Tải bản đầy đủ (.docx) (75 trang)

đồ án tốt nghiệp nghiên cứu một số kỹ thuật xác định độ đo tương tự và ứng dụng

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (629.9 KB, 75 trang )

ĐẠI HỌC THÁI NGUYÊN

KHOA CÔNG NGHỆ THÔNG TIN
TRẦN QUANG HUY
NGHIÊN CỨU MỘT SỐ KỸ THUẬT
XÁC ĐỊNH ĐỘ ĐO TƯƠNG TỰ VÀ ỨNG DỤNG
LUẬN VĂN THẠC SỸ CÔNG NGHỆ THÔNG
TIN
Thái nguyên - 2009
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên

ĐẠI HỌC THÁI NGUYÊN

KHOA CÔNG NGHỆ THÔNG TIN
TRẦN QUANG HUY
NGHIÊN CỨU MỘT SỐ KỸ THUẬT
XÁC ĐỊNH ĐỘ ĐO TƯƠNG TỰ VÀ ỨNG DỤNG
Chuyên ngành: Khoa học máy tính
Mã số: 60.48.01
LUẬN VĂN THẠC SỸ CÔNG NGHỆ THÔNG
TIN
Người hướng dẫn khoa học: TS. Phạm Việt Bình
Thái nguyên – 2009

LỜI CAM ĐOAN
Tôi xin cam đoan toàn bộ nội dung trong Luận văn hoàn toàn theo
đúng

nội dung đề cương cũng như nội dung mà cán bộ hướng dẫn giao
cho. Nội


dung luận văn, các phần trích lục các tài liệu hoàn toàn chính xác.
Nếu có sai

sót tôi hoàn toàn chịu trách nhiệm.
Tác giả luận văn
Trần Quang Huy
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
4


MỤC LỤC
Nội dung Trang
ĐẶT VẤN ĐỀ

8
L ỜI NÓI ĐẦ U

9
Ch ƣ ơng

1:

KHÁI

QUÁT

VỀ

XỬ




ẢNH



ĐỘ

ĐO



TƢƠNG

TỰ
TRONG XỬ LÝ ẢNH

11
1.1. Khái quát về

xử lý ảnh

11
1.1.1. Một số khái niệm cơ bản

11
1.1.2. Một số vấn đề trong xử lý ảnh

12
1.1.2.1. Các hệ thống xử lý ảnh


12
1.1.2.2. Các hình thái của ảnh

14
1.1.2.3. Một số ứng dụng trong xử lý ảnh

15
1.1.2.4. Một số khái niệm, định nghĩa trong xử lý video

17
1.1.2.5. Lược đồ màu (Color Histogram)

22
1.1.2.6. Lược đồ tương quan màu (Color Correlogram)

25
1.1.2.7. Đặc trưng chuyển động (Motion)

26
1.1.2.8. Các bước thao tác với file video

28
1.2. Độ đo tƣơng tự trong xử lý ảnh

30
Chƣơng 2: MỘT SỐ PHƢƠNG PHÁP XÁC ĐỊNH ĐỘ ĐO TƢƠNG TỰ


32

2.1. Độ đo

dựa

trên khoảng cách


32
2.1.1. Độ đo khoảng cách min – max

32
2.1.2. Độ đo khoảng cách Euclid

32
2.1.3. Độ đo khoảng cách toàn phương:

32
2.2. Độ đo

sử dụng trọng số


32
2.2.1. Độ đo có trọng số

32
2.2.2. Độ đo hỗn hợp

33
2.2.2.1. Thuộc tính rời rạc


33
2.2.2.2. Thuộc tính có thứ tự

34
2.2.2.3. Thuộc tính liên tục

35
2.2.2.4. Kết hợp độ đo của các thuộc tính

36
2.2.2.5. Thuật toán nhanh cho thuộc tính liên tục

38
2.2.2.6. Thuật toán nhanh cho thuộc tính có thứ tự

40
2.3. Độ đo tƣơng tự có thể học (Trainable similarity measure)

41
2.4. Độ đo dựa trên Histogram

43
2.4.1. Giới thiệu

43
2.4.2. Định nghĩa

43
2.4.3. Lược đồ mức xám hai chiều


44
2.4.4. Các tính chất của lược đồ mức xám

45
2.4.5. Quan hệ giữa lược đồ mức xám và ảnh

46
2.4.6. Một chiều

46
2.4.7. Hai chiều

47
CHƢƠNG 3: ỨNG DỤNG ĐỘ ĐO TƢƠNG TỰ TRONG VIỆC PHÂN

LOẠI ẢNH TRONG FILE VIDEO

49
3.1. Giới thiệu

bài toán


49
3.2. Cài đặt thuật toán

49
3.2.1. Code đọc ảnh


49
3.2.2. Code đọc và extract frame file video

56
3.3. K ết quả thực nghiệm và đánh giá

59
PHẦN KẾT LUẬN

62
TÀI LIỆU THAM KHẢO

63
ĐẶT VẤN ĐỀ
Lĩnh vực xử lý ảnh số tĩnh và xử lý ảnh động (video) đã được hình
thành và phát triển vào những thập kỷ đầu của thế kỷ XX. Các phương pháp
xử lý ảnh bắt nguồn từ một số ứng dụng như nâng cao chất lượng thông tin
hình ảnh đối với mắt người và xử lý số liệu, nhận dạng cho hệ thống tự động.
Một trong những ứng dụng đầu tiên của xử lý ảnh là nâng cao chất lượng ảnh
báo truyền qua cáp giữa London và New York vào những năm 1920. Thiết bị
đặc biệt mã hóa hình ảnh, truyền qua cáp và khôi phục lại ở phía thu. Cùng
với thời gian, do kỹ thuật máy tính phát triển nên xử lý hình ảnh ngày càng
phát triển. Các kỹ thuật cơ bản cho phép tìm kiếm, đối sánh những ảnh để tìm
ra sự tương tự.
Từ năm 1964 đến nay, phạm vi xử lý ảnh và video (ảnh động) phát
triển không ngừng. Các kỹ thuật xử lý ảnh số (digital image processing) đang
được sử dụng để giải quyết một loạt các vấn đề nhằm nâng cao chất lượng
thông tin hình ảnh. Và xử lý ảnh số được ứng dụng rất nhiều trong y tế, thiên
văn học, viễn thám, sinh học, y tế hạt nhân, quân sự, sản xuất công nghiệp …
Một ứng dụng quan trọng trong xử lý ảnh số mà không thể không nhắc đến đó

là đối sánh một ảnh với các frame của một file video nhằm mục đích tìm kiếm
sự giống nhau hay khác nhau, qua đó giúp cho quá trình xử lý công việc
nhanh hơn mà không mất thời gian kiểm tra từng file video.
Chính vì vậy, tôi lựa chọn đề tài “Nghiên cứu một số kỹ thuật xác
định độ đo tƣơng tự và ứng dụng ” nhằm nghiên cứu một số kỹ thuật xác
định độ đo tương tự như Trainable similarity measure (TSM) và Histogram
dòng cột. Qua đó, tôi có thể đưa ra một số nhận xét và có thể có giải pháp đề
xuất để phân loại đối tượng ảnh trong file video hiệu quả hơn.
LỜI NÓI ĐẦU
Xử lý ảnh là một lĩnh vực đã và đang được quan tâm của nhiều nhà khoa
học trong và ngoài nước bởi tính phong phú và lợi ích của nó được ứng dụng
trong khoa học kỹ thuật, kinh tế, xã hội và đời sống con người. Lĩnh vực xử lý
ảnh liên quan tới nhiều ngành khác như: hệ thống tin học, trí tuệ nhân tạo,
nhận dạng, viễn thám, y học
Hiện nay, thông tin hình ảnh đóng vai trò rất quan trọng trong trao đổi
thông tin, bởi phần lớn thông tin mà con người thu được thông qua thị giác.
Do vậy, vấn đề nhận dạng trong xử lý ảnh, đặc biệt là nhận dạng đối tượng
ảnh chuyển động đang được quan tâm bởi yêu cầu ứng dụng đa dạng của
chúng trong thực tiễn.
Mục đích đặt ra cho xử lý ảnh được chia thành hai phần chính: phần
thứ nhất liên quan đến những khả năng từ các ảnh thu lại các ảnh để rồi từ các
ảnh đã được cải biến nhận được nhiều thông tin để quan sát và đánh giá bằng
mắt, chúng ta coi như là sự biến đổi ảnh (image transformation) hay sự làm
đẹp ảnh (image enhancement). Phần hai nhằm vào nhận dạng hoặc đoán nhận
ảnh một cách tự động, đánh giá nội dung các ảnh.
Quá trình nhận dạng ảnh nhằm phân loại các đối tượng thành các lớp
đối tượng đã biết (supervised learning) hoặc thành những lớp đối tượng chưa
biết (unsupervised learning). Sau quá trình tăng cường và khôi phục (đối với
những ảnh có nhiễu), giai đoạn tiếp theo, người ta phải trích rút các đặc tính
quan trọng, quyết định của ảnh cần nhận dạng. Các đặc tính đó có thể là đặc

tính hình học, đặc tính ngữ cảnh.
Bên cạnh đó, trong những năm gần đây lượng dữ liệu video số đã tăng
lên đáng kể cùng với việc sử dụng rộng rãi các ứng dụng đa phương tiện
trong

giáo dục, giải trí, kinh doanh, y tế… Thực tế này đặt ra các bài toán
như: giảm
dung lượng video và tăng tốc độ xử lý, tổ chức lưu trữ và tìm kiếm video hiệu
quả, hiểu nội dung video, nhận dạng đối tượng trong video. Một số nhóm
nghiên cứu trong và ngoài nước đã đưa ra các phương pháp giải quyết giảm
dung lượng video, tổ chức cơ sở dữ liệu video, và đặc biệt lĩnh vực là nhận
dạng đối tượng, đối tượng chuyển động trong dữ liệu video cũng đang được
quan tâm bởi tính ứng dụng đa dạng và cần thiết của nó trong khoa học, xã
hội và đời sống con người.
Trong luận văn thạc sĩ với đề tài “Nghiên cứu một số kỹ thuật xác
định độ đo tƣơng tự và ứng dụng”, tôi tập trung giải quyết bài toán đọc ảnh
và so sánh với các frame trong file video để đưa ra nhận xét. Luận văn gồm
phần mở đầu, phần kết luận, và 3 chương nội dung:
Chương 1 : Khái quát về xử lý ảnh và độ đo tương tự trong xử lý ảnh

Chương 2 : Một số phương pháp xác định độ đo tương tự
Chương 3 : Ứng dụng trong việc phân loại
ảnh
Được sự giúp đỡ của các thầy cô trong Khoa Công nghệ thông tin - Đại
học Thái Nguyên cũng như của bạn bè, đồng nghiệp, đặc biệt là chỉ bảo tận
tình của Tiến sĩ Phạm Việt Bình và sự nỗ lực của bản thân, đến nay tôi đã
hoàn thành đề tài.
Tuy nhiên trong quá trình làm việc, mặc dù đã cố gắng nỗ lực hết sức
nhưng do kiến thức và kinh nghiệm vẫn còn hạn chế nên không thể tránh khỏi
còn sai sót, em tha thiết kính mong nhận được sự chỉ bảo của các thầy cô để

đề tài được hoàn thiện hơn.
Em xin chân thành cảm ơn.
Thái Nguyên, ngày 30 tháng 10 năm 2009
Học viên thực hiện
Trần Quang Huy
CHƢƠNG 1: KHÁI QUÁT VỀ XỬ LÝ ẢNH VÀ ĐỘ ĐO TƢƠNG
TỰ

TRONG XỬ LÝ ẢNH
1.1. Khái quát về xử lý ảnh
1.1.1. Một số khái niệm cơ bản[1]
Xử lý ảnh là một trong những mảng quan trọng nhất trong kỹ thuật thị
giác máy tính, là tiền đề cho nhiều nghiên cứu thuộc lĩnh vực này. Hai nhiệm
vụ cơ bản của quá trình xử lý ảnh là nâng cao chất lượng thông tin hình ảnh
và xử lý số liệu cung cấp cho các quá trình khác trong đó có việc ứng dụng thị
giác vào điều khiển.
Quá trình bắt đầu từ việc thu nhận ảnh nguồn (từ các thiết bị thu nhận
ảnh dạng số hoặc tương tự) gửi đến máy tính. Dữ liệu ảnh được lưu trữ ở định
dạng phù hợp với quá trình xử lý. Người lập trình sẽ tác động các thuật toán
tương ứng lên dữ liệu ảnh nhằm thay đổi cấu trúc ảnh phù hơp với các ứng
dụng khác nhau.
Quá trình xử lý nhận dạng ảnh được xem như là quá trình thao tác ảnh
đầu vào nhằm cho ra kết quả mong muốn. Kết quả đầu ra của một quá trình
xử lý ảnh có thể là một ảnh “tốt hơn” hoặc một kết luận.
Ảnh Xử lý
ảnh
Ảnh tốt hơn
Kết luận
Hình 1.1. Quá trình xử lý ảnh
Ảnh trong xử lý ảnh có thể xem như ảnh n chiều. Bởi vì, ảnh có thể

xem là tập hợp các điểm ảnh. Trong đó, mỗi điểm ảnh được xem như là đặc
trưng cường độ sáng hay một dấu hiệu nào đó tại một vị trí nào đó của đối
tượng trong không gian và do đó nó có thể xem như một hàm n biến P(c1,
c2, , cn).
Sơ đồ tổng quát của một hệ thống xử lý
ảnh:
Hệ quyết định
Thu nhận ảnh
(scanner,
camera…)
Tiền xử lý
(xoá nhiễu, lọc
nhiễu,…)
Trích
chọn đặc
điểm
Hậu

xử lý
Lưu trữ
Đối sánh rút ra
kết luận
Hình 1.2. Các bƣớc cơ bản trong một hệ thống xử lý ảnh
1.1.2. Một số vấn đề trong xử lý ảnh
1.1.2.1. Các hệ thống xử lý ảnh
* Tiền xử lý
Tiền xử lý là giai đoạn đầu tiên trong xử lý ảnh số. Tuỳ thuộc vào quá
trình xử lý tiếp theo trong giai đoạn này sẽ thực hiện các công đoạn khác nhau
như: nâng cấp, khôi phục ảnh, nắn chỉnh hình học, khử nhiễu v.v
* Trích chọn đặc điểm

Các đặc điểm của đối tượng được trích chọn tuỳ theo mục đích nhận
dạng trong quá trình xử lý ảnh. Trích chọn hiệu quả các đặc điểm giúp cho
việc nhận dạng các đối tượng ảnh chính xác, với tốc độ tính toán cao và dung
lượng nhớ lưu trữ giảm.
* Đối sánh, nhận dạng
Nhận dạng tự động (automatic recognition), mô tả đối tượng, phân loại
và phân nhóm các mẫu là những vấn đề quan trọng trong thị giác máy, được
ứng dụng trong nhiều ngành khoa học khác nhau. Ví dụ mẫu có thể là ảnh của
Hệ quyết định
vân tay, ảnh của một vật nào đó được chụp, một chữ viết, khuôn mặt người
hoặc một ký đồ tín hiệu tiếng nói. Khi biết một mẫu nào đó, để nhận dạng
hoặc phân loại mẫu đó.
Hoặc phân loại có mẫu (supervised classification), chẳng hạn phân
tích phân biệt (discriminant analyis), trong đó mẫu đầu vào được định danh
như một thành phần của một lớp đã xác định. Hoặc phân loại không có mẫu
(unsupervised classification hay clustering) trong đó các mẫu được gán vào
các lớp khác nhau dựa trên một tiêu chuẩn đồng dạng nào đó. Các lớp này cho
đến thời điểm phân loại vẫn chưa biết hay chưa được định danh.
Hệ thống nhận dạng tự động bao gồm ba khâu tương ứng với ba giai đoạn

chủ yếu sau đây:
• Thu nhận dữ liệu và tiền xử lý.
• Biểu diễn dữ liệu.
• Nhận dạng, ra quyết định.
Bốn cách tiếp cận khác nhau trong lý thuyết nhận dạng
là:
• Đối sánh mẫu dựa trên các đặc trưng được trích chọn.
• Phân loại thống kê.
• Đối sánh cấu trúc.
• Phân loại dựa trên mạng nơ-ron nhân tạo.

Trong các ứng dụng rõ ràng là không thể chỉ dùng có một cách tiếp cận
đơn lẻ để phân loại “tối ưu” do vậy cần sử dụng cùng một lúc nhiều phương
pháp và cách tiếp cận khác nhau. Do vậy, các phương thức phân loại tổ hợp
hay được sử dụng khi nhận dạng và nay đã có những kết quả có triển vọng
dựa trên thiết kế các hệ thống lai (hybrid system) bao gồm nhiều mô hình kết
hợp.
Việc giải quyết bài toán nhận dạng trong những ứng dụng mới, nảy

sinh trong cuộc sống không chỉ tạo ra những thách thức về thuật giải, mà còn
đặt ra những yêu cầu về tốc độ tính toán. Đặc điểm chung của tất cả những
ứng dụng đó là những đặc điểm đặc trưng cần thiết thường là nhiều, không
thể do chuyên gia đề xuất, mà phải được trích chọn dựa trên các thủ tục phân
tích dữ liệu.
1.1.2.2. Các hình thái của
ảnh
* Chuyển ảnh màu thành ảnh
xám
Đơn vị tế bào của ảnh số là pixel. Tùy theo mỗi định dạng là ảnh màu
hay ảnh xám mà từng pixel có thông số khác nhau. Đối với ảnh màu từng
pixel sẽ mang thông tin của ba màu cơ bản tạo ra bản màu khả kiến là Đỏ (R),
Xanh lá (G) và Xanh biển (B) [Thomas 1892]. Trong mỗi pixel của ảnh màu,
ba màu cơ bản R, G và B được bố trí sát nhau và có cường độ sáng khác nhau.
Thông thường, mỗi màu cơ bản được biểu diễn bằng tám bit tương ứng 256
mức độ màu khác nhau. Như vậy mỗi pixel chúng ta sẽ có 2
8x3
=2
24
màu
(khoảng 16.78 triệu màu). Đối với ảnh xám, thông thường mỗi pixel mang
thông tin của 256 mức xám (tương ứng với tám bit) như vậy ảnh xám hoàn

toàn có thể tái hiện đầy đủ cấu trúc của một ảnh màu tương ứng thông qua
tám mặt phẳng bit theo độ xám.
Trong hầu hết quá trình xử lý ảnh, chúng ta chủ yếu chỉ quan tâm đến
cấu trúc của ảnh và bỏ qua ảnh hưởng của yếu tố màu sắc. Do đó bước
chuyển từ ảnh màu thành ảnh xám là một công đoạn phổ biến trong các quá
trình xử lý ảnh vì nó làm tăng tốc độ xử lý là giảm mức độ phức tạp của các
thuật toán trên ảnh.
* Lược đồ xám của ảnh (Histogram)
Lược đồ xám của một ảnh số có các mức xám trong khoảng [0,L−1]

là một hàm rời rạc p(r
k
)=n
k
/n . Trong đó n
k
là số pixel có mức xám
thứ

r
k
, n là tổng số pixel trong ảnh và k=0,1,2 L−1. Do đó P(r
k
) cho một
xấp
xỉ xác suất xảy ra mức xám r
k
. Vẽ hàm này với tất cả các gia trị của k sẽ biểu
diễn khái quát sự xuất hiện các mức xám của một ảnh. Chúng ta cũng có thể
thề hiện lược đồ mức xám của ảnh thông qua tần suất xuất hiện mỗi mức xám

qua hệ tọa độ vuông góc xOy. Trong đó, trục hoành biểu diễn số mức xám từ
0 đến N (số bit của ảnh xám). Trục tung biểu diễn số pixel của mỗi mức xám.
Hình 1.3. Lược đồ xám của ảnh
1.1.2.3. Một số ứng dụng trong xử lý ảnh
Như đã nói ở trên, các kỹ thuật xử lý ảnh trước đây chủ yếu được sử
dụng để nâng cao chất lượng hình ảnh, chính xác hơn là tạo cảm giác về sự
gia tăng chất lượng ảnh quang học trong mắt người quan sát. Thời gian gần
đây, phạm vi ứng dụng xử lý ảnh mở rộng không ngừng, có thể nói hiện
không có lĩnh vực khoa học nào không sử dụng các thành tựu của công nghệ
xử lý ảnh số .
Trong y học các thuật tóan xử lý ảnh cho phép biến đổi hình ảnh được
tạo ra từ nguồn bức xạ X -ray hay nguồn bức xạ siêu âm thành hình ảnh
quang học trên bề mặt film x-quang hoặc trực tiếp trên bề mặt màn hình hiển
thị. Hình ảnh các cơ quan chức năng của con người sau đó có thể được xử lý
tiếp để nâng cao độ tương phản, lọc, tách các thành phần cần thiết (chụp cắt
lớp) hoặc tạo ra hình ảnh trong không gian ba chiều (siêu âm 3 chiều).
Trong lĩnh vực địa chất, hình ảnh nhận được từ vệ tinh có thể được
phân tích để xác định cấu trúc bề mặt trái đất. Kỹ thuật làm nổi đường biên
(image enhancement) và khôi phục hình ảnh (image restoration) cho phép
nâng cao chất lượng ảnh vệ tinh và tạo ra các bản đồ địa hình 3-D với độ
chính xác cao.
Hình 1.4 Ảnh nhận được từ vệ tinh dùng trong khí tượng học
Trong ngành khí tượng học, ảnh nhận được từ hệ thống vệ tinh theo dõi
thời tiết cũng được xử lý, nâng cao chất lượng và ghép hình để tạo ra ảnh bề
mặt trái đất trên một vùng rộng lớn, qua đó có thể thực hiện việc dự báo thời
tiết một cách chính xác hơn. Dựa trên các kết quả phân tích ảnh vệ tinh tại các
khu vục đông dân cư còn có thể dự đóan quá trình tăng trưởng dân số, tốc độ
ô nhiễm môi trường cũng như các yếu tố ảnh hưởng tới môi trường sinh thái.
Ảnh chụp từ vệ tinh có thể thu được thông qua các thiết bị ghi hình cảm nhận
được tia sáng quang học ( 450 520 nm λ= − ), hoặc tia hồng ngoại ( 760 900

nm λ= − ). Trên hình 1.5a và 1.5b lần lượt là ảnh bề mặt trái đất nhận được
từ 2 ống ghi hình nói trên, dễ dàng nhận thấy sự khác biệt rõ ràng giữa hai
ảnh. Đặc biệt trên ảnh 1.3b, hình con sông được tách biệt rất rõ ràng so với
vùng ảnh hai bên bờ. Thiết bị thu hình nhạy cảm với vật thể bức xạ các tia
trong miền hồng ngoại sẽ cho ra những bức ảnh trong đó vật thể có nhiệt độ
thấp sẽ được phân biệt rõ ràng so với vật thể có nhiệt độ cao hơn. Như vậy
việc lựa chọn các thiết bị ghi hình khác nhau sẽ tạo ra ảnh có đặc tính khác
nhau, tùy thuộc vào mục đích sử dụng trong các lĩnh vực khoa học cụ thể .
1.5a 1.5b
Hình 1.5 - Ảnh bề mặt trái đất thu được từ hai camera khác nhau
Xử lý ảnh còn được sử dụng nhiều trong các hệ thống quản lý chất
lượng và số lượng hàng hóa trong các dây truyền tự động, ví dụ như hệ thống
phân tích ảnh để phát hiện bọt khí bên vật thể đúc bằng nhựa, phát hiện các
linh kiện không đạt tiêu chuẩn (bị biến dạng) trong quá trình sản xuất hoặc hệ
thống đếm sản phẩm thông qua hình ảnh nhận được từ camera quan sát.
Xử lý ảnh còn được sử dụng rộng rãi trong lĩnh vực hình sự và các hệ
thống bảo mật hoặc kiểm soát truy cập: quá trình xử lý ảnh với mục đích nhận
dạng vân tay hay khuôn mặt cho phép phát hiện nhanh các đối tương nghi vấn
cũng như nâng cao hiệu quả hệ thống bảo mật cá nhân cũng như kiểm soát ra
vào. Ngoài ra, có thể kể đến các ứng dụng quan trọng khác của kỹ thuật xử lý
ảnh tĩnh cũng như ảnh động trong đời sống như tự động nhận dạng, nhận
dạng

mục tiêu quân sự, máy nhìn công nghiệp trong các hệ thống điều
khiển tự

động, nén ảnh tĩnh, ảnh động để lưu và truyền trong mạng viễn
thông v.v.
1.1.2.4. Một số khái niệm, định nghĩa trong xử lý video
[9]

* Khung hình (frame)
Một đoạn video gồm nhiều ảnh tĩnh đặt liên tiếp nhau tạo nên chuyển động trong

phim. Một khung hình là một ảnh tĩnh đó. Ví dụ:
Khung hình i Khung hình i + 1
Hình 1.6. Các khung hình
Để đoạn video có thể tạo cảm giác chuyển động, các khung hình phải
được quay với tốc độ phù hợp. Vì mắt người chỉ có thể nhận được 24
hình/giây, nên nếu như trong một giây, lần lượt 24 hình hoặc nhiều hơn được
phát thì mắt sẽ không nhận ra được sự rời rạc giữa những khung hình, mà
chỉ thấy những cảnh liên tục. Có nhiều hệ video và mỗi hệ có tốc độ quay
khác nhau như : NTSC 30 hình/giây, PAL 24 hình/giây, SECAM 29.99
hình/giây.
Khung hình là đơn vị cơ bản nhất của dữ liệu video. Theo chuẩn
của hệ NTSC thì một giây có 30 khung hình, vậy một phút có 1800 khung
hình, một giờ có 60x1800 = 108000 khung hình. Có thể thấy rằng số lượng
khung hình cho một đoạn video thường là rất lớn, cần phải có một đơn vị cấp
cao hơn cho video số.
* Không gian màu
Một không gian màu là một mô hình đại diện cho màu về mặt giá
trị độ sáng; một không gian màu xác định bao nhiêu thông tin màu được thể
hiện. Nó định nghĩa không gian 1,2,3, hoặc 4 chiều mà mỗi chiều của nó,
còn gọi là thành phần, đại diện cho những giá trị độ sáng. Một thành phần
màu còn được gọi là một kênh màu. Mỗi điểm ảnh trong ảnh có thể được đại
diện bởi một điểm trong không gian màu 3 chiều. Những không gian màu
thường được dùng để bao gồm RGB, CMY, Munsell, CIE l*a*b*, CIE
L*u*v*, HSV, HSL. Cho đến nay vẫn chưa có sự thống nhất không gian
nào là tốt nhất. Sau đây là một số không gian màu thường gặp
- Không gian độ
xám

Không gian độ xám chỉ có một thành phần, biến đổi từ đen đến trắng,
như trong hình. Không gian độ xám được dùng chủ yếu trong việc hiển thị và
in ấn trắng đen và độ xám.
Hình 1.7. Không gian màu độ xám
- Không gian màu
RGB
Không gian RGB là không gian màu được sử dụng rộng rãi trong việc
hiển thị hình ảnh. Ý tưởng tạo ra không gian màu RGB đến từ cái cách
mà mắt con người hoạt động. Nó có những cơ quan cảm nhận để phát
hiện ra 3 màu khác nhau: đỏ(red), lục (green), lam (blue). Không gian
màu RGB cũng gồm có 3 thành phần màu: Red, Green, và Blue. Những
thành phần này được gọi là màu gốc để cộng vào, vì mỗi màu được tạo nên
bằng cách cộng thêm các phần tử vào màu đen(0,0,0).
Hình 1.8. Không gian RGB
Hình 1.9. Không gian RGB
Hình 1.10. Không gian RGB
- Không gian màu CMY
Không gian CMY được dùng chủ yếu trong in ấn. CMY là viết tắt
của Cyan-Magenta-Yellow (màu lục lam, màu đỏ tươi, màu vàng), đó là ba
màu chính tương ứng với ba màu mực in. Chúng được gọi là những màu
gốc để trừ, vì mỗi màu trong không gian CMY được tạo ra thông qua
việc hấp thu độ sáng. Cyan hấp thu sự chiếu sáng của màu đỏ, Magenta hấp
thu màu xanh lục, Yellow hấp thu màu xanh dương.
Hình 1.11. Không gian CMY

Mối quan hệ giữa RGB và CMY :
C = 1 – R

M = 1 – G
Y = 1 - B

- Không gian màu HSV
Mô hình HSV(Hue, Saturation, Value), còn gọi là HSB (Hue, Saturation,

Brightness) định nghĩa một không gian màu gồm có 3 thành phần tạo nên :
Hue, loại màu (chẳng hạn màu đỏ, xanh, hay vàng) Có giá trị
từ 0 - 360 hoặc từ 0 - 2đ
Saturation, độ thuần khiết của màu
Có giá trị từ 0 – 100%, thường được chuẩn hoá về 0 – 1. Độ thuần khiết của

một màu càng thấp, độ xám của màu đó càng nhiều và màu đó càng mờ.

Value, độ sáng của màu
Có giá trị từ 0 – 100%, thường được chuẩn hóa về 0 – 1.
Mô hình HSV được tạo ra từ nãm 1978 bởi Alvy Ray Smith. Nó là một
phép biến đổ i phi tuyến của không gian màu RGB. Mô hình HSV giúp tách
bạch màu (H, S) và độ sáng (V), phù hợp với cảm nhận của con người.
1.1.2.5. Lược đồ màu (Color Histogram)
* Định nghĩa
Lược đồ màu của ảnh cho biết sự phân bố của các màu trong ảnh.
Trong đó :
H[i] =
n[i]
n
i là một bin màu, nếu ảnh độ xám thì i∈[0,255] , nếu ảnh màu RGB
thì i ∈[0,2
24
]
n[i] : số điểm ảnh có giá trị màu là i n : tổng số điểm ảnh
Hình 1.12. Lược đồ màu ứng với frame
Hình 1.13. Mắt người không nhạy cảm với sự thay đổi màu sắc

Để cải tiến phù hợp cho việc ứng dụng trong tìm kiếm, các màu trong
không gian màu HSV được định lượng trước khi tính lược đồ màu. Có nhiều
cách định lượng, một trong những cách đó là
chia Hue thành 18 vùng,
chia Saturation thành 3 vùng
chia Value thành 3 vùng
Khi đó, tổng số màu bằng HxSxI = 162 màu, chi phí tính toán và lư u

trữ giảm đi rất nhiều, và lược đồ màu này rất thích hợp cho việc truy tìm

thông tin thị giác.
Hình 1.14. Các màu đã được định lượng trong không gian HSV
* Ý nghĩa của lược đồ màu
Đối với một màu c
i
, H
ci
(I) thể hiện số điểm ảnh có màu c
i
trong ảnh I.

Nói cách khác, với mỗi điểm ảnh trong ảnh I, H
ci
(I) thể hiện xác suất điểm
ảnh đó có màu là c
i.
Không có mang thông tin về không gian.
* Đánh giá ưu điểm, khuyết điểm

Ưu đ


i ể

m
- Tính toán lược đồ màu ít tốn chi phí, đơn giản, nhanh chóng.
- Lược đồ màu bất biến đối với một số phép biến đổi hình học như phép
biến đổi Affine : tịnh tiến, xoay, sự co, giãn.

Khuy ế t điể

m
Lược đồ màu chỉ xét phân bố toàn cục về màu của ảnh mà không xét
đến yếu tố cục bộ về vị trí, làm mất thông tin về quan hệ không gian giữa các
màu. Dẫn đến việc có thể có nhiều ảnh khác nhau nhưng lại có cùng lược đồ
màu
Ứ ng d

ụ ng
Được ứng dụng nhiều trong việc phân đoạn video và truy tìm thông tin
thị giác.
1.1.2.6. Lược đồ tương quan màu (Color Correlogram)
* Giới thiệu lược đồ tương quan màu
Quan sát thấy rằng lược đồ màu thiếu thông tin về cách mà màu sắc
được phân bố theo không gian, Một đặc trưng mới được giới thiệu gọi là
lược đồ tương quan màu. Lược đồ tương quan màu hứa hẹn mô tả không chỉ
là phân phối màu của các điểm ảnh mà còn là sự tương quan về không quan
giữa các cặp màu.
* Tính lược đồ tương quan màu
Gọi [D] là tập gồm D khoảng cách d
1

, d
2
, , d
D
được đo bằng độ đo L

.
Lược đồ tương quan màu của ảnh I được xác định với cặp màu c
i
, c
j

và khoảng cách d như sau:
(d )
c
i
,c
j
(I )
=
Pr
p
1
∈I
c
, p
2
∈I
[ p
2

∈ I
j
|| p
1

p | = d ]

γ
c L2

×