Tải bản đầy đủ (.pdf) (39 trang)

về tính lồi đa thức của một số tập hợp trong cn

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (500.38 KB, 39 trang )

ĐẠI HỌC QUỐC GIA HÀ NỘI
ĐẠI HỌC KHOA HỌC TỰ NHIÊN
HOÀNG PHƯƠNG KHÁNH
VỀ TÍNH LỒI ĐA THỨC CỦA MỘT SỐ
TẬP HỢP TRONG C
n
LUẬN VĂN THẠC SĨ TOÁN HỌC
Hà Nội - Năm 2011
ĐẠI HỌC QUỐC GIA HÀ NỘI
ĐẠI HỌC KHOA HỌC TỰ NHIÊN
HOÀNG PHƯƠNG KHÁNH
VỀ TÍNH LỒI ĐA THỨC CỦA MỘT SỐ
TẬP HỢP TRONG C
n
Chuyên ngành: TOÁN GIẢI TÍCH
Mã số : 60 46 01
LUẬN VĂN THẠC SĨ TOÁN HỌC
NGƯỜI HƯỚNG DẪN KHOA HỌC
TS. NINH VĂN THU
Hà Nội - Năm 2011
Mục lục
Lời nói đầu 2
1 Một số kiến thức chuẩn bị 4
1.1 Hàm chỉnh hình . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Hàm đa điều hòa . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Một số định lý xấp xỉ . . . . . . . . . . . . . . . . . . . . . 6
1.4 Khái niệm tập lồi đa thức và một số ví dụ . . . . . . . . . . 6
1.5 Đại số đều . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Bổ đề Kallin . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 Đa tạp thuần túy thực . . . . . . . . . . . . . . . . . . . . 18
1.8 Vành chỉnh hình . . . . . . . . . . . . . . . . . . . . . . . . 21


2 Tính lồi đa thức của hợp hai n-phẳng thực trong C
n
22
2.1 Tính lồi đa thức của hợp hai n-phẳng thực trong C
n
. . . . 22
2.2 Xấp xỉ đa thức . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Ví dụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Kết luận 38
Tài liệu tham khảo 39
1
Chương 1
Một số kiến thức chuẩn bị
1.1 Hàm chỉnh hình
Giả sử Ω là tập mở trong C
n
, ta có thể đồng nhất C
n
với R
2n
. Xét
hàm f : Ω → C, f ∈ C
1
(Ω), z
j
= x
j
+ iy
j
, j = 1, , n.

df =
n

j=1
∂f
∂x
j
dx
j
+
n

j=1
∂f
∂y
j
dy
j
=
n

j=1
∂f
∂z
j
dz
i
+
n


j=1
∂f
∂z
j
dz
j
,
trong đó
∂f
∂z
j
=
1
2

∂f
∂x
j
− i
∂f
∂y
j

,
∂f
∂z
j
=
1
2


∂f
∂x
j
+ i
∂f
∂y
j

.
Định nghĩa 1.1. Giả sử f(z) = u(x, y) + iv(x, y), z = x + iy xác định
trong Ω với x, y ∈ R
n
. Hàm f được gọi là R
2n
-khả vi tại z
0
= x
0
+ iy
0
nếu
các hàm u(x, y) và v(x, y) khả vi tại (x
0
, y
0
).
Định nghĩa 1.2. Hàm f được gọi là C
n
-khả vi tại z

0
∈ Ω nếu f là R
2n
-khả
4
vi tại z
0
và f thỏa mãn phương trình Cauchy-Riemann:
∂f
∂z
j
(z
0
) = 0, j = 1, , n,
tức là df =
n

j=1
∂f
∂z
j
dz
j
.
Định nghĩa 1.3. Hàm f được gọi là chỉnh hình tại z
0
∈ Ω nếu nó là
C
n
-khả vi trong một lân cận nào đó của z

0
.
Hàm f được gọi là chỉnh hình trên Ω nếu f chỉnh hình tại mọi z
0
∈ Ω.
Hàm f được gọi là chỉnh hình trên tập compact K ⊂ Ω nếu tồn tại
tập mở ω sao cho K ⊂ ω ⊂ Ω và f chỉnh hình trên ω.
Hàm f chỉnh hình trên toàn bộ C
n
được gọi là hàm nguyên.
Đối với hàm chỉnh hình ta có tính chất sau:
Định lý 1.1. Nguyên lý môđun cực đại.
Giả sử f là hàm chỉnh hình trên miền bị chặn D và liên tục trên D. Khi
đó hoặc f là hàm hằng hoặc f chỉ đạt cực đại trên biên bD của D.
1.2 Hàm đa điều hòa
Định nghĩa 1.4. Hàm thực n biến u(x
1
, x
2
, , x
n
) khả vi liên tục cấp hai
trên tập mở D ⊂ R
n
được gọi là hàm đa điều hòa nếu
u(x) =

2
u
∂x

2
1
(x) +

2
u
∂x
2
2
(x) + +

2
u
∂x
2
n
(x) = 0,
với mọi x ∈ D.
Định lý 1.2. Giả sử f(z) = u(x, y) + iv(x, y) là hàm chỉnh hình trên
miền Ω ⊂ C
n
, với z = x + iy và x, y ∈ R
n
. Khi đó u(x, y) và v(x, y) là
các hàm đa hàm điều hòa trên Ω.
5
Định lý 1.3. Nguyên lý cực đại.
Giả sử u : D → R là hàm đa điều hòa, trong đó D ⊂ C
n
. Nếu K là tập

con compact của D thì f|
K
đạt giá trị cực đại và cực tiểu trên biên bK của
K. Trong trường hợp D là tập liên thông, nếu f đạt cực đại địa phương
tại điểm z
0
∈ D thì nó là hằng số trong lân cận nào đó của z
0
.
1.3 Một số định lý xấp xỉ
Định lý 1.4. Định lý Stone-Weirstrass.
Mỗi hàm số liên tục f(x) trên một tập compact X ⊂ R
n
là giới hạn đều
của một dãy các đa thức với hệ số hữu tỉ.
Định lý 1.5. Định lý Runge.
Cho K là tập con compact trong C và C \ K là tập liên thông, f là hàm
chỉnh hình trên K. Khi đó f là giới hạn đều trên K của một dãy các đa
thức.
Định lý 1.6. Định lý Mergelyan.
Giả sử K là tập compact trong C và C \ K là tập liên thông. Khi đó với
mọi hàm f : K → C liên tục sao cho f|
int(K)
: int(K) → C là hàm chỉnh
hình có thể xấp xỉ đều trên K bởi các đa thức.
1.4 Khái niệm tập lồi đa thức và một số ví dụ
Định nghĩa 1.5. Tập K ⊂ C
n
được gọi là tập lồi nếu với mọi z
0

∈ C
n
\K,
tồn tại phiếm hàm tuyến tính l : C
n
→ R sao cho: l(z
0
) = 1 và l(z) < 1
với mọi z ∈ K.
Mở rộng khái niệm tập lồi là khái niệm tập lồi đa thức.
6
Định nghĩa 1.6. Tập con compact X của C
n
được gọi là lồi đa thức nếu
với mỗi điểm z ∈ C
n
\ X tồn tại đa thức P sao cho:
|P (z)| > sup{|P (x)| : x ∈ X}.
Ta ký hiệu P 
X
= sup{|P (x)| : x ∈ X}.
Định nghĩa 1.7. Nếu X là tập con compact của C
n
, bao lồi đa thức của
X là tập

X = {z ∈ C
n
: |P (z)| ≤ P 
X

với mọi đa thức P }.
Dễ thấy X là tập lồi đa thức khi và chỉ khi X =

X.
Vì hàm chỉnh hình có thể khai triển thành chuỗi lũy thừa nên tập
compact X ⊂ C
n
là lồi đa thức khi và chỉ khi mỗi điểm z ∈ C
n
\ X tồn
tại hàm nguyên F sao cho: |F(z)| > F 
X
.
Sau đây là một số ví dụ đơn giản về các tập lồi đa thức trong C
n
.
Ví dụ 1.1. Mọi tập K compact và lồi trong C
n
đều là lồi đa thức.
Chứng minh. Xét z
0
∈ C
n
\K. Do K là tập lồi nên tồn tại phiếm hàm tuyến
tính l : C
n
→ R sao cho: l(z
0
) = 1 và l(z) < 1 với mọi z ∈ K. Khi đó tồn
tại phiếm hàm tuyến tính L : C

n
→ C sao cho ReL = l. Đặt F(z) = e
L(z)
thì F là hàm chỉnh hình. Khi đó |F (z)| = |e
L(z)
| = e
ReL(z)
= e
l(z)
. Với mọi
z ∈ K thì |F(z)| = e
l(z)
< e = |F (z
0
)| nên K là tập lồi đa thức.
Ví dụ 1.2. Giả sử K là tập con compact trong C. Khi đó K là tập lồi đa
thức khi và chỉ khi C\K là tập liên thông.
Chứng minh. Giả sử K là tập lồi đa thức, ta phải chứng minh C\K là tập
liên thông. Giả sử phản chứng C\K không là tập liên thông. Khi đó tồn
tại D ⊂ C\K sao cho bD ⊂ K. Theo nguyên lý môđun cực đại, với mọi
z ∈ D thì |P (z)| ≤ P 
bD
≤ P
K
. Do đó D ⊂

K = K, điều này trái với
7
giả thiết phản chứng. Vậy C\K là tập liên thông.
Giả sử C\K là tập liên thông, ta chứng minh K là tập lồi đa thức.

Xét z
0
∈ C\K thì f(z) =
1
z −z
0
chỉnh hình trong lân cận nào đó của K.
Theo định lý Runge, f có thể xấp xỉ đều bởi các đa thức trên K. Vì vậy,
tồn tại đa thức P sao cho P (z
0
) = 1 và P 
K
<
1
2
. Do |P (z
0
)| > P
K
nên K là tập lồi đa thức.
Ví dụ 1.3. Mọi tập compact K ⊂ R
n
đều lồi đa thức.
Chứng minh. Xét x ∈ R
n
\K và đặt f(z) =
1
z −x
. Ta có hàm f liên
tục trên K. Theo định lý Stone-Weierstrass tồn tại đa thức P sao cho

P (x) = 1 > P 
K
. Do đó x /∈

K. Vì vậy

K ∩ R
n
= K.
Xét w = u + iv ∈ C
n
, với u = (u
1
, , u
n
), v = (v
1
, , v
n
) ∈ R
n
,
v = 0, tức là w /∈ R
n
. Đặt F (z) =
n

j=1
e
−(z

j
−u
j
)
2
. Vì |F (w)| =
n

j=1
e
−(iv
j
)
2
=
n

j=1
e
v
2
j
> 1 và F 
R
n
≤ 1 nên |F (w)| > F 
R
n
≥ F
K

. Do đó w /∈

K.
Vậy K =

K hay K là tập lồi đa thức.
Từ ví dụ 1.2 và định lý Runge, ta có mọi hàm f chỉnh hình trên một
tập lồi đa thức trong C có thể xấp xỉ đều bởi các đa thức. Liệu kết quả
này có đúng trong trường hợp tổng quát C
n
không? Định lý Oka-Weil đã
trả lời cho câu hỏi này.
Định lý 1.7. Định lý Oka-Weil.
Nếu tập compact K trong C
n
là tập lồi đa thức và nếu f là hàm chỉnh
hình trong một lân cận của K thì với mọi  > 0 tồn tại đa thức P sao cho
 f −P 
K
< .
8
1.5 Đại số đều
Cho X là tập compact trong C
n
. Ký hiệu :
C(X) = {f : X → C, f liên tục}.
P(X) = {f ∈ C(X), ∃ dãy đa thức {P
n
} : P
n

K
⇒ f}.
A(X) = {f liên tục, chỉnh hình trong phần trong của X}.
B(V ) = {f chỉnh hình trên V, với V là tập mở trong C
n
}.
Định nghĩa 1.8. Một C-đại số A được gọi là đại số Banach nếu (A, ·)
là không gian Banach thỏa mãn xy ≤ x.y với mọi x, y ∈ A và
1 = 1.
Định nghĩa 1.9. Giả sử X là không gian compact, Hausdorff, mỗi đại số
con có đơn vị, tách điểm, đóng của đại số C(X) được gọi là một đại số đều
trên X.
Điều kiện tách điểm có nghĩa là với hai điểm phân biệt x, x

∈ X, tồn
tại hàm f thuộc đại số đó sao cho f(x) = f(x

).
Ví dụ 1.4. C(X), P(X), A(X), B(V ) là các đại số đều trên X.
Định nghĩa 1.10. Giả sử A là một đại số Banach giao hoán, mỗi phiếm
hàm tuyến tính ϕ : A → C, ϕ = 0 và thỏa mãn ϕ(f.g) = ϕ(f).ϕ(g) được
gọi là một đặc trưng của A.
Từ định nghĩa đặc trưng của đại số Banach ta có ϕ(1) = 1. Thật vậy,
nếu ϕ(1) = 0 suy ra với mọi f ∈ A, ϕ(f) = ϕ(f.1) = ϕ(f).ϕ(1) = 0. Từ
đó suy ra ϕ ≡ 0, mâu thuẫn với định nghĩa đặc trưng. Vậy ϕ(1) = 0. Từ
ϕ(1) = ϕ(1.1) = ϕ(1).ϕ(1) suy ra ϕ(1) = 1.
Mỗi đặc trưng trên đại số đều bất kỳ đều có chuẩn bằng 1. Thật vậy,
nếu f thuộc đại số đều A thỏa mãn f
X
< 1 và ϕ là một đặc trưng của

9
A thì ϕ(f) < 1. Giả sử phản chứng ϕ(f) = c với |c| ≥ 1. Theo định nghĩa
chuẩn, ta có tồn tại  > 0 sao cho với mọi x ∈ X thì |f(x)| < 1 −. Khi đó
chuỗi
1
c


j=0
(
f
c
)
j
hội tụ đều trên X tới hàm g ∈ A thỏa mãn 1 = (c −f)g.
Ta có ϕ(1) = (c − ϕ(f))ϕ(g) = 0. Từ mâu thuẫn này suy ra điều phải
chứng minh.
Nếu cho một đại số A, xác định đặc trưng của A là vấn đề khó. Nhưng
trong trường hợp đại số C(X), P(X) thì ta có các kết quả sau:
Định lý 1.8. Giả sử X là không gian compact Hausdorff và ϕ là một đặc
trưng của C(X). Khi đó tồn tại duy nhất x ∈ X sao cho ϕ(f) = f(x) với
mọi f ∈ C(X).
Chứng minh. Trước hết ta chứng minh tồn tại x ∈ X thỏa mãn. Giả sử
không tồn tại x ∈ X sao cho ϕ(f) = f(x) với mọi f ∈ C(X). Xét tập
ker ϕ = {f ∈ C(X) : ϕ(f) = 0}. Khi đó với mỗi f ∈ C(X), ta có
ϕ(ϕ(f).1 − f) = ϕ(f).ϕ(1) − ϕ(f) = 0.
Do đó ϕ(f).1 − f ∈ ker ϕ. Vì vậy ker ϕ = {0}. Khi đó

g∈ker ϕ
{x ∈ X : g(x) = 0} = X.

Thật vậy, giả sử ∪
g∈ker ϕ
{x ∈ X : g(x) = 0} = X, tức là tồn tại x ∈ X
sao cho g(x) = 0 với mọi g ∈ ker ϕ. Ta có (ϕ(f).1 − f)(x) = 0 hay
ϕ(f)−f(x) = 0 với mọi f ∈ C(X). Vì vậy ϕ(f) = f(x) với mọi f ∈ C(X).
Điều này mâu thuẫn với giả sử phản chứng nên

g∈ker ϕ
{x ∈ X : g(x) = 0} = X.
Do X là tập compact nên tồn tại các hàm g
1
, g
2
, , g
r
∈ C(X) ∩ker ϕ sao
cho X = ∪
r
j=1
{x ∈ X : g
j
(x) = 0}. Đặt h
j
= g
j
/
r

j=1
g

j
g
j
thì h
j
∈ C(X)
và 1 =
r

j=1
h
j
g
j
. Do đó 1 = ϕ(1) = ϕ(
r

j=1
h
j
g
j
) =
r

j=1
ϕ(h
j
)ϕ(g
j

) = 0. Điều
10
này vô lý suy ra tồn tại x ∈ X sao cho ϕ(f) = f(x) với mọi f ∈ C(X).
Ta chứng minh sự tồn tại của x là duy nhất. Giả sử x = y thuộc X
thỏa mãn ϕ(f) = f(x) và ϕ(f) = f(y) với mọi f ∈ C(X). Điều này dẫn
đến f(x) = f(y) với mọi f ∈ C(X), mâu thuẫn với tính tách điểm của
C(X).
Nếu X là tập con compact của C
n
thì tồn tại một thác triển

f ∈ C(

X)
của mỗi hàm f ∈ P(X). Ta xây dựng hàm

f như sau: với mỗi f ∈ P(X),
tồn tại dãy các đa thức {P
j
}
j=1
hội tụ đều trên X tới f. Với bất kỳ điểm
y ∈

X thì dãy {P
j
(y)}
j=1
là dãy Cauchy trong C nên hội tụ. Gọi giới
hạn của dãy này là


f(y). Giới hạn này không phụ thuộc vào việc chọn dãy
các đa thức. Do sự hội tụ là hội tụ đều nên

f liên tục và

f ∈ P(

X). Ta có
thể đồng nhất f với

f, đại số P(X) với P(

X).
Định lý 1.9. Nếu X là một tập con compact của C
n
thì mỗi đặc trưng ϕ
của P(X) đều có dạng f −→

f(z) với duy nhất z ∈

X. Khi đó ϕ(f) = f(z)
với mọi f ∈ P(X).
Chứng minh. Do P(X) ≡ P(

X) nên ta có tương ứng 1-1 mỗi f ∈ P(X)
với

f ∈ P(


X). Ta có thể giả sử X =

X hay X là tập lồi đa thức.
Vì các hàm trong P(X) tách các điểm trên X nên điểm z nếu tồn tại
thì phải là duy nhất.
Ta chứng minh tồn tại z thỏa mãn. Lấy cố định một đặc trưng ϕ của
P(X). Với mỗi z = (z
1
, z
2
, z
n
) ∈ C
n
, ta có các phép chiếu lên thành
phần thứ j sau:
Z
j
: C
n
−→ C
z −→ z
j
Ta xét điểm z ∈ C
n
sao cho z = (ϕ(Z
1
), ϕ(Z
n
)). Giả sử P là đa thức

bất kỳ. Khi đó P (z) =

I
a
I
z
I
, trong đó I = (i
1
, , i
n
) và z
I
= z
i
1
1
z
i
n
n
.
11
Vì ϕ là hàm tuyến tính và nhân tính nên
ϕ(P ) =

I
a
I
ϕ(Z

1
)
i
1
ϕ(Z
n
)
i
n
= P (ϕ(Z
1
), ϕ(Z
n
)) = P (z).
Vì ϕ = 1 nên |ϕ(P )| ≤ P 
X
. Do đó |P (z)| ≤ P 
X
với mọi P hay
z ∈

X = X. Từ định nghĩa tập P(X), ta có tập các đa thức là trù mật
trong P(X) nên với mọi f ∈ P(X) thì ϕ(f) = f(z).
Từ hai định lý 1.8 và 1.9 ta có:
Định lý 1.10. Nếu P(X) = C(X) thì X là tập lồi đa thức.
Chứng minh. Vì P(X) = C(X) nên mỗi đặc trưng của đại số P(X) được
xác định qua một điểm duy nhất thuộc X. Nhưng mỗi đặc trưng của P(X)
hoàn toàn xác định tại một điểm duy nhất thuộc

X. Do đó X =


X hay
X là tập lồi đa thức.
Trước khi đưa ra định nghĩa độ đo biểu diễn của đặc trưng của một
đại số đều, ta nhắc lại định lý Haln-Banach và định lý biểu diễn Riesz.
Định lý 1.11. Định lý Haln-Banach.
Một phiếm hàm tuyến tính liên tục f xác định trên một không gian con
M của không gian định chuẩn X bao giờ cũng có thể thác triển thành một
phiếm hàm tuyến tính liên tục F trên toàn thể X sao cho F  = f.
Định lý 1.12. Định lý biểu diễn Riesz.
Cho Λ là hàm tuyến tính dương trên C(X). Khi đó tồn tại một σ-đại số M
trên X chứa tất cả các tập Borel trong X và tồn tại duy nhất độ đo dương
µ là biểu diễn của Λ theo nghĩa:
a) Λ(f) =

X
fdµ với mọi f ∈ C(X).
b) µ(K) < ∞ với mọi tập compact K ⊂ X.
c) Với mọi E ∈ M ta có
µ(E) = inf{µ(V ) : V ⊂ E, V mở}.
12
d)µ(E) = sup{µ(K) : K ⊂ E, Kcompact }, với mọi tập mở E và với mọi
E ∈ M có µ(E) < ∞.
e) Nếu E ∈ M, A ⊂ E với µ(E) = 0 thì A ∈ M.
Định nghĩa 1.11. Cho A là đại số đều trên không gian compact Hausdorff
X và ϕ là một đặc trưng của A. Một độ đo Borel hữu hạn µ trên X
với

dµ = 1 được gọi là độ đo biểu diễn cho ϕ nếu với mỗi f ∈ A,
ϕ(f) =


X
f(x)dµ(x).
Từ định lý Haln-Banach và định lý biễu diễn Riesz suy ra sự tồn tại độ
đo biểu diễn. Thật vậy, nếu ϕ là đặc trưng của A thì nó có chuẩn bằng 1.
Theo định lý Haln-Banach có thể thác triển ϕ tới một hàm tuyến tính liên
tục

ϕ trên C(X) sao cho 

ϕ = 1. Theo định lý biểu diễn Riesz, tồn tại độ
đo Borel hữu hạn µ trên X, mà

dµ = 1 sao cho

X
f(x)dµ(x) =

ϕ(f)
với mọi f ∈ C(X). Ta có 1 ∈ A, ϕ(1) = 1 và µ = 1 nên µ là độ đo
dương thỏa mãn định nghĩa.
1.6 Bổ đề Kallin
Đối với hai tập lồi compact rời nhau trong C
n
thì hợp của chúng là
lồi đa thức vì chúng có thể được tách bởi hàm tuyến tính. Một cách tổng
quát, hợp của hai tập lồi đa thức trong C
n
chưa chắc là tập lồi đa thức. Ví
dụ sau chỉ ra hợp của hai tập compact, lồi chỉ có một điểm chung không

là tập lồi đa thức.
Ví dụ 1.5. Xét hai tập hợp
X
1
= {z ∈ C
2
: z
1
= z
2
, |z
2
| ≤ 2},
X
2
= {z ∈ C
2
: z
1
= 2z
2
, |z
2
| ≤ 2}.
13
Mỗi tập này đều compact và là tập lồi, X
1
∩ X
2
= {0}. Nhưng X =

X
1
∪ X
2
không lồi đa thức. Thật vậy, xét ánh xạ ψ : C\{0} → C
2
xác
định bởi ψ(ζ) = (ζ,
1
ζ
). Đặt A = {ζ ∈ C : 1 ≤ |ζ| ≤

2}. Ta có
K
1
= ψ(|ζ| = 1) ⊂ X
1
và K
2
= ψ(|ζ| =

2) ⊂ X
2
. Với mọi đa thức P ,
z ∈ A ta có
|P ◦ψ(z)| ≤ P ◦ ψ ≤ P 
K
1
∪K
2

≤ P
X
,
nên ψ(z) ∈

X. Do đó ψ(A) ∈

X. Ta có P = ψ(
5
4
) /∈ X nhưng P ∈ ψ(A)
nên X =

X hay X không là tập lồi đa thức.
Bổ đề Kallin sau đây đưa ra điều kiện để hợp của hai tập lồi đa thức
không nhất thiết rời nhau là tập lồi đa thức.
Bổ đề 1.1. Bổ đề Kallin.
Cho X
1
, X
2
là các tập con lồi đa thức của C
n
và p là đa thức sao cho
các tập con lồi đa thức Y
j
=

(p(X
j

)), j = 1, 2 của C giao nhau nhiều
nhất tại điểm gốc là điểm biên của mỗi tập. Nếu tập p
−1
(0) ∩ (X
1
∪ X
2
)
là lồi đa thức thì X = X
1
∪ X
2
là tập lồi đa thức. Nếu thêm điều kiện
P(X
1
) = C(X
1
) và P(X
2
) = C(X
2
) thì P(X) = C(X).
Chứng minh. Xét x ∈

X
1
∪ X
2
và µ là độ đo biểu diễn cho x trên tập
X

1
∪X
2
. Ta có p(

X
1
∪ X
2
) ⊂ (p(X
1
∪X
2
))

⊂ Y
1
∪Y
2
nên p(x) ∈ Y
1
∪Y
2
.
Nếu p(x) = 0, giả sử p(x) ∈ Y
1
. Theo định lý Mergelyan tồn tại hàm
g ∈ P(Y
1
∪ Y

2
) thỏa mãn g(p(x)) = 1 và g|Y
2
= 0. Với mọi đa thức q và
với mọi số nguyên dương k, ta có
|q
k
(x)| = |q
k
(x)g(p(x))| ≤ q
k
X
1

|g ◦ p|dµ.
Lấy căn bậc k hai vế và cho k → ∞ ta được |q(x)| ≤ q
X
1
nên x ∈

X
1
=
X
1
.
Nếu p(x) = 0, xét g ∈ P(Y
1
∪ Y
2

) thỏa mãn g(0) = 1, |g| < 1 trên
14
(Y
1
∪Y
2
)\{0}. Với mỗi đa thức q, ta có q(x) = q(x)[g(p(x))]
k
=

q[g◦p]
k

dần tới

p
−1
(0)∩(X
1
∪X
2
)
qdµ khi k → ∞. Vì vậy
x ∈ (p
−1
(0) ∩ (X
1
∪ X
2
))


= p
−1
(0) ∩ (X
1
∪ X
2
) ⊂ X
1
∪ X
2
.
Do đó X
1
∪ X
2
lồi đa thức.
Xét µ là độ đo trên X
1
∪ X
2
trực giao với đại số P(X
1
∪ X
2
), tức là
với mọi h ∈ P(X
1
∪ X
2

) ta có

hdµ = 0.
Ta chỉ ra µ|(X
1
\p
−1
(0)) ∈ P(X
1
)

. Thật vậy, xét h ∈ P(Y
1
∪Y
2
) là hàm
thỏa mãn h|Y
2
= 0 và h(z) = z, z ∈ Y
1
. Nếu h
k
= h
1
k
, k = 1, thì theo
định lý Mergelyan h
k
∈ P(Y
1

∪Y
2
). Với mọi đa thức q, 0 =

(h
k
◦p)qdµ →

X
1
\p
−1
(0)
pqdµ khi k → ∞. Vì vậy µ|(X
1
\p
−1
(0)) ∈ P(X
1
)

. Do P(X
1
) =
C(X
1
) nên µ|(X
1
\p
−1

(0)) là độ đo không. Tương tự µ|(X
2
\p
−1
(0)) cũng
là độ đo không. Ta có độ đo µ tập trung trên tập
(X
1
∪ X
2
)\((X
1
\p
−1
(0)) ∪ (X
2
\p
−1
(0)) = (X
1
∪ X
2
) ∩ p
−1
(0).
Vì P(X
1
) = C(X
1
) và P(X

2
) = C(X
2
) nên µ = 0. Vì vậy P(X
1
∪ X
2
) =
C(X
1
∪ X
2
).
Áp dụng bổ đề trên, Kallin đã chứng minh được kết quả sau:
Định lý 1.13. Hợp của ba hình cầu đóng rời nhau là tập lồi đa thức.
Chứng minh. Xét trường hợp n = 2. Giả sử B
1
, B
2
và B
3
là ba hình cầu
có bán kính lần lượt là r
1
= 1 ≥ r
2
≥ r
3
. Chọn hệ trục tọa độ thích hợp,
ta có thể giả sử tâm của B

1
là gốc, tâm của B
2
là (α, 0) với α ∈ C. Sử
dụng phép quay trục z
1
, z
2
, ta có thể giả sử tọa độ tâm của B
3
là điểm
β = (β
1
, β
2
) với β
1
, β
2
thực. Qua phép quay trên, tâm của B
2
là điểm
(γ, 0) với γ ∈ C.
Xét đa thức ϕ(z) = z
2
1
+ z
2
2
. Xét z = x + iy, trong đó x = (x

1
, x
2
)
với y = (y
1
, y
2
) thuộc R
2
. Ta có ϕ(B
1
) = {z ∈ C : |z| ≤ 1}. Vì ϕ là hàm
15
chỉnh hình nên Reϕ là hàm đa điều hòa. Do đó giá trị nhỏ nhất của hàm
Reϕ trên B
3
đạt được trên biên bB
3
. Ta giải bài toán tìm giá trị nhỏ nhất
của hàm Reϕ(z) = x
2
1
− y
2
1
+ x
2
2
− y

2
2
với điều kiện
|z −β|
2
= r
2
3
hay(x
1
− β
1
)
2
+ (x
2
− β
2
)
2
+ y
2
1
+ y
2
2
= r
2
3
.

Sử dụng phương pháp nhân tử Lagrange, để tìm giá trị nhỏ nhất của Reϕ
trên bB
3
, ta giải hệ
x
1
= λ(x
1
− β
1
)
−y
1
= λy
1
x
2
= λ(x
2
− β
2
)
−y
2
= λy
2
.
Hệ có nghiệm chỉ khi λ = −1 hoặc y
1
= y

2
= 0. Nếu λ = −1 thì x
j
= β
j
/2.
Ta chỉ xét những điểm thuộc bB
3
, tức là |x − β|
2
+ |y|
2
= r
2
3
. Từ đó ta
có |β|
2
/4 + |y|
2
= r
2
3
. Do vậy |β| ≤ 2r
3
≤ 1 + r
3
. Mặt khác, do B
1
và B

3
là hai hình cầu rời nhau nên |β| > 1 + r
3
. Điều mâu thuẫn này suy ra
y
1
= y
2
= 0. Khi đó, ta chỉ cần xét bài toán min(x
2
1
+x
2
2
) khi |x−β|
2
= r
2
3
.
Từ đánh giá |β|−|x| ≤ |x −β| = r
3
ta có |x| ≥ |β|−r
3
> 1 do B
1
và B
3
là hai hình cầu rời nhau. Vì vậy Reϕ > 1 trên B
3

.
Vì B
1
và B
2
là hai hình cầu rời nhau nên điểm gốc không thuộc B
2
. Khi
đó 1/|ϕ| là hàm chỉnh hình trên B
2
nên đạt giá trị lớn nhất trên bB
2
. Vì
vậy giá trị nhỏ nhất của |ϕ| đạt được trên bB
2
. Chú ý rằng (z
1
, z
2
) ∈ bB
2
thì (z
1
, e

z
2
) ∈ bB
2
với mọi υ ∈ R. Do đó giá trị nhỏ nhất của |ϕ| trên

bB
2
đạt được khi arg z
2
2
= arg z
2
1
+ π, tức là z
2
= i
z
1
|z
1
|
|z
2
|. Vì vậy giá trị
nhỏ nhất của |ϕ| trên B
2
là căn bậc hai giá trị nhỏ nhất của
|z
2
1

z
2
1
|z

1
|
2
(r
2
2
− |z
1
− γ|
2
)| = z
2
1
− r
2
2
+ |z
1
− γ|
2
,
với |z
1
− γ| ≤ r
2
. Đặt F (z
1
) = z
2
1

− r
2
2
+ |z
1
− γ|
2
thì điểm tới hạn trong
mặt phẳng là z
1
= γ/2, điểm này không thuộc đĩa |z
1
− γ| ≤ r
2
. Giá trị
16
nhỏ nhất là (|γ|−r
2
)
2
≥ 1 đạt được tại duy nhất một điểm. Do đó |ϕ| ≥ 1
trên B
2
. Vì vậy ϕ(B
1
) ∩ ϕ(B
2
) tại nhiều nhất một điểm.
Áp dụng bổ đề Kallin với hai tập lồi đa thức là X
1

= B
1
và X
2
=
B
2
∪ B
3
ta được B
1
∪ B
2
∪ B
3
là tập lồi đa thức.
Xét trường hợp n > 2, ta có thể chọn hệ tọa độ sao cho B
1
là hình
cầu đóng đơn vị trong C
n
và giả sử bán kính của B
2
và B
3
không lớn hơn
1. Hơn nữa ta có thể giả sử tâm của B
2
và B
3

thuộc không gian con
Π = {z ∈ C
n
: z
3
= = z
n
= 0}
của C
n
. Nếu B

j
= B
j
∩Π thì ∪
j
B

j
là tập lồi đa thức vì đây là hợp của ba
hình cầu đóng rời nhau trong C
2
. Nếu π là phép chiếu trực giao từ C
n
vào
Π thì với mọi tập con compact E của π
−1
(∪B


j
), ta có

E ⊂ π
−1
(∪B

j
). Do
vậy ∪B
j
là tập lồi đa thức.
Kallin cũng chứng minh được rằng hợp của ba đa đĩa đóng rời nhau
không lồi đa thức. Khudaiberganov và Kytmanov cũng đưa ra ví dụ hợp
của ba ellipsoid đóng rời nhau không lồi đa thức. Liệu hợp của bốn hình
cầu đóng rời nhau có là tập lồi đa thức hay không? Vấn đề này vẫn chưa
có câu trả lời. Tuy nhiên, nếu tâm của các hình cầu thuộc R
n
, ta có kết
quả sau:
Định lý 1.14. Tập X là hợp hữu hạn của các hình cầu đóng có phần trong
rời nhau, tâm là các điểm thuộc R
n
là lồi đa thức.
Chứng minh. Ký hiệu B
n
là hình cầu đơn vị và B
n
(a, r) là hình cầu tâm
a, bán kính r.

Ta chứng minh định lý bằng quy nạp theo số hình cầu. Nếu chỉ có
một hình cầu, vì hình cầu là tập lồi nên nó là lồi đa thức. Giả sử hợp
của k hình cầu đóng có phần trong rời nhau, tâm là các điểm thuộc R
n

tập lồi đa thức. Ta cần chứng minh điều này cũng đúng với k + 1. Không
17
mất tính tổng quát, ta có thể giả sử một trong các hình cầu này là B
n

những hình cầu khác có bán kính không lớn hơn 1. Gọi hợp của k hình
còn lại đó là X. Theo giả thiết quy nạp X là tập lồi đa thức. Đặt đa thức
P (z) = z
2
1
+ z
2
2
+ + z
2
n
. Xét z thuộc biên bB
n
(a, r) của hình cầu với
a ∈ R
n
, |a| > 1 và r nhỏ thuộc [0, 1). Khi đó z = x + iy với x, y ∈ R
n

|x − a|

2
+ |y|
2
= r
2
. Ta có
ReP (z) = |x|
2
− |y|
2
= |x|
2
+ |x − a|
2
− r
2
= 2|x|
2
− 2x.a + |a|
2
− r
2
≥ 2|x|
2
− 2|x||a| + |a|
2
− r
2
.
Hàm ϕ(t) = 2t

2
− 2t|a| + |a|
2
− r
2
đạt giá trị nhỏ nhất khi t = |a|/2. Vì
|a| > 1 và r ∈ [0, 1) nên |a|/2 ≤ |a|−r, |a| ≥ r+1. Mà |a|−r < |x| < |a|+r
nên
ReP (z) ≥ 2(|a|−r)
2
− 2|a|(|a| − r) + |a|
2
− r
2
= (|a| − r)
2
≥ 1.
Hàm ReP(z) là hàm đa điều hòa trên B
n
(a, r) nên giá trị nhỏ nhất của nó
đạt được trên biên. Do vậy ReP (z) ≥ 1 với mọi z ∈ B
n
(a, r). Với z ∈ B
n
thì ReP (z) ≤ 1. Vậy hai tập P(X) và P (B
n
) chỉ giao nhau tại biên của
mỗi tập.
Xét z ∈ P
−1

(0). Ta có z /∈ X vì trên X, ReP (z) ≥ 1. Do đó
P
−1
(0) ∩ (X ∪ B
n
) = P
−1
(0) ∩ B
n
= {0}
là tập lồi đa thức. Theo bổ đề Kallin ta có X ∪B
n
là tập lồi đa thức.
1.7 Đa tạp thuần túy thực
Định nghĩa 1.12. Một C
1
đa tạp con Σ của một tập con mở trong C
n
được gọi là thuần túy thực nếu với mỗi điểm p ∈ Σ thì không gian tiếp xúc
T
p
(Σ) không chứa bất kỳ đường thẳng phức nào, tức là
T
p
(Σ) ∩ iT
p
(Σ) = {0}.
18
Bổ đề 1.2. ∂/∂x
1

|
p
, , ∂/∂x
n
|
p
, ∂/∂y
1
|
p
, , ∂/∂y
n
|
p
là cơ sở của T
p
(Σ).
Ví dụ 1.6. Đặt M(A) = (A + iI)R
n
. M(A) là đa tạp thuần túy thực khi
và chỉ khi i không là giá trị riêng của A.
Chứng minh. Vì M(A) là không gian con tuyến tính của C
n
nên không
gian tiếp xúc T
p
(M(A)) = M(A) với mọi p ∈ M(A).
Giả sử M(A) là đa tạp thuần túy thực ta chứng minh i không là giá
trị riêng của A. Ta chứng minh bằng phản chứng. Nếu i là giá trị riêng
của A thì tồn tại vectơ khác không v ∈ R

n
sao cho Av = iv. Ta có
(A + iI)

v
2

= A

v
2

+ i

v
2

=
iv
2
+
iv
2
= iv.
Do đó iv ∈ M(A). Ta có
i(A + iI)

−Av
2


= i

A

−iv
2

+ i
−Av
2

= −i
2
Av = iv.
Do đó iv ∈ iM(A). Ta có iv ∈ M(A) ∩iM(A), trái với giả thiết M(A) là
đa tạp thuần túy thực. Vì vậy i không là giá trị riêng của ma trận A.
Giả sử i không là giá trị riêng của A ta chứng minh M(A) là đa tạp
thuần túy thực. Nếu v = v

+iv

∈ M(A)∩iM(A) thì v

+iv

= (A+iI)x
và v

+ iv


= i(A + iI)y, với x, y ∈ R
n
. Khi đó x = Ay và y = −Ax nên
A(−y +ix) = i(−y +ix). Vì i không là giá trị riêng của A nên −y +ix = 0
hay x = y = 0. Khi đó ta có v = 0. Do đó M(A) ∩ iM(A) = {0}.
Định lý 1.15. Cho X là tập compact trong C
n
và ánh xạ
R = (R
1
, R
2
, , R
n
) : X → C
n
thỏa mãn điều kiện Lipschitz: tồn tại c ∈ (0, 1), |R(z) −R(z

)| < c|z −z

|
với mọi z, z

∈ X. Xét Ω là một lân cận của X và ánh xạ Φ : Ω → C
2n
xác định bởi Φ(z) = (z, z + R(z)). Khi đó Φ(X) là tập lồi đa thức trong
C
2n
.
19

Chứng minh. Ký hiệu
[f
1
, f
2
, , f
k
|X]
là lớp các hàm trên X và là giới hạn đều trên X của các đa thức với biến
là các hàm f
1
, f
2
, , f
k
∈ C(X). Đặt
U = [z
1
, z
2
, z
n
, z
1
+ R
1
, z
2
+ R
2

, z
n
+ R
n
|X],
U
1
= [z
1
, , z
2n
|X
1
] với X
1
= Φ(X).
Φ cảm sinh một đẳng cấu giữa U và U
1
. Để chỉ ra X
1
là tập lồi đa thức,
ta cần chỉ ra mỗi đồng cấu từ U
1
vào C hoàn toàn xác định tại một điểm
x ∈ X
1
và tương ứng với mỗi đồng cấu từ U vào C hoàn toàn xác định tại
một điểm x ∈ X.
Xét h là đồng cấu từ U vào C. Khi đó tồn tại độ đo µ trên X sao cho
h(f) =


X
fdµ với mọi f ∈ U.
Đặt h(z
i
) = α
i
, i = 1, , n với α = (α
1
, , α
n
). Chọn một mở rộng của
ánh xạ R từ C
n
vào C
n
sao cho điều kiện Lipschitz được thỏa mãn với
z, z

∈ C
n
.
Với mọi z ∈ X, xét
f(z) =
n

i=1
(z
i
− α

i
)((z
i
+ R
i
(z)) − (α
i
+ R
i
(α))).
Vì z
i
, z
i
∈ U và α
i
, R
i
(α) là hằng số nên f ∈ U. Ta có
h(f) =
n

i=1
(h(z
i
) − α
i
)(h(z
i
+ R

i
(z)) − (α
i
+ R
i
(α))) = 0.
Mặt khác
f(z) =
n

i=1
|z
i
− α
i
|
2
+
n

i=1
(z
i
− α
i
)(R
i
(z) − R
i
(α)).

20
Vì |
n

i=1
(z
i
− α
i
)(R
i
(z) − R
i
(α))| ≤ |z − α||R(z) − R(α)| ≤ c|z − α|
2
nên
Ref(z) ≥ 0 với mọi z ∈ X, Ref(z) = 0 chỉ khi z = α. Mặt khác, ta có
0 = Reh(f) =

X
Refdµ.
Từ đây suy ra α ∈ X và µ là độ đo tập trung tại α. Vậy h hoàn toàn xác
định tại một điểm thuộc X.
1.8 Vành chỉnh hình
Định nghĩa 1.13. Tập con compact E của C
n
được gọi là vành chỉnh hình
trong C
n
nếu E là ảnh của vành Ω = {1 ≤ |λ| ≤ r} qua ánh xạ 1-1, liên

tục F sao cho F chỉnh hình trong phần trong của Ω.
Định nghĩa 1.14. Nếu E
j
= F
j
(Ω
j
), 1 ≤ j ≤ m là các vành chỉnh hình
trong C
n
j
, và Σn
j
= n thì E
1
× × E
m
gọi là đa vành chỉnh hình trong
C
n
.
Biên S của đa vành chỉnh hình E
1
× ×E
m
là bE
1
× ×bE
m
, trong

đó bE
j
= F
j
({|λ| = 1} ∪ {|λ| = r
j
}).
Định nghĩa 1.15. Hàm liên tục g trên S được gọi là thác triển chỉnh hình
vào đa vành nếu g ◦F chỉnh hình trên Ω
1
× ×Ω
m
, với F = (F
1
, , F
m
).
21
Chương 2
Tính lồi đa thức của hợp hai
n-phẳng thực trong C
n
2.1 Tính lồi đa thức của hợp hai n-phẳng thực trong
C
n
Định lý 2.1. Nếu A là ma trận thực n × n sao cho A + iI khả nghịch
thì mọi tập con compact của R
n
∪ M(A) là lồi đa thức khi và chỉ khi A
không có giá trị riêng thuần ảo có môđun lớn hơn 1. Nếu tất cả các tập

con compact của R
n
∪M(A) là lồi đa thức thì với mọi tập con compact X
của R
n
∪ M(A) đều có P(X) = C(X).
Để chứng minh định lý ta sử dụng các bổ đề sau:
Bổ đề 2.1. Giả sử S là ma trận thực n × n không suy biến. Khi đó
S
−1
(M(A) ∪ R
n
) = M(S
−1
AS) ∪ R
n
.
Chứng minh. Dễ thấy S
−1
(R
n
) = R
n
. Ta còn phải chứng minh S
−1
(M(A))
= M(S
−1
AS). Xét z ∈ S
−1

(M(A)) thì z = S
−1
(A + iI)y với y ∈ R
n
. Khi
đó ta có
z = S
−1
Ay + iS
−1
y = S
−1
ASS
−1
y + iS
−1
y = (S
−1
AS + iI)S
−1
y.
22
Chú ý là S
−1
y ∈ R
n
nên z ∈ M(S
−1
AS). Xét z ∈ M(S
−1

AS) thì z =
(S
−1
AS + iI)y với y ∈ R
n
. Khi đó
z = S
−1
ASy + iy = S
−1
ASy + iS
−1
Sy = S
−1
(A + iI)Sy.
Chú ý là Sy ∈ R
n
nên z ∈ S
−1
(M(A)).
Bổ đề 2.2. Nếu λ ∈ R và A
n
= (a
ij
)
n×n
sao cho:
a
jj
= λ, 1  j  n

a
i,i+1
= 1, 1  i  n − 1
a
ij
= 0, trong trường hợp còn lại,
thì mọi tập con compact X của M(A
n
)∪R
n
là lồi đa thức và P(X) = C(X).
Chứng minh. Với X là tập con compact R
n
∪ M(A
n
) thì tồn tại các tập
con compact X

⊂ R
n
và X” ⊂ M(A
n
) sao cho X = X

∪ X”. Theo ví
dụ 1.3, X

⊂ R
n
là tập lồi đa thức. Mặt khác do tính lồi đa thức bất biến

qua một phép biến đổi tuyến tính nên các tập con compact của M(A
n
) là
lồi đa thức hay X” là tập lồi đa thức. Ta sử dụng bổ đề Kallin để chứng
minh X là tập lồi đa thức.
Nếu λ > 0, ta xét đa thức p(z
1
, , z
n
) = z
2
n
. Với mọi n, p(R
n
) = [0, ∞).
Nếu z ∈ M(A
n
) thì z = (A
n
+ iI)y với y = (y
1
, , y
n
) ∈ R
n
. Khi đó









z
1
z
2
.
.
.
z
n−1
z
n








=









λ + i 1 0 ··· 0 0
0 λ + i 1 ··· 0 0
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
0 0 0 ··· λ + i 1
0 0 0 ··· 0 λ + i

















y
1
y
2
.
.
.
y
n−1
y
n








Ta có z

n
= (λ + i)y
n
. Vì p(z) = z
2
n
= (λ
2
− 1)y
2
n
+ 2iλy
2
n
nên Imp(z) =
2λy
2
n
≥ 0, dấu bằng chỉ xảy ra khi y
n
= 0 hay z
n
= 0. Ta có
p(X

) ∩ p(X”) ⊂ p(R
n
) ∩ (M(A
n
)) = {0}.

23
Với n = 1, nếu z ∈ M(A
1
) thì z = (A
1
+ iI)y = (λ + i)y với y ∈ R. Vì
p
−1
(0) ∩ R = {0}, p
−1
(0) ∩ M(A
1
) = {0} nên
p
−1
(0) ∩ (X

∪ X”) ⊂ p
−1
(0) ∩ (M(A
1
) ∪ R) = {0}.
Do đó p
−1
(0) ∩(X

∪X”) là tập lồi đa thức. Theo bổ đề Kallin, X

∪X”
là tập lồi đa thức. Vậy mọi tập con compact của M(A

1
) ∪ R là lồi đa
thức. Giả sử mọi tập con compact của M(A
n
) ∪ R
n
là lồi đa thức đúng
với n = k −1. Ta cần chứng minh điều này cũng đúng với n = k. Từ biểu
thức
p
−1
(0) ∩(X

∪X”) ⊂ p
−1
(0) ∩(M(A
n
) ∪R
n
) ⊂ (M(A
n−1
) ∪R
n−1
) ×{0}
và giả thiết quy nạp, ta có p
−1
(0) ∩ (X

∪ X”) là tập lồi đa thức. Theo
bổ đề Kallin, X


∪ X” là tập lồi đa thức. Vậy mọi tập con compact của
M(A
n
) ∪ R
n
là lồi đa thức.
Nếu λ < 0 ta xét đa thức p(z) = −z
n
2
và chứng minh tương tự như
trên.
Nếu λ = 0, ta xét đa thức p(z) = (A
n
− iI)z.z. Trong đó nếu ω =

1
, , ω
n
), ω

= (ω

1
, , ω

n
) ∈ C
n
thì ω.ω


= ω
1
ω

1
+ +ω
n
ω

n
. Xét z ∈ R
n
thì p(z) = A
n
z.z −iz.z nên Imq(z) = −z.z ≤ 0, bằng xảy ra chỉ khi z = 0.
Xét z ∈ M(A
n
) thì z = (A
n
+ iI)y với y = (y
1
, , y
n
) ∈ R
n
. Khi đó:
p(z) = (A
n
− iI)(A

n
+ iI)y.(A
n
+ iI)y = (A
2
n
+ I)y.A
n
y + i(A
2
n
+ I)y.y
Ta có
(A
2
n
+ I)y
T
=








1 0 1 ··· 0 0
0 1 0 ··· 0 0
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
0 0 0 ··· 1 0
0 0 0 ··· 0 1

















y
1
y
2
.
.
.
y
n−1
y
n








=









y
1
+ y
3
y
2
+ y
4
.
.
.
y
n−1
y
n








.
24
Do đó
Imp(z) = (A

2
n
+ I)y.y =
n−2

j=1

y
j
+ y
j+2
y
j

+y
2
n−1
+ y
2
n
=
1
2
n−2

j=1

y
j
+ y

j+2

2
+
1
2

y
2
1
+ y
2
2
+ y
2
n−1
+ y
2
n

luôn không âm, Imp(z) = 0 chỉ khi y = 0 hay z = 0. Vì
p(R
n
) ⊂ {λ ∈ C : Imλ < 0} ∪ {0},
p(M(A
n
)) ⊂ {λ ∈ C : Imλ > 0} ∪ {0}
nên p(R
n
) ∩ p(M(A

n
)) ⊂ {0}. Hơn nữa
p
−1
(0) ∩ R
n
= {0} và p
−1
(0) ∩ M(A
n
) = {0}
nên
p
−1
(0) ∩ (X

∪ X”) ⊂ p
−1
(0) ∩ (M(A
n
) ∪ R
n
) = {0}.
Do đó p
−1
(0) ∩ (X

∪ X”) là tập lồi đa thức. Theo bổ đề Kallin ta có
X


∪ X” là tập lồi đa thức.
Theo định lý Stone-Weirstrass, P(X

) = C(X

) và P(X”) = C(X”).
Áp dụng bổ đề Kallin ta có P(X) = C(X).
Bổ đề 2.3. Cho s, t ∈ R và nếu s = 0 thì |t| ≤ 1. Cho C =

s −t
t s

.
Với n = 2k và D
k
là ma trận cỡ n × n có các khối A
ij
. Trong đó A
ij

các ma trận 2 × 2:
A
jj
= C, 1  j  k
A
i,i+1
= I, 1  i  k − 1
A
ij
= 0, trong trường hợp còn lại.

Khi đó mọi tập con compact X của M(D
k
) ∪ R
n
là tập lồi đa thức và
P(X) = C(X).
25

×