Tải bản đầy đủ (.pdf) (16 trang)

Essentials of Neuroimaging for Clinical Practice - part 1 doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (149.95 KB, 16 trang )

Essentials of
Neuroimaging for
Clinical Practice
This page intentionally left blank
Washington, DC
London, England
Essentials of
Neuroimaging for
Clinical Practice
Edited by
Darin D. Dougherty, M.D., M.Sc.
Scott L. Rauch, M.D.
Jerrold F. Rosenbaum, M.D.
Note: The authors have worked to ensure that all information in this book is accurate at the time of publication
and consistent with general psychiatric and medical standards, and that information concerning drug dosages,
schedules, and routes of administration is accurate at the time of publication and consistent with standards set by
the U.S. Food and Drug Administration and the general medical community. As medical research and practice
continue to advance, however, therapeutic standards may change. Moreover, specific situations may require a spe-
cific therapeutic response not included in this book. For these reasons and because human and mechanical errors
sometimes occur, we recommend that readers follow the advice of physicians directly involved in their care or the
care of a member of their family.
Books published by American Psychiatric Publishing, Inc., represent the views and opinions of the individual au-
thors and do not necessarily represent the policies and opinions of APPI or the American Psychiatric Association.
Copyright © 2004 American Psychiatric Publishing, Inc.
ALL RIGHTS RESERVED
Manufactured in the United States of America on acid-free paper
0807060504 54321
First Edition
Typeset in Adobe’s Palatino and Futura Book
American Psychiatric Publishing, Inc.


1000 Wilson Boulevard
Arlington, VA 22209–3901
www.appi.org
Library of Congress Cataloging-in-Publication Data
Essentials of neuroimaging for clinical practice / edited by Darin D. Dougherty, Scott L. Rauch, Jerrold F.
Rosenbaum
p. ; cm.
Includes bibliographical references and index.
ISBN 1-58562-079-3 (alk. paper)
1. Brain—Imaging. I. Dougherty, Darin D. II. Rauch, Scott L. III. Rosenbaum, J. F. (Jerrold F.)
[DNLM: 1. Diagnostic Imaging. 2. Mental Disorders—diagnosis. WM 141 E78 2003]
RC386.6.D52E84 2003
616.8’04754—dc21 2003052221
British Library Cataloguing in Publication Data
A CIP record is available from the British Library.
About the cover:
Top (left and right): Effect of image acquisition parameters on functional magnetic resonance imaging (fMRI) signal.
Middle: Color-coded diffusion tensor imaging (DTI): Anisotropy (left) and color-coded DTI (right) of a healthy con-
trol subject. Source. Reprinted from Taber KH, Pierpaoli C, Rose SE, et al.: “The Future for Diffusion Tensor Imag-
ing in Neuropsychiatry.” Journal of Neuropsychiatry and Clinical Neurosciences 14:1–5, 2002. Copyright 2002. Used with
permission.
Bottom left: Acute embolic stroke on computed tomography (CT) (hypodense lesion indicated by arrow).
Bottom right: 15-Oxygen positron emission tomography (
15
O PET) data acquired from a patient during an acute
ischemic event.
To my wife,
Christina,
and our children,
Emma and William

D.D.D.
To my family,
for all of their support
S.L.R.
This page intentionally left blank
Contents
Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
1
Computed Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Lawrence T. Park, M.D.
Ramon Gilberto Gonzalez, M.D.
2
Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Martin A. Goldstein, M.D.
Bruce H. Price, M.D.
3
Positron Emission Tomography and
Single Photon Emission Computed Tomography . . . . . . . . . . . . . . . . . . . 75
Darin D. Dougherty, M.D., M.Sc.
Scott L. Rauch, M.D.
Alan J. Fischman, M.D., Ph.D.
4
Functional Magnetic Resonance Imaging. . . . . . . . . . . . . . . . . . . . . . . . 93
Robert L. Savoy, Ph.D.
Randy L. Gollub, M.D., Ph.D.
5
Magnetic Resonance Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Nicolas Bolo, Ph.D.
Perry F. Renshaw, M.D., Ph.D.

6
Electroencephalography, Event-Related Potentials, and
Magnetoencephalography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Gina R. Kuperberg, M.D., Ph.D.
7
Neuroimaging in Psychiatric Practice: What Might the Future Hold? . . . 129
Scott L. Rauch, M.D.
Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
List of Illustrations
FIGURE PAGE
1–1 CT data acquisition techniques: rotating source and detector around a body . . . . . . . . . . . . . . . . . .2
1–2 Early CT imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1–3 CT image acquisition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1–4 Attenuation values of various tissue types: Hounsfield units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
1–5 Typical CT scan, including scout film (A) and series of axial tomograms (B) . . . . . . . . . . . . . . . . . . .6
1–6 CT scan showing transverse view of normal brain at the level of the basal ganglia . . . . . . . . . . . . . .7
1–7 CT scan of a normal brain: brain and bone windows at the level of the mastoid air cells . . . . . . . . . .8
1–8 CT scan: bone windows demonstrating a facial fracture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
1–9 Subdural hematoma, subacute phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
1–10 Epidural hematoma, acute, with contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
1–11 Subarachnoid hemorrhage, acute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
1–12 Contusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
1–13 Hemorrhagic stroke of the putamen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
1–14 Acute embolic stroke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
1–15 Posterior fossa tumor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1–16 Metastatic lesions as seen on CT with contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1–17 Pyogenic abscess as seen on CT with contrast, T1-weighted MRI with gadolinium contrast,
and T2-weighted MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
1–18 Toxoplasmosis as seen on CT with contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
1–19 Temporal lobe atrophy consistent with herpes simplex encephalitis . . . . . . . . . . . . . . . . . . . . . . . .12

1–20 Enlarged lateral ventricles seen in hydrocephalus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
1–21 Obstructive hydrocephalus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
1–22 Hydrocephalus ex vacuo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
1–23 Subfalcine herniation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
1–24 Uncal herniation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
FIGURE PAGE
2–1 A, Magnetic dipole. B, Rotating proton with associated angular momentum and magnetic dipole. . .23
2–2 Proton magnetic dipole within static magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
2–3 Proton precession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
2–4 Precessional phasing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
2–5 RF receiver signal induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
2–6 Precessional dephasing (loss of transverse vector component) and longitudinal vector recovery . . . .25
2–7 FID signal induction in RF receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
2–8 Variance in MRI signal intensity due to differential weighting of relaxation rate . . . . . . . . . . . . . . .27
2–9 Long repetition time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
2–10 Short repetition time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
2–11 Inversion recovery sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
2–12 Curves describing signal-intensity decrement differentially attributable to T2 and T2* effects . . . . . .32
2–13 Axial proton density (PD) MRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
2–14 Axial fluid-attenuated inversion recovery (FLAIR) MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
2–15 Axial diffusion-weighted imaging (DWI) MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
2–16 Axial gradient echo (GE) MRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
2–17 Axial T1-weighted postcontrast MRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
2–18 Isotropic (A) and anisotropic (B) water molecule diffusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
2–19 Diffusion tensor imaging (DTI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
2–20 T1 and DTI MRIs of a patient with traumatic brain injury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
2–21 Axial T1-weighted MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
2–22 Axial T2-weighted MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
2–23 Axial FLAIR MRI showing (A) normal findings and (B) FLAIR-evident lesions . . . . . . . . . . . . . . . . . .40
2–24 Axial DWI MRI showing (A) normal findings and (B) acute or subacute stroke . . . . . . . . . . . . . . . .41

2–25 Axial GE MRI showing hemorrhage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
2–26 Axial T1-weighted MRI with gadolinium contrast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
2–27 Coronal T1-weighted MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
2–28 Coronal FLAIR MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
2–29 Sagittal T1-weighted MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
2–30 Sagittal FLAIR MRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
2–31 Magnetic resonance angiography (A) and venography (B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
2–32 Model image sequence interpretation paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
2–33 Healthy control subject (A) and patient with schizophrenia (B) approximately
anatomically co-registered, as seen on coronal T1-weighted MRI . . . . . . . . . . . . . . . . . . . . . . . . .52
2–34 Patients (both combat veterans) with (A) and without (B) posttraumatic stress disorder,
as seen on coronal T1-weighted MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
2–35 Alzheimer’s disease as seen on axial T1-weighted MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2–36 Frontotemporal lobar dementia as seen on sagittal T1-weighted MRI . . . . . . . . . . . . . . . . . . . . . . .57
2–37 Posterior cortical atrophy as seen on axial T1-weighted MRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
FIGURE PAGE
2–38 Normal-pressure hydrocephalus as seen on axial T2-weighted MRI (A)
and sagittal T1-weighted MRI (B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2–39 Subdural hematoma as seen on axial T1-weighted postcontrast MRI . . . . . . . . . . . . . . . . . . . . . . .59
2–40 Hepatic encephalography (note basal ganglia hyperintensities) as seen on
axial T1-weighted MRI (A) and coronal T1-weighted MRI (B) . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
2–41 Alcoholism complicated by Wernicke-Korsakov syndrome, as seen on axial FLAIR MRI . . . . . . . . . .60
2–42 Cerebrovascular disease as seen on axial T1-weighted MRI (A), axial T2-weighted MRI (B),
axial FLAIR MRI (C), and axial DWI MRI (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
2–43 Neoplastic tumors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
2–44 Radiation necrosis as seen on axial FLAIR MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
2–45 Multiple sclerosis as seen on axial T2-weighted MRI (A) and
revealing Dawson’s fingers on sagittal FLAIR MRI (B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
2–46 Herpes simplex encephalitis as seen on coronal T2-weighted MRI . . . . . . . . . . . . . . . . . . . . . . . . .66
2–47 HIV-related leukoencephalopathy (progressive multifocal leukoencephalopathy)

as seen on axial T2-weighted MRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
2–48 Creutzfeldt-Jakob disease as seen on axial DWI MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
3–1 Basic principles of annihilation–coincidence detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
3–2 Basic components of a single-photon imaging system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
3–3 FDG PET images of a patient with Alzheimer’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
3–4 FDG PET images of a patient with temporal lobe epilepsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
3–5
15
O PET data acquired from a patient during an acute ischemic event. . . . . . . . . . . . . . . . . . . . . .82
3–6 FDG PET images of a patient with a neoplasm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
3–7 PET studies with
18
F-DOPA, a radiopharmaceutical used to measure
presynaptic dopamine synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
3–8 Coronal and sagittal sections showing a region of decreased glucose metabolism
in depressed patients relative to control subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
3–9 Illustration of the methodology for PET activation studies
using blood flow tracers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
3–10 Categorical analysis of treatment response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
3–11 Continuous-variable analysis of treatment response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
3–12 Schematic demonstrating steps involved in conducting a PET study employing
a radiopharmaceutical designed for neuroreceptor characterization . . . . . . . . . . . . . . . . . . . . . . .88
3–13 Direct method of drug evaluation: BMS-181101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
3–14 Indirect method of drug evaluation: Ziprasidone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
4–1 Effect of image acquisition parameters on fMRI signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
4–2 Statistical map showing bilateral dorsolateral prefrontal cortex activation
in an unmedicated subject with schizophrenia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
FIGURE PAGE
5–1 Proton spectrum recorded on a 4-T magnetic resonance scanner
of brain tissue in vivo from a healthy 21-year-old man . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

5–2 Phosphorus spectrum recorded on a 4-T magnetic resonance scanner
of brain tissue in vivo from a healthy 33-year-old woman. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
6–1 Standard placement of EEG recording electrodes at the top and sides of the head . . . . . . . . . . . .118
6–2 EEG recorded in a human subject at rest from the scalp surface at various points
over the left and right hemispheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
6–3 Idealized waveform of computer-averaged auditory ERP elicited to brief sound. . . . . . . . . . . . . . .121
6–4 Time courses of MEG data at selected brain locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
6–5 Estimated cortical activity patterns at different latencies after reading word stems,
as measured with magnetoencephalography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
List of Tables
TA B L E PAGE
1–1 CT–based imaging technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
1–2 Indications for use of intravenous contrast with specific lesions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
1–3 Risk factors for adverse reaction to ionic contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1–4 Temporal evolution of blood on CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
1–5 Temporal evolution of ischemia on CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1–6 CT findings for common pathological processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
1–7 CT findings associated with neuropsychiatric disorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
1–8 Clinical indications for neuroimaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
1–9 Sensitivity to lesions and clinical indications for CT and MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
1–10 Comparison of CT and MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
2–1 Electromagnetic spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
2–2 T1 effects on appearance of T1-weighted image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
2–3 T2 effects on appearance of T2-weighted image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
2–4 Proton density (PD) effects on appearance of PD image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
2–5 Appearance of bleeding on MRI at various times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
2–6 Examples of MRI-detectable brain pathology that can manifest clinically as psychiatric disturbance . .50
2–7 MRI results in 6,200 psychiatric inpatients: unexpected and potentially treatable findings . . . . . . . . .51
2–8 Summary of structural MRI study findings in schizophrenia (1988–2000) . . . . . . . . . . . . . . . . . . . .51
2–9 MRI studies of progressive volume changes in schizophrenia . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

2–10 Subcortical MRI abnormalities reported in ADHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2–11 Relative indications for ordering an MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
2–12 Sample foreign bodies constituting potential contraindications to MRI . . . . . . . . . . . . . . . . . . . . . . .69
3–1 Radionuclides used in PET studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
3–2 Radionuclides used in SPECT studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
3–3 Radiopharmaceuticals used in PET and SPECT studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
5–1 Nuclei of biological interest with relative NMR sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
This page intentionally left blank
This page intentionally left blank

×