Bec
l
in C, Vauc
h
eret H (2000) DNA met
h
y
l
ation an
d
c
h
romatin
s
tructure a
ff
ect transcriptiona
l
an
d
post-transcriptiona
l
transgene si
l
encing i
n
Arabido
p
sis. Curr Biol 10:1591–1594
Mourrain P, Beclin C, Elma

y
an T, Feuerbach F, Godon C, Morel JB, Jouette D, La-
combe AM, Nikic S, Picault N, Remoue K, Sanial M, Vo TA, Vaucheret H
(
2000
)
Arabidopsis SGS2 and SGS3
g
enes are required for posttranscriptional
g
ene si
-
lencin
g
and natural virus resistance. Cell 101:533–542
Muller A, Marins M, Kamisu
g
iY,Me
y
er P (2002) Anal
y
sis of h
y
permeth
y
lation i
n
t
h
e RPS e

l
ement suggests a signa
lf
unction
f
or s
h
ort inverte
d
repeats in
d
enov
o
met
h
y
l
ation. P
l
ant Mo
l
Bio
l
48:383–399
Na
k
ano Y, Stewar
d
N, Se
k

ine M, Kusano T, Sano H (2000) A to
b
acco NtMET1 cDNA
enco
d
ing a DNA met
h
y
l
trans
f
erase: mo
l
ecu
l
ar c
h
aracterization an
d
a
b
norma
l
p
h
enotypes o
f
transgenic to
b
acco p

l
ants. P
l
ant Ce
ll
P
h
ysio
l
41:448–45
7
1
1
6
B
.F.Van
y
ushi
n
N
an X, N
g
HH, Johnso n CA, Lahert
y
CD, Turner BM, Eisenman RN, Bird A (1998
)
Transcriptiona
l
repression
b

yt
h
e met
h
y
l
-CpG-
b
in
d
ing protein MeCP2 invo
l
ves
a
h
istone
d
eacety
l
ase comp
l
ex. Nature 393:386–38
9
N
e
l
son M, Bur
b
an
k

DE, Van Etten JL (1998) C
hl
ore
ll
a viruses enco
d
emu
l
tip
l
eDNA
met
h
y
l
trans
f
erases. Bio
l
C
h
em 379:423–428
N
gernprasirtsiri J, A
k
azawa T (1990) Mo
d
u
l
ation o

f
DNA met
h
y
l
ation an
d
gene ex-
pression in cu
l
ture
d
sycamore ce
ll
streate
db
y
h
ypomet
h
y
l
ating
b
ase ana
l
og. Eu
r
J
Biochem 194:513–52

0
Ng
ernprasirtsiri J, Koba
y
ashi H, Akazawa T (1988) DNA meth
y
lation as a mechanism
of transcriptional re
g
ulation in nonphotos
y
nthetic plastids in plant cells. Pro
c
Nat
l
Aca
d
Sci USA 85:4750–475
4
N
yce J (1991) Gene si
l
encing in mamma
l
ian ce
ll
s
b
y
d

irect incorporation o
f
e
l
ectropo-
rate
d
5-met
h
y
l
-
2

-
deox
y
c
y
tidine 5

-tri
p
hos
p
hate. Somat Cell Mol Genet 17:543

550
O
a

k
e
l
ey EJ, Jost JP (1996) Non-symmetrica
l
cytosine met
h
y
l
ation in to
b
acco po
ll
en
DNA. P
l
ant Mo
l
Bio
l
31:927–930
O
akele
y
EJ, Poresta A, Jost JP (1997) Developmental chan
g
es in DNA meth
y
latio
n

of the two tobacco pollen nuclei durin
g
maturation. Proc Natl Acad Sci USA
9
4:11721–1172
5
P
a
kh
omova M V (1974) N6-
d
imet
h
y
l
aminopurine in DNA o
f
a
l
gae species. Do
kl
A
k
a
d
Nau
k
SSSR 214:1202–1205
P
a

kh
omova MV, Zaitseva GN, Be
l
ozers
k
ii AN (1968) T
h
e presence o
f
5-met
h
y
l
cytosine
an
d
6-met
h
y
l
aminopurine in t
h
e composition o
f
DNA in some a
l
gae. Do
kl
A
k

a
d
Nauk
SSS
R 182:712–71
4
P
alm
g
ren G, Mattson O, Okkels FT (1991) Specific levels of DNA meth
y
lations in
various tissues, cell lines, and cell t
y
pes of Daucus carota. Plant Ph
y
siol 95:174

1
78
P
apa CM, Sprin
g
er NM, Musz
y
nski MG, Meele
y
R, Kaeppler SM (2001) Maize chro
-
mometh

y
lase Zea meth
y
ltransferase2 is required for CpNpG meth
y
lation. Plant
C
ell 13:1
9
1
9
–1
9
28
P
aszkowski J, Whitham SA (2001) Gene silencin
g
and DNA meth
y
lation processes.
Curr Opin P
l
ant Bio
l
4:123–12
9
P
e
l
issier T, Wassenegger M (2000) A DNA target o

f
30
b
pissu
ffi
cient
f
or RNA-
d
irecte
d
DNA met
h
y
l
ation. RNA 6:55–6
5
P
elissier T, Thalmeir S, Kempe D, San
g
er H-L, Wassene
gg
er M (1999) Heav
y
de novo
meth
y
lation at s
y
mmetrical and non-s

y
mmetrical sites is a hallmark of RNA
-
directed DNA meth
y
lation. Nucleic Acids Res 27:1625–163
4
P
intor-Toro JA (1987) Adenine meth
y
lation in zein
g
enes. Biochem Bioph
y
sResCom
-
m
u
n14
7:
1
08
2–1
087
P
itto L, Cerni
l
ogar F, Evange
l
ista M, Lom

b
ar
d
i L, Miare
ll
iC,Rocc
h
i P (2000) C
h
arac
-
terization o
f
carrot nuc
l
ear proteins t
h
at ex
h
i
b
it speci

c
b
in
d
ing a
ffi
nity towar

ds
conventiona
l
an
d
non-conventiona
l
DNA met
h
y
l
ation. P
l
ant Mo
l
Bio
l
44:659–673
P
ra
dh
an S, A
d
ams RL (1995) Distinct CG an
d
CNG DNA met
h
y
l
trans

f
erases in Pisu
m
sativum. Plant
J
7:471–48
1
P
radhan S, Cummin
g
s M, Roberts RJ, Adams RLP (1998) Isolation, characteriza-
tion and baculovirus-mediated expression of the cDNA encodin
g
c
y
tosine DNA
meth
y
ltransferase from Pisum sativum. Nucleic Acids Res 26:1214–1222
DNA Meth
y
lation in Plant
s
11
7
Prakash AP, Kush A, Lakshmanan P, Kumar PP (2003) C
y
tosine meth
y
lation occurs in

a CDC48
h
omo
l
ogue an
d
a MADS-
b
ox gene
d
uring a
d
ventitious s
h
oot in
d
uctio
n
in Petunia
l
ea
f
exp
l
ants. J Exp Bot 54:1361–137
1
Pra tt K, Hattman S (1981) Deoxyri
b
onuc
l

eic aci
d
met
h
y
l
ation an
d
c
h
romatin organi
-
zation in Tetra
h
ymena t
h
ermop
h
i
l
a. Mo
l
Ce
ll
Bio
l
1:600–608
Probst AV, Fa
g
ard M, Proux F, Mourrain P, Boutet S, Earle

y
K, Lawrence RJ, Pikaard CS,
Murfett J, Furner I, Vaucheret H, Scheid OM (2004) Arabidopsis histone deacet
y
-
lase HDA6 is required for maintenance of transcriptional
g
ene silencin
g
and
determines nuclear or
g
anization of rDNA repeats. Plant Cell 16:1021–103
4
Que Q, Zhan
g
Y, Nelson M, Ropp S, Burbank DE, Van Etten JL (1997) Chlorella viru
s
SC-1A enco
d
es at
l
east

ve
f
unctiona
l
an
d

one non
f
unctiona
l
DNA met
h
y
l
trans-
f
erases. Gene 190:237–244
Ra
b
inowicz PD, Pa
l
mer LE, May BP, Hemann MT, Lowe SW, McCom
b
ie WR, Mar-
tienssen RA (2003) Genes an
d
transposons are
d
i
ff
erentia
ll
y met
h
y
l

ate
d
in p
l
ants
,
but not in mammals.
G
enome Res 13:2658–2664
Rae PM, Spear BB (1978) Macronuclear DNA of t he h
y
potrichous ciliate Ox
y
trich
a
fallax. Proc Natl Acad
S
ci
US
A 75:4
99
2–4
996
Ramsa
h
oye B, Binisz
k
iewicz D, Ly
k
oF,C

l
ar
k
V, B i r
d
A, Jaenisc
h
R (2000) Non-CpG
met
h
y
l
ation is preva
l
ent in em
b
ryonic stem ce
ll
san
d
may
b
eme
d
iate
db
yDN
A
met
h

y
l
trans
f
erase 3a. Proc Nat
l
Aca
d
Sci USA 97:5237–5242
Rate
l
D, Boisseau S, Davi
d
son SM, Ba
ll
ester B, Mat
h
ieu J, Morange M, A
d
ams
k
iD
,
Ber
g
er F, Benabid AL, Wion D (2001) The bacterial nucleoside N(6)-meth
y
l
-
deox

y
adenosine induces the differentiation of mammalian tumor cells. Bioche
m
Bioph
y
s Res Commun 285:800–805
Razin A (1998) CpG meth
y
lation, chromatin structure, and
g
ene silencin
g
—a three-
wa
y
connection. EMBO J 17:4905–490
8
Razin A, Riggs AD (1980) DNA met
h
y
l
ation an
d
gene
f
unction. Science 210:604–610
Reyes EM, Camac
h
o-Arroyo I, Nava G, Cer
b

on MA (1997) Di
ff
erentia
l
met
h
y
l
ation
in steroi
d
5a
l
p
h
a-re
d
uctase isozyme genes in epi
d
i
d
ymis, testis, an
dl
iver o
f
t
he
a
d
u

l
trat.JAn
d
ro
l
18:372–37
7
Ric
h
ar
d
s EJ (1997) DNA met
h
y
l
ation an
d
p
l
ant
d
eve
l
opment. Tren
d
s Genet 319:319

323
Ri
ddl

e NC, Ric
h
ar
d
s EJ (2002) T
h
econtro
l
o
f
natura
l
variation in cytosine met
h
y
l
atio
n
in Ara
b
i
d
opsis. Genetics 162:355–36
3
Ri
gg
s CD, Chrispeels MJ (1999) The expression of ph
y
tohema
gg

lutinin
g
enes in Phase-
olus vul
g
aris is associated with or
g
an-specific DNA meth
y
lation patterns. Plan
t
Mo l Biol 14:62
9
–63
3
Rogers J, Rogers SW (1995) Comparison o
f
t
h
ee
ff
ects o
f
N6-met
h
y
ld
eoxya
d
enosin

e
an
d
N5-met
h
y
ld
eoxycytosine on transcription
f
rom nuc
l
ear gene promoters i
n
barle
y
. Plant J 7:221–233
Ro
g
ers SD, Ro
g
ers ME, Saunders G, Holt G (1986) Isolation of mutants sensitive to 2-
aminopurine and alk
y
latin
g
a
g
ents and evidence for the role of DNA meth
y
latio

n
in Penicillium chr
y
so
g
enum. Curr Genet 10:557–56
0
Ro
g
ers SW, Ro
g
ers JC (1992) The importance of DNA meth
y
lation for stabilit
y
of
forei
g
n DNA in barle
y
. Plant Mol Biol 18:945–96
1
Ro
j
as MV, Galanti N (1990) DNA meth
y
lation in Tr
y
panosoma cruzi. FEBS Lett
2

63:
11
3
–11
6
1
1
8
B
.F.Van
y
ushi
n
R
onemus MJ, Galbiati M, Ticknor C, Chen J, Dellaporta SL (1996) Demeth
y
lation
-
in
d
uce
dd
eve
l
opmenta
l
p
l
eiotropy in Ara
b

i
d
opsis. Science 273:654–65
7
R
os F, Kunze R (2001) Regu
l
ation o
f
activator/
d
issociation transposition
b
yrep
l
icatio
n
an
d
DNA met
h
y
l
ation. Genetics 157:1723–173
3
R
ossi V, Motto M, Pe
ll
egrini L (1997) Ana
l

ysis o
f
t
h
e met
h
y
l
ation pattern o
f
t
h
e maiz
e
Opaque-2(02) promoter an
d
in vitro
b
in
d
ing stu
d
ies in
d
icate t
h
at t
h
eO2B-Zi
p

protein an
d
ot
h
er en
d
osperm
f
actors can
b
in
d
to met
h
y
l
ate
d
target sequences.
J
Biol Chem 272:13758–13765
S
alomon R, Ka
y
e AM (1970) Meth
y
lation of mouse DNA in vivo: di-and trip
y
rimidine
sequences containin

g
5-meth
y
lc
y
tosine. B iochim Bioph
y
s Acta 204:340–35
1
S
ano H (2002) DNA met
h
y
l
ation an
d
Lamarc
k
ian in
h
eritance. Proc Jpn Aca
d
78 Se
r
B
:293–29
8
S
aze H, Sc
h

ei
d
OM, Pasz
k
ows
k
i J (2003) Maintenance o
f
CpG met
h
y
l
ation is essentia
l
f
or epigenetic in
h
eritance
d
uring p
l
ant gametogenesis. Nat Genet 34:65–69
S
cebba F, Bernacchia G, De Bastiani M, Evan
g
elista M, Cantoni RM, Cella R, Locci MT
,
Pitto L (2003) Arabidopsis MBD proteins show different bindin
g
specificities and

n
uc
l
ea
rl
oca
liz
at
i
o
n
.
Pl
a
n
t
M
o
lBi
o
l
53:7
1
5

73
1
S
c
hl

appi M, Raina R, Fe
d
oro
ff
N (1994) Epigenetic regu
l
ation o
f
t
h
e maize Sp
m
transposa
bl
ee
l
ement: nove
l
activation o
f
a met
h
y
l
ate
d
promoter
b
y TnpA. Ce
ll

77:4
2
7–4
37
S
cott RJ, Spie
l
man M (2004) Epigenetics: imprinting in p
l
ants an
d
mamma
l
s—t
h
e
same but different?
C
urr Biol 14:R201–R203
S
heldon CC, Burn JE, Perez PP, Metz
g
er J, Edwards JA, Peacock WJ, Dennis ES (1999)
The FLF MADS box
g
ene: a repressor of flowerin
g
in Arabidopsis re
g
ulated b

y
verna
l
ization an
d
met
h
y
l
ation. P
l
ant Ce
ll
11:445–45
8
Sh
e
ld
on CC, Finnegan EJ, Rouse DT, Ta
d
ege M, Bagna
ll
DJ, He
ll
iwe
ll
CA, Peacoc
k
WJ,
Dennis ES (2000) T

h
econtro
l
o
ffl
owering
b
y verna
l
ization. Curr Opin P
l
ant Bio
l
3:
41
8
–42
2
S
herman JD, Talbert LE (2002) Vernalization-induced chan
g
es of the DNA meth
y
latio
n
p
attern in winter wheat. Genome 45:253–26
0
Sh
orning BYu, Vanyus

h
in BF (2001) Putative DNA-(amino)met
h
y
l
trans
f
erases in eu
-
k
ar
y
otes. Bioc
h
emistr
y
(Mosc) 66:753–76
2
S
inger T, Yor
d
an C, Martienssen RA (2001) Ro
b
ertson’s mutator transposons in A.
t
h
a
l
iana are regu
l

ate
db
yt
h
ec
h
romatin-remo
d
e
l
ing gene
d
ecrease in DNA met
h
y
-
lation
(
DDM 1
)
. Genes Dev 15:591–60
2
S
irok
y
J, Casti
g
lione MR, V
y
skot B (1998) DNA meth

y
lation patterns of Melandrium
album chromosomes.
C
hromosome Res 6:441–44
6
S
nei
d
er TW (1972) Met
h
y
l
ation o
f
mamma
l
ian
d
eoxyri
b
onuc
l
eic aci
d
. III. Termina
l
versus interna
ll
ocation o

f
5-met
h
y
l
cy tosine in o
l
igo
d
eoxyr i
b
onuc
l
eoti
d
es
f
ro
m
Novi
k
o
ff h
epatoma ce
ll d
eoxyri
b
onuc
l
eic aci

d
.JBio
l
C
h
em 247:2872–287
5
S
oppe WJJ, Jasenca
k
ova Z, Hou
b
en A, Ka
k
utani T, Meister A, Huang MS, Jaco
b
sen SE,
Schubert I, Fransz PF (2002) DNA meth
y
lation controls histone H3 l
y
sine 9 meth
y-
lation and heterochromatin assembl
y
in Arabidopsis. EMBO J 21:6549–655
9
S
pielman M, Vinkenoo
g

R, Scott RJ (2003) Genetic mechanisms of apomixis. Philo
s
Trans R
S
oc Lond B Biol
S
ci 358:10
9
5–110
3

×