CHL'ONG 3
NGirOl H g c TIENG ANH KHONG CHUYEN 6 DAI
HOC QLOC GIA HA NQI: M Q T SO DAC DIEM CO B.AN
3.1. Dan iuan
•
Tim hieu ve ngudi hgc ngoai ngu, nhiJng dac diem ciia hg nhu trinh do dau
vao, lira tudi, gidi tinh, phdng van hda, kien thuc nen, ddng co va nhu cau hgc
tap, chien luge hgc tap, phong each hgc. mire do tiep xiic \a\ ngu dich v.v. cd
lam quan trgng dac biet trong viec thiet ke va phat trien he thdng cac nhdm ngi
dung va phucmg phap giang day phu hgp vdi muc tieu de ra va vdi ddi tugng
ngudi hcpc, nang cao hieu qua giang day va hgc tap mdn hgc. Chucmg nay du
dinh Irinh hay nhung kM qua nghien cuu thu dugc tir cudc khao sat tren dien
c
rdng ve ddi lugng ngucVi hgc tieng Anh o Dai hgc Qudc gia Ha Ne)i do nhdm
nghiLMi cuu tiiudc Dc tai trong diem cap Dai hoc (^udc gia Ha Nc)i, Ma sd
Q(i ID 05.11 ticn hanh \ c nhung dac dicm ccr ban ciia ngudi hgc tieng Anh d
Dai hoc Quoc gia lla Nc)i. De bai dau, chung tdi se kiem tra lai mot sd khai
niem lien quan den dac diem ngudi hgc tao khung li thuyet cho viec phan tich
va thao luan d nhirng muc sau. Sau dd, chiing tdi se chuyen sang trinh bay mgt
so dac dicm ciia ngvrdi hgc tieng Anh khdng chuyen C hai bac dai he)C va sau
T
dai hc)c c Dai hgc Qudc gia Ha Ndi. Muc na\ ducrc tiep ndi bang phan trinh bay
V
ket qua nghiiMi euu eiia chung idi \ e nhu cau, dc)ng co, chien luge hoc, va miic
do tiep xiic veVi tieng Anh irong mdi trucmg ngoai ngir ciia sinh vien dai hgc va
hc)c \ ien eao hoe C Dai hgc Quex* gia Ha Ndi - nhung thdng tin quan trong
T
giiip eac nha hoach dinh chinh sach ngoai ngij d Dai hgc Qudc gia Ha Ndi cd
can eu de xa} dung ehinh sach hgc tieng Anh phii hgp, nhirng ngudi thiet ke
chucmg trinh cd the phan bd thdi lucmg va thiet ke nhirng ndi dung phii hgp cho
tung mdn hgc. nhimg ngucri bien soan giao trinh cd the li^a chgn nhirng lu lieu
74
giang day phu hgp voi ddi tugng nguoi hoc, va nhung giao vien dung lop co
the phat trien va su dung nhung phuong phap va thu thuat giang day, phuong
thuc kiem tra - danh gia phii hgp nhdt, gop p h k nang cao hieu qua day va hoc
tieng Anh Ichong chuyen 6 Dai hoc Quoc gia Ha Ngi.
3.2. Mot so khai niem ca ban lien quan den dac diem ngiroi hpc tieng Anh
khong chuyen a Dai hoc Quoc gia Ha Noi
Nhi8u cong trinh nghien cuu gkn day ve ySu t6 nguoi hoc ngoai ngu
(Skehen 1992, Long & Larsen - Freeman 1992, Lightbown & Spada 1997, va
Ellis 2000) da ggi y, co nhieu yeu to giai thich cho su thanh bai trong hoc ngoai
ngiJ cua nguoi hoc nhu nhu cau, tri thong minh, nang khi^u. dgng co va thai
dg, chien luge hgc tap, tuoi tac, cuong do va thoi gian ti^p xiic voi ngu dich,
v.v. Hieu dugc tac ddng cua nhimg yeu Id nay trong qua trinh hgc ngoai ngir se
giiip nang cao hieu qua hgc tap mdn hgc. Neu mgt sd y^u to mang tinh bam
sinh hoac san cd nhu tri thdng minh, nang khieu, v.v. dugc ti^n gia dinh la tot
ddi vcri sinh vien dai hgc va hgc vien cao hgc d Dai hgc Qudc gia Ha Ndi thi
bdn yeu td: nhu cau, ddng co, chien luge hgc tap, va do tiep xiic vdi ngir dich
dugc cho la quan trgng nhat quyet djnh su thanh bai trong viec hgc ngoai ngir
ciia mot ngudi hgc. Bdn khai niem nay se dugc trinh bay trong nhirng muc
dudi day.
3,2.1. Khai niem "nhu ciiu" trong hoc ngoai ngir
Tir cudi nhirng nam 1960, trong giao hgc phap ngoai ngir da xuat hien mgt
trao luu thu hiit su chii y cua nhieu nha nghien ciru; dd la, trao luu phan tich
nhu cau ngudi hgc. Muc dich ciia phan tich nhu cau ngudi hgc trong day ngoai
ngiJ (thudng duc;c ggi la ngdn ngir thir hai) xoay quanh viec xac dinh nhirng
yeu cdu giao tiOp ihuc ciia ngucri hgc de giiip ngudi thiet ke cd the xay dung
nhirng khda hgc cd ndi dung thiet thuc va chuan bi cho ngudi hgc nhirng each
75
sir dung thuc te d ngCr dich. Cdng viec nay cd the bao gdm viec tap trung vao
mgt kl nang nao dd (nhu kT nang dgc chang han) dugc thuc hanh trong mot khu
vuc ngdn ngir nao dd (nhu viet khoa hgc chang han), thuge mgt ngir vuc khoa
hgc nao dd (nhu cdng nghe thdng tin chang han). Ngugc lai, mgt khda hgc cd
the dugc xac dinh bang viec thuc hien cac chirc nang nhat dinh thdng qua su
dung mot kl nang hay mot nhdm cac kl nang nhu sir dung dien thoai de cung
cap thdng tin cho khach hang, dam phan nhirng thda thuan kinh doanh, v.v.
Trong mgi truong hcrp, viec cu the hda nhirng each sir dung ngdn ngir dugc an
dinh ciia ngudi hgc cho phep nguoi day tap trung vao nhung kl nang, nhimg
chirc nang va hinh thirc ngdn ngir cd quan he gan gui nhat vcri nhirng yeu cau
giao tiep trong the gidi thuc ciia hg. Do dd, viec phan tich nhu cau theo cac
chirc nang trong the gicri thuc chiem vi tri trgng tam trong thiet ke chuong trinh
va phat trien phucmg phap giang day, dac biet la nc)i dung chucmg trinh va
phucrng phap giang day ngoai ngir khdng chuyen.
Cd hai each tiep can de tra Idi cau hdi ^^Nhu cau la gi*!*" trong hgc ngoai
ngir. Cacli liep can thir nhat lay hinh thirc ngdn ngir lam trgng tam. Trong each
tiep can nay cau tra len cho cau hdi ^'Nhu cau la gi?'' se la kha nang hieu va san
sinh ra nhCmg hinh ihuc ngdn ngir ehinh xac trong nliirng linh hudng dich.
Nguc;c lai. each tiCp can thir hai la\ > nghTa hay chirc nang giao tiep lam trgng
tam. Irong each tiep can nay, tra Idi cau hoi '^Nhu cau la gi?'' se la kha nSng
san sinh ra nhCme phat ngon ha> nhiing hanh vi Idi ndi phii hcrp vcri ngdn canh
(ehi tiet, \in xem Munb\ 1997).
Nhu cau hgc ngoai ngu thucmg dugc phan ra thanh nhu cau dich va nhu cau
hgc tap. Nhu cau dich lien quan den nliirng gi ngudi hgc can trong cac tinh
hucmg giao tiep dich. Ngugc lai, nhu cau hgc tap lien quan den nhung gi ngudi
hcK can hgc. Nhu cdu dich lai dugc phan ra thanh nhirng gi ngudi hgc can,
nhung gi ngucVi hoe chua ed. va nhirng gi ngudi hgc mudn cd. Nhirng gi ngudi
hgc cdn la nhirng cai hg phai biet de cd the giao tiep mgt each cd hieu qua uong
76
cac tinh huong dich. Thi du, mot sinh vien nganh kinh tk co the c4n phai doc va
hieu dugc nhimg tai lieu lien quan d^n kinh tk hgc, va dk co the hoan thanh
dugc nhiem vu nay anh ta phai hi6u va sir dung dugc cac tir ngii lien quan d6n
I
f
kinh te va eac cau true ngir phap dien hinh cho ki^u ngdn ban khoa hgc nay.
Ngoai ra, trong mdi trudng ngoai ngix, anh ta ed the cdn phai dich dugc nhimg
tai lieu chuyen nganh kinh \k de phuc vu cho vi€t ti^u luan, khda luan, luan van
hay luan an bang tieng Viet vao cudi khda hgc.
Chi xac dinh nhimg gi ngudi hgc can khdng thdi thi cd le khdng dii. Ngudi
thiet ke chuang trinh, ngudi bien soan giao trinh, dac biet la ngudi giang day
cdn phai quan tdm den nhirng gi ngudi hgc da h\k\ dc cd the xac dinh dugc
nhimg gi hg thieu. Trinh do tdng the cudi ciing ciia ngudi hgc phai dugc khdp
ndi vdi trinh do tdng the tai thdi diem bat ddu khda hgc ciia hg. Khoang trong
giua hai trinh do tdng the nay chinh la nhiing gi ngudi hgc chua cd.
Nhu cdu hgc ngoai ngir cung cd the dugc phdn ra thanh nhu cdu khach quan
va nhu cdu chii quan. Thu thap nhirng dir lieu ca nhdn ve ngudi hgc ciing vdi
nhung thdng tin ve trinh do ngdn ngu va cac mdu thuc sir dung ngdn ngir ciia
hg va sau dd phdn tich de tim ra nhirng gi ngudi hgc can va nhumg gi hg thieu
hay chua cd la each phdn tich nhu cdu tu gdc do khach quan. Mgt trong nhirng
dac diem chii chdt ciia phdn tich nhu cdu khach quan la ngudi hgc khdng cd vai
trd tich cue trong qua trinh phdn tich.
Theo Hutchinson & Waters (2005), de bao dam tinh loan dien eiia quy trinh
phdn tich, ngudi hgc phai dugc the hien quan diem ve nhimg nhu cdu chii quan
ciia minh.
' ... nhu cau khdng tcSn lai dgc lap vdi con ngudi. Chinh con ngudi \a\ dung
nen hinh anh vc- nhirng nhu cau tren cd sd ciia nhumg dir lieu lien quan den
chinh ho va mdi trudng ciia hg' (Hutchinson & Waters 2005: 56).
77
Phan tich nhu cau chii quan thuc chat la phan tich nhimg gi ngudi hgc
mudn cd. Chiing dugc the hien thdng qua nhirng udc mudn, nhirng nguyen
vgng, va nhimg su chd dgi ciia ngudi hgc ve mdn hgc (chi lik hem v^ cac ki^u
nhu cau hgc ngoai ngir, xin xem Nunan 1991, Tudor 1996, Lightbown & Spada
1997, Graves 2000, va Hutchinson & Waters 2005).
Theo Brindley (1984) va Nunan (1991), nhu cau khach quan cd lien he vcri
viec xac dinh ndi dung giang day, trong khi cac nhu cdu chii quan lai cd lien he
vdi viec xac dinh phuong phap giang day. Tuy nhien, trong thuc te van cd th^
cd mdi lien he giu:a nhu cau chii quan vcri ndi dung giang day (ngudi hgc xac
dinh cai ma hg mudn hgc) va giira nhu cau khach quan vdi phucmg phap giang
day (ngudi day xac djnh xem ngi dung dugc hgc nhu the nao la tdt nhdt).
Mc)t khia canh khac ciia phan tich nhu cau hgc ngoai ngir lien quan den
phdn lich chien lucre hgc ngoai ngir cua ngucri hgc. Day la kieu phdn tich nhu
cdu dc danh gia nhan thirc hien lai ciia ngucri hgc ve hgc ngoai ngir, cac chien
luc^rc hgc hg su dyng va nhirng su chd dgi ma vcri chiing hg tiep can each hgc
ciia hg. Phdn tich chien lucre hgc ngoai ngir ciia ngudi hgc cung cap co sd cho
vice kham pha nhirng su lira chgn, va theo then gian, nhirng su thucmg luc/ng ve
phucrng phap va each hgc giua ngucri da% va ngudi hgc (cf. Nunan 1991, Tudor
1996). West (1994) va Tudor (1996) cho rang phdn tich chien luge hgc ngoai
ngCr eua ngudi hgc cd tam quan trgng dac biet trong thiet ke chucmg trinh, dac
biel la khi ngudi day va ngucVi hoc den tu nhirng nen van hda cd nhirng truyen
thdng giao due kliac nhau va cd the ed nhirng su chd dgi khac nhau lien quan
den qua trinh da>-hgc ngoai ngir. Neu day ngoai ngir dat trgng tdm vao ngudi
hex thi le tdt yeu la phai phdn tich chien luge hgc lap cua ngudi hgc (chi liet
hem \ e chien luoe hoc tap. xin xem Muc 3.2.3 ciia chucmg nay).
Mgt khia canh khac eiia phdn tich nhu cdu ngudi hgc la phdn tich phuong
lien. Khia canh na\ bao gdm viec tim hieu nhumg khia canh lien quan den
78
chinh tri-xa hdi (quan diem cua nha nude hay ciia cac nha quan li giao due ddi
vdi vi the ciia ngoai ngir dang hgc); cac ngudn luc (sd lugng giao vien, trinh
do, ldp hgc, cac tai lieu giang day cd sdn); cac khia canh quan li (phucmg thuc
day hgc, thdi gian bieu); cac khia canh tam li giao due (nhu cau, ddng co, thai
do va nhung sir chd dgi ciia ngudi hgc, cac phong each hgc truy§n thdng); va
nhimg khia canh lien quan den phuong phap luan, v.v.
Tdm lai, phdn tich nhu cau ngudi hgc la viec lam hihj ich trong day ngoai
ngir. Nd la bude khdi ddu quan trgng lam co sd cho thi4t kg chuong trinh, bien
soan giao trinh va sir dung phuong phap giang day phii hgp vdi ddi tugng
ngudi hgc. Tuy nhien, trong bdi canh ciia cac trudng dai hgc Viet Nam trong
dd tieng Anh dugc xem nhu la mot mdn hgc va ddi tugng ngudi hgc tucmg doi
ddng nhdt nhu nhu*ng sinh vien dai hgc, hc)c vien cao hgc va nghien cim sinh d
Dai hgc Qudc gia Ha Nc)i thi phan tich nhiing kieu nhu cdu nao, phdn tich den
ddu la nhirng van de cdn phai thao luan them. Trong khudn khd ciia de tai nay,
chiing tdi chi gidi han vao phdn tich nhu cdu hc)c tieng Anh khdng chuyen ciia
sinh vien dai hgc va hgc vien cao hgc d Dai Hgc Qudc gia Ha Ndi d hai khia
canh nhu cau khach quan va nhu cdu chii quan de tim ra nhung gi hg can cd.
nhung gi hg thdy thieu va nhirng gi hg mudn cd, Idy dd lam co sd de xuat viec
thi^t ke mgt he thdng cac nhdm ndi dung va phuong phap gidng day phii hgp,
dat hieu qua cao.
3.2.2, Khai niem "dgng co^'' trong h()c ngoai ngir
Dong CO la mgt thuat ngir khai quat dugc dimg de giai thich cho su thanh
bai ciia hdu nhu bdt ki mot cdng viec hay nhiem vu phuc tap nao. Ngudi ta ed
th^ rdt de khdng dinh rdng thanh cdng ciia mot ngudi nao dd trong mot nhiem
vu nao dd ehi thuan tiiy la do ngudi dy cd ddng co thuc hien nhiem vu ay.
Tucmg tu, trong hgc ngoai ngir, ngudi la ciing cd the rdt de dang khang dinh
rdng ngudi hgc hgc mc)l ngoai ngir nao dd thanh cdng bdi vi anh ta cd ddng co
79
hgc tap manh me. Nhirng khang djnh nhu vay khdng bao gid sai bdi vi rdt
nhieu cdng trinh nghien cuu va khao nghiem v^ hgc tap da chi ra rdng ddng ca
la chia khda ciia su thanh cdng (Brown 1987, Ellis 2000),
Cd nhieu each hieu ve ddng co la gi. Theo Brown (1987: 114), "dgng co la
nd lire, xung lire, cam xiic, hay su mong moi ben trong dua ngudi ta d^n mgt
hanh ddng nao dd'\ Tir mgt gdc nhin khac, ddng co dugc xem nhu la "'mgl
ddng lire hay mgt sir kich thich tir ben trong ciia mot ngudi, nhirng nhu cdu, y
tudng, trang thai hihi co va nhung tinh cam ciia ngudi dd
qua trinh cung
cdp dgng lire hay cac ddng lire, su khuyen khich va duy tri mgt himg thu tich
cue trong hgc ngoai ngir'' (North East Conference Report 1970: 34, dan theo
Chandrasegaran 1981: II).
Nhu hai djnh nghTa tren cho thay, ddng co dugc xem nhu la nhimg tinh cam
va nhu cdu hinh thanh nen cc)i ngudn eiia ddng lire nham cd gang hgc tap mot
mdn hgc. Di theo each hieu ciia dinh nghTa thir hai, trong cdng trinh nay dgng
ccr dugc xem xet lu hai khia canh, tuong img vcri hai ngudn tinh cam va nhu
cdu ciia ngucri hgc. Irong khia canh thir nhat, ddng co va nhu cdu ciia ngucri
hc)c ed the: \udt hien tir trong chinh ban thdn ngudi hgc - tir nhan thirc ciia hg
va nhimg thdnh cdng hg thu dugc tir hgc ngoai ngur. Trong khia canh nay, dgng
ccr eo the dugc phdn ra thanh dc)ng co cd djnh hucrng hdi nhap va ddng co cd
diiih lurcrng edng cu (Ciardner & I ambert 1972). De)ng co cd dinh hucrng hdi
nhap hicn dien khi nguiri hgc ngoai ngir mudn hdi nhap vc>i nen van hda ciia
nhirng ngucri noi ngoai ngir dd, ddng nhdt chinh hg va mudn trd thanh mgt
phan eiia xa hc)i trong dd ngoai ngir dd dugc sir dung. Ngugc lai, ddng co cd
djnh hucrng edng eu hien dien trong nhirng ngudi hgc ngoai ngir vcri mong
mudn sir dung nd lam phucrng lien de dat dugc cac muc dich nhu nang cao
trinh de) chuyen mdn, nghiep vu, dgc hoac dich cac tai lieu khoa hgc va kT
thuat, v.v. Trong ca hai trirdng hcrp, dgng co va nhu cdu bat ngudn tir chinh
ngucri hgc, va da> ehinh la li do tai sao dgng co cd dinh hucmg cdng cu thudng
80
dugc goi la "dong ca ben trong". Trong khia canh thu hai, nhung cam xuc va
nhu cau thuc dky nguai hoc co the khong co ngu6n g6c tir ben trong, ma lai
dugc thuc day tir nhimg ngudn tir ben ngoai nguai hoc. Do la truang hgp trong
do nguai hgc hgc ngoai ngir bai vi no la mot mon thi bit buoc trong chuang
trinh hgc hay bai vi mgt djnh huong nao do ciia cha me hay ciia mot nguai nao
khac. Khia canh nay ciia dgng ca dugc ggi la "dgng ca ben ngoai" (chi ti^t han,
xem Bailey 1986, Brown 1987, Oxford 1990, Ellis 2000).
3.2.3. Khai niem "chien lu-ac hoc tap" trong hoc n^oai noir
Nhieu cdng trinh nghien cuu trong ITnh vuc day va hgc ngdn ngu thu hai
hay day va hgc ngoai ngiJ dudng nhu tap trung chu yeu vao khia canh day ngdn
ngir hom la khia canh hgc ngdn ngu. Trong nhung cdng trinh nghien euu v^ day
ngdn ngu thu hai/ngoai ngu trong nhij-ng nam gdn ddy, trgng tdm thudng dat
vao viec so sanh hieu qua ciia cac phuong phap giang day ngoai ngu khac
nhau, chang han nhu giila phucmg phap ngii phap-dich vdi phucmg phap nghendi thi phuang phap nao cd hieu qua hem, hoac giira phuong phap cdu true vdi
phucmg phap true tiep tlii phucmg phap nao td ra cd uu the hem. v.v.
Cac nha nghien cuu da chi ra rang ve dac diem, ket qua eua nhung edng
trinh nghien cuu ve phuong phap giang day khac nhau khdng hoan loan thuyet
phuc de cd the rut ra dugc nhCmg ket luan cd y nghia. Dieu na\ dua eac nha
nghien cuu den ket luan rang "edng trinh nghien cuu so sanh tren dien rdng ve
mot sd dudng hucmg gidng day ngoai ngu d nhiing thap nien eudi cua the ki 2U
khdng cd khd nang cho ra nhirng ket qua thu\et phuc ngudi dgc (xem them
Lighhovvn 1997, hllis 2000). Mot diem quan trgng thudng bi cac cdng trinh
nghien cuu so sanh cae ducmg hucmg giang da\ bo qua la trong khi ngudi
nghien cuu kiem soat each thuc ngii lieu dugc Irinh bay va gidng day, thi hg lai
khdng du djnh kiem soat, it nhdt la giam sat, viec ngucri hgc xu li ngdn ngir ddu
vao nhu the nao. McM sd ngudi hgc trong nhung krp hgc theo dudng hudng
81
nghe-ndi cd the su dung dudng hudng giai quy^t vdn dk dk suy ra nhung quy
tac ngu phap tu nhirng cau hg bj buoc phai nhac lai trong khi luyen mau cdu
trong khi nhung ngudi hgc khac lai khdng lam theo each nhu vay. Tucmg tu, cd
the nhOmg ngudi hgc nhung tix dan le, each su dung cua chung sau dd dua vao
giao tiep nhung cung cd nhiing ngudi hgc tii ngu trong khi giao tiep, ghi nhd
nhirng cdu hay nhiing hgi thoai nhu la mgt hinh thuc thuc hanh.
Cd the khang dinh rang trong khi cd nhiing cdng trinh nghien cuu dang chu
y so sanh hieu qua ciia cac phuong phap gidng day khac nhau, thi nghien cuu
tap trung vao ngudi hgc ngdn ngii thii hai/ngoai ngu va cac qua trinh hgc ngdn
ngii cua hg hdu nhu khdng gdy dugc an tugng gi Icm trong gicri hgc thuat.
SI/ phat trien ciia ngdn ngii hgc tdm li tir nhirng nam I960 da hucmg su chii
y vao qua trinh thu dac ngdn ngu. ca tieng me de va ngdn ngu thir hai, phdn
tich Idi duc;c sir dung lam co scr cho vice li thuyet hda cac chien luge dugc
ngucri hgc sir dung dan den ket qua trong nhung hinh thirc sai lech ve cdu tnic
be mat ciia nhirng phat ngdn eiia hg trong ngir dich. Mgl thi du ve each sir di/ng
nhu vay da ducK Jain (1973) thuc hien. Ong phdn tich Idi ciia nhirng sinh vien
dai hc)c An Dc) vd quy Idi cho cac chien luge hgc lap nhu su khai quat hda qua
mire, cd gdng dcm gian hda he thdng ngir dich, v.v.
Li do nam a phia sau ducmg hucmg nghien ciru chien luge hgc ngoai ngir tir
phau tich Idi the hien d niem tin cho rang nhung Idi ngudi hgc mac cd he thdng
C the cung cdp chung eu \e viec ngdn ngir dugc hgc nhu the nao "'nhimg chien
O
lucre ha\ quy trinh nao ngudi hgc su dung de kham pha ngdn ngir" (Corder
1967: 25). Quan diem luong lu ciing dugc nhieu nha nghien ciru (Skehan 1989,
Selinker 1992) chia se. Cac nha nghien cim nay ggi y rang cd the chimg minh
dircTc nhimg ddc diem "lien ngdn'' ve mat nao ciia ngudi hgc la ket qua ciia cac
chien lucre hoe neon ngir thir hai. mac dii, hg cdng nhan rang nhung chien luge
nay co th6 la gi va chung boat dong nhu the nao moi chi la sir suy doan thuin
tuy.
Theo Ellis (2000), sir dung phan tich loi lam ca so dk li thuyet hoa cac chi^n
luoc hoc nam a phia sau chiing, a muc dp Ion, chi la suy doan. Co th^ la sir
hien thuc hoa su phan tich loi khong phai la duong huong duy nh4t de tim hiku
qua trinh hoc. Dieu nay ggi ra nhu cku can phai nghien cim true tiep cac qua
trinh nhan thirc. Schumann (1978) da ggi y each mo mam true tiep cac qua
trinh nhan thirc bo sung cho nhiing suy doan v^ cac chien luge hoc tap dugc riit
ra thong qua phan tich loi. Tuong tu, khi noi wk nguai hgc ngon ngu thir hai a
dd tudi trudng thanh, cac nha nghien ciru ggi y rang cdn phai co gdng de tim ra
nhimg cdu tra Idi cho cdu hdi: "Ngucri hgc km tucM lam gi dk cd thS hgc mot
ngoai ngir thanh cdng?"
Viec tap trung vao ngudi hgc vd cac chien luge hgc ngoai ngir dugc the
hien rd rang hem trong nghien ciru eiia cae uha ngdn ngir hoe va cac nha ngdn
ngir hgc tdm li trong ba thap nicMi eudi ciia the ki 20. Bdn thi du tieu bieu va
thuyet phuc nhdt la cac cdng trinh nghien ciru Focus on the Learner (Tap trung
vao ngudi hgc) do Oiler Jr. va Richards chii bien (1973). Language Learning
Strategies: What Every Teacher Should Know (Cac chien luge hgc ngdn ngii:
dieu md mgi gido vien nen biet) ciia Oxford (1990), Focus on the Language
Learner (Tap trung vao ngucri hgc ngdn ngir) ciia Tarone va \n\c (1999). va
The Study of Second Language Acquisition (Nghien euu thu dac ngdn ngir thir
hai) day 824 trang khd 16 \ 24em eiia Ellis (2000). Mdi quan tam ve nguoi hgc
va chiem luge hgc ngoai ngir ciia ngudi hgc dugc the hien rd net hon trong bao
cao de dan trinh ha\ lai Dai hc)i eua Mdi ngdn ngu hoc ung dung lan thu nhat
tai Australia nam 1976 cua nha ngdn ngir hgc ndi tieng the gidi M. A. K.
Halliday cd nhan de: ^"Co phai hgc ngdn ngir thu hai gidng hoan toan voi hgc
ngdn ngii" thir nhdt khdng'.'". Tuy nhien, dieu lam cho ngudi ta phdi suy nghi
trong khi dgc nhirng cdng trinh nghien eiai \a nluing bao cao dy la mac dii
83
chien luge hgc ngoai ngir dugc quan tam dac biet, nhung dudng nhu khdng cd
nhimg quan diem dirt khoat ve cac qua trinh cu the nao lien quan den viec hgc
ngdn ngir thir hai. Trong thuc te, Ellis (2000) cho rdng cu the hda qua Uinh hgc
ngoai ngu: la viec lam khd khan va dudng nhu nhimg vdn de cot loi ciia qua
trinh vdn dang ne tranh chimg ta.
Cach tiep can cd the lam sang td qua trinh hgc ngdn ngir thir hai la nghien
ciru ve thu dac tieng me de d tre em vdi hi vgng cd dugc nhimg su hieu biet ve
cac chien luge hgc ngdn ngir thir hai d ngudi trudng thanh. Cac cdng trinh
nghien ciru thudng dugc ngudi ta trich ddn trong ITnh vuc nay la ciia Brown va
Bellugi (1964) va Ervin (1964). Tuy nhien, nhu nhieu nha nghien ciru da nhan
dinh, nhirng ket qua thu dugc ducmg nhu mdi chi mang tinh gcji y hem la ket
luan.
'1 dm lai, nhirng ket qua thu ducrc trong cac cdng trinh nghien cim ve chien
lucre hgc ngdn ngir ihir hai da chi ra rdng phai cd mc)t qua trinh tim tdi trong dd
ngudi hgc dua ra gia thuyet ve cac quy tac va nhirng Icrp tir ve ngdn ngir ma hg
nghe thay (Krashen 19S2). Nhirng ket qua dd nhdn manh vao mgl thuc te la thu
dac ngdn ngir, cho dii la ngdn ngCr thir nhdt hay ngdn ngir thir hai, Id mgt qua
Irinh phire tap hem viec thuan tu> nh3e lai mc)l lap hcrp cdc thdi quen rat nhieu.
i)a\ ehinh la cai ma Ellis (2000) da chi ra trong chuyen khao Nghien ciru ve thu
ddc ngon ngu thu hai (Study of Second Language Acquisition) ciia dng: "Khai
niem 'chien lucre" la mc)l khdi niem md nhat va, ..., khdng de nam bat''.
Den ddy, se phii hcrp khi chung ta dat cdu hdi: "Cd phai hgc ngdn ngu thir
hai gidng vdi hgc ngdn ngir thir nhdt khdng'.'" Cdu tra Idi ciia mot sd nha
nghien cim (Er\in 1974, Halliday 1975) dudng nhu la "Cd", dua vao ket qua tir
edng trinh nghien cim ve Ire em ngudi MT hgc tieng Phap d Gio-ne-vo (Ervin
1974) \a lir edng trinh nghien cim sir phat trien ngdn ngir ciia mgt dira tre
ngucTi Australia eo ten la Nigel (Halliday 1975). Cd nhung chimg cir de tin rdng
84
tre em sir dung nhirng chi§n luge tuong tu de hgc ca tiing me de va ngdn ngu
thir hai. Dieu nay dua chung ta d6n cau hdi tilp theo: '^Cd phai ngudi Idn hgc
ngdn ngu- thir hai xir li ngdn ngii dau vao theo ciing each vai tre em hgc ngdn
ngir thir nhdt khdng?" Mac dii cd nhirng sir khac biet ro rang giira boi canh cua
ngudi hgc Icm tudi va ngudi hgc tre tuoi, nhung qua trinh hgc dudng nhu gidng
nhau, neu xet theo nhung cdng trinh nghien cim ciia Bailey, Madden &
Krashen (1974), ciia Cancino, Rosansky & Schumann (1978), va ciia
Lightbown & Spada (1997). Nhirng phat hien ciia cac nha nghien cim chi ra
rang nhu-ng ngudi hgc trudng thanh xti li cac dtr lieu ngdn ngir theo each Urong
tu vdi tre em, dieu nay ham chi rang hgc ngdn ngir bj anh hucmg bdi cac chien
luge hgc tap cd tinh pho niem.
Trong nhung nam gdn ddy, nhieu cd gdng da dugc thuc hien de nghien cim
cac chien luge hgc tap ciia nhirng ngudi hgc ngdn ngir thanh cdng. Lightbown
& Spada (1997), va Ellis (2000) liet ke danh muc cdc chien luge dac trung cho
nhimg ngudi hgc ngdn ngu- thir hai thanh cdng. Trong danh muc ciia hg, ed the
thdy ngudi hgc ngoai ngir thanh cdng thudng la nhiing ngudi tu nguyen va
phdng doan chinh xdc, mudn giao tiep va se cd gang giao tiep tham chi cd the
bi ngudi khac cho la ngu ddn. Hg quan tdm ca den hinh thirc va y nghTa ciia
thdng diep. Hg cung thuc hanh va kiem soat Idi ndi ciia minJi ciing nhu Idi ndi
ciia nhimg ngudi khac. Ngoai ra hg cdn tham gia tich cue vao hgc ngoai ngir,
danh gid dugc nhung giao vien cd ddu dc Idgic, he thdng va rd rang; y thirc
dugc qua trinh hgc tap ciia minh: sir dung kien thirc sieu nhan thirc de giiip
minh ddnh gid ducrc nhu cdu, tien bd dinh hucmg cho viec hgc tap. Tir nhirng
ndi dung tren, cd the thdy rang trong edeh hieu ciia cac nha nghien cim. chien
luge la nhung ducmg hucmg khai quat, phai dugc phdn biet vdi cae thu thuat eu
the md ngucri hgc ngoai ngir sir dung de khac phuc nhirng khd khan trong khi
hgc ngcm ngir thir hai.
85
Mgt chien luge quan trgng khac ciia mgt sd ngudi hgc thanh cdng dugc dk
cap trong cdng trinh nghien cOru ciia Naiman et ai (1978) la tilp can ngdn ngir
dich bang sir nhdn ra ngdn ngir nhu la mgt he thdng. Trong khi xir li ngdn ngir
nhu la mgt he thdng, ngudi hgc ngdn ngir thudng phan tich tu lieu d ngir dich
va thuc hien nhimg gia thuyet ve nd, rdi hg bat ddu thir va do dd kham pha cac
quy tac ciia he thdng hoat ddng trong ngdn ngir dd. Ddy la mot qua trinh gidng
vdi qua trinh tre em hgc ngdn ngir thir nhdt - mgt qua trinh dugc Brown, Elligi
va Ervin nghien cim va khang dinh. Rubin (1975) md td ngudi hgc ngdn ngir
thanh cdng la ngudi cd khd nang quy nap cac quy tac nhu la "ngudi doan chinh
xac va tu nguyen'' (Rubin Ibid.: 45). Khoang mgt thap nien trudc dd, Carroll da
xac dinh mc)t dac diem lucmg tu cdn thiet cho hgc ngdn ngir thir hai. Thuat ngir
dng diing de ggi nd la "khd nang hgc ngdn ngir theo phucmg phap quy nap", va
dng da liet ke kha nang nay nhu la mot trong bdn kha nang cd the xac dinh
dugc Irong ndng khieu ngdn ngir (Carroll 1963: 1088).
Trong cdng trinh ciru ve hieu qua ciia chien luge quy nap trong hgc ngdn
ngir, 1 lelcn (1969) d^ chung nnnh rang sinh vien dai hgc tu minh (sir dung vdn
ban dirge lap trinh) eti ihe khai thac cdc thii thuat gidi quyet vdn de de hgc mgt
sd nguyen tac eua ngir phap tieng Nga. Mc)i ket luan tucmg tu cung dugc nil ra
Iroivj do hai elm the. khdng ed kien thirc trudc dd \e tieng [)irc. hoc de hieu
tieng Due dugc da\ eho hg thdng qua mgt cd may. Kieu phdng doan ma Rubin
ndi den trong phan mo ta ciia minh \e ngudi hgc ngdn ngir thir hai thanh cdng
nlur la "ngucri doan chinh \ae \a tu nguyen" cd tinh cd hiru trong phuimg phap
SU) dien \ nghia thdng qua \ iec su dung cdc ggi y ciia ngdn canh trong tinh
hudng giao ticp ha\ trong tinh hudng ngir phap, tir vung. Carroll (1971) ggi nd
la "suy dien", vd dng dd ehi ra rang nhirng hgc sinh tre tudi cd the sir dung tdt
nhung gcri y ciia ngdn cdnh de chira nhirng sir hieu sai ve y nghia ciia nhirng tir
mcri khdng quen biel. Guarino (I960) da thuc hien mot cdng trinh nghien cim
de kiem tra xem lieu vice giang day theo each ggi y ciia ngdn canh de tao ra y
nghia eo lam eho kha nang '^suy dien" khac nhau hay khdng. Nhirng phat hien
86
cua cac nha nghien cim chi ra rdng gidng day khdng dan den mgt sir cai thien
cd y nghTa nao ve kha nang suy dien y nghTa ciia nhung tir chua bill ma ngudi
hgc gap phdi trong khi dgc doan van. Dilu ro rang la phdng doan hay suy dien
ed the hgc dugc, nlu dugc day, nhung nhu Rubin (1975) da chi ra, nd khd cd
the dugc day.
Bat ki ngudi nao da hgc mot ngdn ngir thir hai cung diu cd thi nhdn ra tam
quan trgng ciia thuc hanh nhu la mot chiln luge hgc ngoai ngu cd hieu qua.
''San sang thuc hanh" la mot trong nhimg chien luge dugc liet ke trong nhimg
danh muc ve chien luge ciia Stem (1975), Rubin (1975), Lightbown & Spada
(1997) va Ellis (2000) ve nhung ngudi hgc ngdn ngir thdnh cdng. Cd nhieu thii
thuat thuc hanh trong hgc ngdn ngu, va viec chgn mgt hay nhieu ihii thuat dugc
ua chuong hon nhung thii thuat kia cd le Id ket qua ciia su ket hcTp eiia cdc yeu
td - ca tinh ciia ngudi hgc, dudng hudng gidng day, vd cac kT ndng ngdn ngir
ngudi hgc mudn chiem ITnh. Theo cdc nhd nghien cim (Naiman et al. 1978,
Lightbown & Spada 1997, Ellis 2000), ngudi hc)c ngoai ngir thucmg sir dung
nhimg chiln luge hay thii thuat hgc dudi ddy: nhac lai thdnli tieng, ddng vai
dien, ghi nhd cdc cau triic, ghi nhd tir vung, dat cdc tir ngir vdo cdu triic va tu
ren luyen, nghe bdng, dc)c bao va tap chi, va ddng kich vui.
Trong so nhung hoat ddng thuc hanh ducrc liet ke d tren, ghi nhd tir Idu da
dugc cdng nhdn la mot hoat ddng co bdn cho hgc ngoai ngir. Carroll (1962) de
cap din ^^kha nang ghi nhd bdng hgc thuge Idng'^ ddi vdi cac tu lieu ngdn ngir
nhu la mot khia canh ciia ndng khilu hgc ngoai ngir. Ghi nhd rd rang dugc huy
dgng vdo vice hgc tir vung vd cdu triic ngir phap. Trong cdng trinh nghien cim
ciia minh, Helen (1969: 42) da kit luan rdng ghi nhd khdng phai la mgt phuong
phap can thill cua cac nguyen tde hgc ngir phap. Tuy nhien, dng vdn cdng nhdn
tam quan trgng cua ^^ghi nho hiru ngdn" bdi vi su ggi lai cd sdn ni cdc edeh
dien dat vd cdc cdu ndi du trir cd thi hiru ich cho vice tao dung nhirng phat
ngdn bang Idi.
87
Mgt chien luge khac dugc nhirng nghiem the thuoc do tudi trucmg thanh
trong cdng trinh nghien cim ciia Naiman et al. (1978) sir d'ong la chiln luge
phat tnen y thirc ve ngdn ngir nhu la mgt phucrng tien giao tilp va Urong tac.
Stem chi ra rang ngudi hgc ngoai ngir thanh cdng "tim kiem mgi co hdi cd sin
de dua nang lire vira mdi thu dac dugc vao sir dung" (Stem 1975: 314). De lam
viec nay, ngudi hgc ngoai ngir phai chap nhdn rdng minh cd the se mac loi va
se khdng phdi bi ngan can bdi sir ngugng ngiing ve nhimg Idi minh mac phai.
Dd cung chinh la dieu ma Rubin mudn ndi den khi bd md ta ngudi hgc ngoai
ngOr thanh cdng la ngudi '^khdng rut re" (Rubin 1974: 47). Trong cdng trinh
nghien cim phong vdn ngudi hgc d do tudi trucmg thdnh ciia Naiman va nhirng
cgng sir, ''su rut re dugc cho la su can trd ddi vcri vice hgc ngoai ngir" (Naiman
etal. 1978:9).
Sir ua chuc)ng ve the thirc - su ua chuc)ng ddi vdi each the hien thdng qua
true c|uan hay thdng qua thinh giac - khdng phai la yeu td dugc hieu mc)t each
Irgn v^n, dac biet la mdi quan tdm ciia nd ddi vdi hgc ngoai ngir. Cd phai cac
nhiem vu hoc ngoai ngir dugc lam de hon khi ngir lieu dugc trinh bay thdng
qua khau ngir hay thdng qua but ngir'.^ Cd phdi su ua chuong timg phucmg thirc
the hien et) lien he vcri tirng giai doan hgc tap khac nhau khdng - cr giai doan
ndng eao hcnlc giai doan ddu - ha\ nd cd lien he vdi yeu td ca nhan nao dd ma
cluing ta chua the giai thich dugc? Neu nhung cdu hdi nay dugc tra Idi mgt
each dut khoat \a thau dao, thi ehung ta ed the hieu ducrc nhieu hem nhirng van
de lien quan den \ lee hgc ngdn ngir thu hai.
Tu\ nhien, cdc cdng trinh nghien cim hien hanh chua dua ra dugc cdu tra
Icri dut khoat. Nga\ tu nam 1948, cdng trinh nghien ciru thuc nghiem cua
Dunkel da ehi ra rang tir \ img duoc ngudi hgc thu dac gidng nhau theo bat ki
phucmg thuc trinh ba\ ngir lieu nao, nhung viec hgc ngijr phap bi can trd khi
ngudi hoe khong ed nhirng kieh thieh bang true quan" (Carroll 1963: 1079).
Ket qua eua nhirng edng tnnh nghien euu khdc chi ra nhimg tde dg hgc tap
88
nhanh hon khi nhung sir kich thich dugc trinh bay thdng qua true quan
(Kraviec 1946; Kressman 1959). Tuy nhien, cdng trinh nghien cim ciia
Pimsleur va Bonkowki (1961) dl y thdy rdng ngudi hgc hgc nhanh hon khi ngu
lieu dugc trinh bay thdng qua khdu ngir, trong khi Carroll lai ggi y khdng cd Idi
giai thich nao cho sir khac biet (Carroll 1963: 1079). Ba nam sau, trong khi
tdng ket lai nhung kien thirc dd dugc tich luy trong cdng trinh nghien cim vl
hgc hiru ngdn, Carroll cho rang "ngii: lieu dugc trinh bay thdng qua true quan
hgc de hon ngir lieu dugc trinh bay thdng qua khau ngir" (Carroll 1966a: 105).
Trong phdn nghien ciru trong ldp hgc ciia cdng trinh nghien cim ve ngudi
hgc ngoai ngu- thanh cdng, Naiman vd nhirng cdng sir da phdng van nhung doi
tugng nghien ciru va da phat hien ra rdng 48,5% sd ngudi hgc tra Idi rdng hg
hgc tdt hon thdng qua mdi trudng biit ngu; trong sd phdn tram cdn lai. 50%
chuong phucmg thirc hgc Ihdng qua viec giao vien trinh bay ngir lieu hang khau
ngii'; trong khi 50% khdng the hien dirt khoat minh ua ehuc)ng phmrng thirc
nao. Cdc nhd nghien cim eCing de y thdy rang nhieu ngudi hgc kem khdng dmh
hg hgc tdt hem thdng qua true quan (eye-minded) (Naiman et al. 1978: 79).
Dieu nay khang dinh cho quan diem ciia Carroll rang ngudi hgc xu li ngu lieu
dugc the hien thdng qua true quan tdt hon.
Tir mot each tiep can khac, trong edng trinh Language Learning Strategies:
What Every Teacher Should Know (Cae ehien
IUCTC
hoc ngdn ngir: dieu ma mgi
gido vien nen bill), Oxford (1990) da phdn loai ehien luge hoc ngoai ngii* ra
thdnh hai IcVp chinh: kVp ehien
IUCTC
true tiep vd Icrp chien luge gian tiep. Lcrp
chien Iuctc true tiep cd lien quan true tiep den ngdn ngir. Lop ehien luge na\
bao gc^m ba lieu loai: ehien lucre ghi nho (memory), ehien
IUCTC
nhan thuc
(cognitive) va ehien lucre bu dap (compensation). Ngucyc lai, krp ehien luge
gian tilp khdng lien quan true tiep den ngdn ngu. Lcrp ehien lucre nay bao gdm
ba tieu loai: chien lucre sieu nhan thuc (metaeogniti\e), ehien luge tinh earn
(affective) va chiln luge xa hdi (social). Theo Oxford (/hid.), ehien luge ghi
89
nhd, chang han nhu phdn nhdm hoac sir dung hinh anh, cd chirc nang cu the rat
cao. Chien luge nay giiip ngudi hgc tich trir va tmy cap thdng tin max. Chien
luge nhdn thirc, chang han nhu tdm tat hoac lap luan theo each dien dich, giup
ngudi hgc cd the hieu va san sinh ra ngdn ngu mdi bang nhieu phuong tien
khac nhau. Chien luge bii dap, gidng nhu doan hoac sir dung tir ddng nghia,
cho phep ngucri hgc sir dung ngdn ngir mac dii hg vdn cdn nhirng lo hdng ve
kien thirc va kl ndng. Cung theo Oxford (Ibid.), chien luge sieu nhdn thirc cho
phC'p ngudi hgc kiem soat nhdn thirc rieng ciia minh; nghia la, dieu hgp qua
trinh hc)c tap bdng each su dung cac chirc ndng nhu tap trung vao hgc tap, sap
xep viec hc;c tap, lap ke hoach hgc tap va ddnh gia viec hgc tap ciia ban thdn.
Chien luc;e tinh cam giiip ngudi hgc hgc each dieu chinh tinh cam, ddng co va
thai dc) hoc tap. Va chien luge xa hdi giiip ngudi hgc hgc thdng qua tucmg tac
v(Ti nhirng ngudi khac. Oxford khdng dinh rdng eac chien luge hgc tap true tiep
hoat ddng song song vdi cdc chien luge hgc tap gian tiep. Ca hai Icrp chien luge
deu C Icri eho tat ca cae tinh hudng hoc ngoai ngir va deu ed the dp dung vao
O
bdn ki nang giao tiep: nghe, noi. doe \a viet.
lir mot gdc do khac. Willing (1988) nhin chien lucre hgc eiia ngucri hgc
ngt>ai ngir thdng qua \ lee nghien euu phong each hgc ma hg ua ehuc)ng. Iheo
\\ tiling, ehien \uiK ln>e la eac qua trinh tam li ngucrj hoc sir dung de hgc va sir
dung ngir dieh ()ng edng nhan rang khd khan Icm nhat ddi vdi bdt ki li thuyet
tluiNct gia tivio nghien euu \ e ehien luoe hoc ngoai ngu la viec phat trien each
phan loai eac kieu ehien lucre hc>e tap mgt each nliat quan va cd he thdng. Nhu
tren da trinh ba\, hau het eac nha nghien ciru deu phat trien cac danh muc ve
ehien lucte hge ngoai ngir rieng ciia minli \ a hien na\ dang cd qua thira nhimg
danh muc na\ trong kho tang nghien euu \ e \an de De tranh lap lai nhimg
each phan loai eua eae hoe gia di irucTc, Willing (Ibid.) phdn biet hai kieu chien
Jutv ehien luoe quan li qua trinh hge tap va ehien luge qudn li thdng tin. Chien
luoe quan li qua tnnh hoe tap bao gdm cac hoat ddng nhu phat trien su hieu
biet eua ininh \ e nhimg ph^mg each hge ngdn ngu ua chuong, quan li cdc tinh
90
hudng giao tiep de phuc vu cho muc dich hgc tap, thuc hanh, giam sat va danh
gia. Chien luge quan li thdng tin bao gdm cac chien luge nhu quan tdm mot
each cd lira chgn, lien tudng, phdn loai, hgc theo mau thuc va suy dien. Lay
thdng tin tir 517 nghiem the thdng qua phieu khao sat, Willing da phan ngudi
hgc ngoai ngir (tieng Anh) ra thanh bdn kieu:
Kieu 1: Ngu'di hoc "cu the". Nhirng ngudi hgc nay cd xu hudng thich hgc qua cac
trd choi, tranh anh, xem phim hoac video, sir dung cat-xet, giao tiep theo cap va thuc
hanh tieng Anh ben ngoai lcrp hgc.
Kieu 2: Nguoi hoc "phan tich". Nhimg ngudi hgc nay thich hgc ngir phap, hgc qua
sach tieng Anh, dgc bao, hgc mgt minh, tu tim Idi cho minh va giai quyet van de do
giao vien giao.
Kilu 3: Nguoi hoc "giao tiep". Nhirng ngucri hge nay thi'eh hgc thong qua quan sat,
nghe ngudi ban ngu ndi, ndi tieng Anh vdi ban be va xem TV bang tieng Anh, sir
dung tieng Anh ben ngoai lcrp hgc, hgc tir mdi thong qua nghe chiing. va hge thc^ng
qua dam thoai.
Kieu 4: Nguoi hoc "phu thuoc vao thay/co'\ Nhung ngudi hgc nay thich giao vien
giang gidi mgi thir, thich cd sach giao khoa rieng eiia minh, viet mgi thir vao vd ghi,
hgc ngu phdp, hgc thdng qua dgc, va hge tir mdi thong qua vice nhin tha\ chiing.
Kdt qua nghien ciru ciia Willing ve ngudi hge vd ehien lucre hgc tieng Anh
ciia hg cd y nghTa ca v^ li luan va thue tien. Nd khdng nhirng giup eho vice td
chirc lcrp hcK theo timg kieu ngudi hge va cdn giiip phat tnen tu lieu giang day,
phucmg phdp giang day phii hcrp vdi tirng kieu ngudi hge.
3.2.4. M u x do tiep xiie vcri ngir dieh
Ilau het nhung giao vien day ngdn ngir thir hai/ngoai ngir thu deu ddng tinh
yo\ quan diCm ehc^ rdng mire dc) tiep xuc voi ngdn ngu dieh gop phan quan
trgng, n^u nhu khdng ndi Id quyen dinh vao thanh edng eua hoe ngoai ngir.
Trong md hinh hcK ngdn ngir thu hai eua minh, B>al\stok \ a Frohlieh (1977)
da xac dinh hai kiCu kiCm thue ngdn ngu: kiem thirc ngcm ngu hien (explicit) va
ki^n thirc ngdn ngu dn (implicit). Iheo Byalystok \ a Irohlieh Klbid.). kien thue
ngdn ngir hien cho h\k cdc quy tac ngir phap va tu vung ducre hoe mdt each
91
hiru thirc, trong khi kien thuc ngdn ngir an cho bill cac quy tie ngij phap va
nhirng dac diem khac ciia ngdn ngir dugc cam thdy la dimg theo ban nang.
Chinh su liep xiic vdi ngdn ngir dich cung cap ndi dung ddu vao cho ki^n thirc
ngdn ngir an (Bialystok va Frohlieh 1977: 3-4). Stem ciing bay td quan dikm
tuong tu, xem tiep xiic vdi ngir dich nhu la "su hap thu vd thirc (hgc ti^m dn)
... mot each hgc gdp phdn" (Stem 1975: 315). Hgc tiem an thdng qua ti^p xuc
vdi ngdn ngir dugc Krashen (1982. 1983) vd Krashen & Terrell (2000) d^ cap
den trong md hinh ciia hg ve su the hien ngdn ngir thir hai ciia nhimg ngudi hgc
d dg tudi trudng thanh. Theo Krashen, nhu-ng ngudi hgc d do tudi trudng thanh,
ben canh hge hiru thirc thdng qua hgc tren lcrp, cdn hgc thdng qua qud trinh thu
ddc va thdng qua viec tao dung vd thirc (Kreshen 1977).
Cd nhung chirng cir ducmg nhu iing hd cho quan diem cho rang ngudi hgc
dugc nghe hay ducrc tdm trong be ngir dich se ddn den ket qua hgc tap lot.
Soremon ehung minh eho quan diem na\ bang edng tnnh nghien euu ciia minh
ve nhirng bd tde ngucri Mi Anh Dieng d mien trung thuge khu vuc Tdy-Bac
sdng Ama/dn. nhung ngmri hat dau hge mgt ngoai ngOr bang each tu chu ddng
lam quen \o\ nhung dm thanh eua mdt ngdn ngir men va vcri danh muc eac tir
ngir \a eau true ngir phap. Noi khdng phai la mdt phdn eua qua tnnh hgc eho
den tan giai dtian sau khi ngucri hoe do thu dac dugc khdi luc.mg tir vung thu
dgng dang k^ (Sorenson 1972). Co le ehung eu nhu the na\ da ed vu quan diem
c^
elu^ rang khia canh thu dae (hieu ngir dieh) cdn phai ducre thiet lap trucVc khi
eae ki nang san sinh nlur noi \ a \iet ducrc dua vao giang da\ (Mear 1971;
Wimt/ .v^ Reeds 19^^^)
\\ init/ i L Reeds (Ibid) nhan tha> rang trinh tu - thu nhan trudc, san sinh
S
SvUi
hcKin toan khdng phai la trinh tu bj \ i pham trong qua trinh thu ddc ngdn
ngir o tre em, \ a ho tin rang trinh tu na\ nen dugc tuan ihii trong day ngdn ngir
thu hai. (iia dinh na> hinh thanh nen ccr sd thi nghiem eua hg trong dd hai ddi
tucnii:. khdim ei> kien thue trucK do \ e tienu Due. hge tienu \^uc dugc may day
92
cho hg trinh bay cdc tir ngir va mdu thirc ngu phap thdng qua khdu ngir vdi su
hd trg cua giao cu tore quan. Ca hai ddi tugng nghien cim, khi dugc ki^m tra
sau thi nghiem, dku chi ra rdng hg da thu ddc dugc cac cau tiing Dire va cung
da hgc dugc mot so quy tde vk ngu phdp tiing Dire thdng qua cac chien luge
quy nap (Witnitz & Reeds 1973).
Nhijng cdng trinh nghien cim ciia cac hgc gia da cho thdy tilp xuc vc^i ngir
dich la mot yeu td cue ki quan trgng trong hgc ngoai ngir va khdng nen bj xem
nhe. Logic vd chimg cir tir cdc cdng trinh nghien ciru ung hd gia dinh cho rdng
ngudi hge cang dugc nghe va dgc ngdn ngu ma minh dugc hc)c nhieu bao
nhieu, thi hg cang cd kha ndng hgc ngdn ngir dd tc^t hern bay nhieu. Nhung khd
khan trong viec ddnh gia vai trd ciia tiep xiic trong viec ndng cao hieu qua hgc
tap Id lieu su tiep xiic vdi ngir dich ed lam tang nang luc ngdn ngu hay nang
lire ngdn ngir tdt han tao dc)ng luc cho su tiep xiic ngdn ngir nhilu hern.
Theo cdc nha gido hgc phap ngoai ngir hien dai (Widdowson 1978. 1979,
Spolsky 1998), de hgc ngoai ngir thanh edng ngucn hge phai duc^e tiep xiic vcri
ngdn ngfr dau vao da dang. Ilg cdn phai hieu va sir dung ducrc ngdn ngu dau
vdo cr ngoai lcrp hge. Ddy cd the la kieu ngdn ngu ma hg se can de hge eae mdn
hgc chuyen nganh. Neu hg can tini hic^u the nao la kinh te \i md bang tieng
Anh thi hg phai dgc nhung sach \c} kinh te xem nhimg eudn sach do dinh nghia
kinh te vi md nhu the: nao. Neu hg can phai trinh ba\ mdt \dn de nghien cim
bang lieng Anh thi hg phai dugc hucrng dan ve each tnnh ba\ \a phai thue
hanh each trinh bay vdn de ay nhu the nao.
DicMii eudi cung can phai nhan manh o ddy la, trong eae edng trinh nghien
cim ve dd ti(}p xuc vcri ngu dieh trcmg hge ngoai ngir, nhieu nha nghien eiru
(Willis I99(>, II. \'. Van et al. 2006), ung hd quan diem eho rang chat lucmg
tiep xiic quan trgng hern sd lucmg tic;p xuc. Chat lucmg tiep xiie eo nghia la
trong khi tiep xiic ngdn ngu ngucri hge phai ed dc)ng ec^r Ucp thu ngdn ngir manh
93
me, cac kieu sir dung ngdn ngir trong mdi lan tiep xuc phai phong phiu da dang
sao cho mdi Idn tiep xuc, ngudi hgc thuc su hgc dugc va sir dung ngdn ngir cd
chat lugng nhdt. Tiep xiic nhieu ma khdng cd ddng luc thu nhdn va khdng dua
vao sir dung thi chac chdn neudi hoc se khd thanh cdng trone mdi trudng naoai
ngu.
3.2.5. T d m luac
Tir Muc 3.2.1 den Muc 3.2.4, chiing tdi da kiem tra lai ndi ham bdn khai
nic}m CO ban dugc cho la cd tdm quan trgng ddc biet giai thich cho su thdnh bai
ciia hgc ngoai ngir. Trong nhimg muc tiep theo chiing tdi se sir dung mcpt sd
khia canh ccr ban ciia nhung khdi niem d tren de trinh ba\ edng trinh nghien
cim ciia chiing tdi ve ngucri hoe va nhirng dac diem ecr ban eua ngudi hge lieng
Anh khdng chuyen cr Dai hgc Quoc gia Ha Ndi.
3.3. Nhu cau, dgn}i co, chien luge hgc \ a muc do ticp \ u c vdi tieng .\nh ciia
ngudi hgc tieng Anh khong chu\cn (r })ai hgc Quoc gia Ha Ngi
3.3.1. Dat van de
Nghien euu \ e nhu eau. dc^ng ccr. ehien luge hgc tieng Anh va mire do tiep
\ue \oi ticjng Anh eua sinh Men dai hge \ a hge \ien eao hge Dai hge Ouc)C gia
I la \ o i duoe nhom nghien euu de tai trgng diem cap Dai hge (^UCK gia Ha Ndi,
Ma sd CX.TD 05.11 tien hanh tu thang 12 nam 2006 dkn thdng 12 ndm 2007.
De Men iheo do\, truoe het ehung tdi innh ba\ phuong phap thu thap thdng tin
\ e ngucri hoe. dia ban \ a ddi tucmg nghien eim. \a edng cu nghien euu. Sau dd,
ehung lot se tnnh ba\ phucmg phap phdn tieh sd heu \ a thao luan cdc ket qua
thu ductc \ e ngucVi hoe tic}ng .Anh khdng ehu\en cr Dai hgc Quoc gia Ha Ndi
theo bdn noi dung: nhu eau. dong eo. ehien luge hgc tap. va do tiep xiic vcji
tiene \nh eua ncuoi hc>e.
94
3.3.2. Phu-ong phap thu thap du lieu ve nguoi hoc
Cd nhieu each thu thap dur lieu de tim hieu vk nhung ddc diem ngudi hgc
ti€ng Anh d Dai hgc Qudc gia Ha Ndi. Ngudi nghien cim cd thd sir dung phidu
khao sat, tien hanh phdng van hay quan sat ddi tugng nghien cim, tham khao y
kien chuyen gia, v.v. Ddy la nhirng each lam tdn nhi^u cdng sire, nhung n^u
dugc chudn bi va tien hanh chu ddo, cd bdi ban thi se dua lai nhung kki qua bo
ich. Trong khudn khd ciia cugc khao sat ve ddc diem ngudi hgc tieng Anh
khdng chuyen d Dai hgc Qudc gia Ha Ndi, cdng cu thu thap thdng tin chinh ciia
chiing tdi la phieu khao sat ket hgp vdi trao doi true tiep dudi hinh thirc trd
chuyen vdi mot sd ddi tucmg nghien cim khi nhirng thdng tin dugc cung cdp
trong mdt cdu hdi ndo dd td ra chua dii do tin cay hoac cdn gdy hodi nghi.
3.3.3. Dia ban va ddi tucrng nghien ciiu
try " t o '
Dia ban nghien eiru cua cdng trinh la eae dcm vi dao tat> dai hgc va sau dai
hgc day ngc:)ai ngu khdng chuyen eiia Dai hcK Qudc gia Ha NCM : do la. trucmg
Dai hgc Khoa hgc \u nhien, trudng Dai hge Khoa hc}c Xa hdi & Nhan van;
trucmg Dai hgc Cdng nghe; khoa Kinh te (nay Id trudng Dai hge Kinh te); khoa
luat, va khoa Su pham. Ddi lucmg nghien cim la 4663 sinh \ ien dai hge tu nam
thir nhdt d^n nam thir tu thuge eac dcm vi dao tao thuge Dai hoe Quc^e gia Ha
Ndi bao gcW Iruc^mg Dai hge Khoa hge Tu nhien, trudng Dai hge Khoa hge Xa
hdi & Nhan van, tnrcrng Dai hge Cdng nghe. khoa Su Pham. klioa Luat. \a
khoa Kinh tk (nay la trirc:mg Dai hgc Kinh te) vd 400 hgc vien eao hge thuge
trircmg Dai hgc Khoa hge Tir nhien. trircmg Dai hge Khoa hoe Xa hc^i & Nhdn
vdn va khoa Sau dai hgc.
' C^hung toi khong chon IrucVnu i)ai h^K Ngoai ngu Jc Jicu tra hit, ^ Ja> la Jtm M Jao lao hai ngoai
ngiy ngoa. ngu thu nhal JU^TC gc.). lii ngoai ngiT chu>cn va ngoai ngu ihu hai Juoc goi ia ngoai ngu
khong chuven. Ca hai ngoai ngQ nAy d^u duy^c da> theo ngi> vuc ngoai nga Jai cuan^. khong phuc vu
cho bdi ki'chuven ngAnh khoa hoc nao Chi tiC-l \c cac khai nicm "ngoai ngu chuven" va -ngoai ngu
khonu chuven"'. xin xem lloAng VAn Van (2007. ZOOTa).
95
3.3.4. Noi d u n g phieu khao sat
Phieu khao sat sinh vien bao gom 25 cau hoi va phieu khao sat hgc vien cao
hgc bao gom 25 cau hoi hen quan den nhieu khia canh cua day va hgc ti^ng
Anh, trong do co mgt so cau hoi Hen quan den viec tim hieu nhu cau va dgng
ca hgc tieng Anh ciia ngucri hgc, mgt so cau hoi nham lay thong tin ve cac
chien luge hgc tieng Anh cua hg va mot so cau hoi tim hieu thoi gian va muc
do tiep xiic vcri tieng Anh ctia nguoi hgc thuge hai cap hgc. Ngi dung ciia phieu
khao sal sinh vien va phieu khao sat hgc vien cao hgc dugc trinh bay ducri day.
3.3.4.1, Phieu khao sat sinh vien
I iep theo Cau hc")i 1 hen quan den thong tin ve can cuoc ciia sinh vien nhu
sinh vien nam thir may, thucK khoa va trucmg nao, hai Cau hoi 2 va 3 dugc hoi
de \i\y nhiYng thc")ng tin nen eua dc")i tucmg nghien euu. ("au hoi 2 tim hieu ve
ngu(")n gc')c ciia sinh vien {Nai anh chi tot nghiep trung hoc pho thong). Cau hoi
3 tini hieu vc lucrng then gian sinh vie-n da ducrc hge tieng Anh trucre khi vao
hoe dai lige {(Jpho thong anh chi hoc he tieng Anh nao: 3 ndm. "" ndm, chuyen.
hav khdng hoc ticng Anh/) de lu do co the su\ ra ducre kien thue ngc")n ngu
(ngir An^, ngu pha|\ tir \irng) \a kl nang giao liep toi thieu bang tieng Anh
(nghe, noi. dgc \a \n:t) eua hg. Cae Cau hoi 4 - 7 dugc hoi de tim hieu dong co
ha\ miie dieh hoe tic:ng Anh (Cau 4), thc>i gian sinh \ ien danh de hgc lieng
Anh 1 luan ngc>ai then gian li'n lerp ehinh ihiie (Cau 5), nhung hinh thirc va tai
heu lic}ng Anh ho ihuc^mg sir dung de hge them tieng Anh (Cau 6), va moi quan
lam eua ho ve nhirng linli \uc hen quan den kien thue ngon ngir va ki nang
giac^ liep Ircmg khi hoe tn}ng Anh C dai hgc (Cau 7). Cau hoi 8 tim hieu nguyen
Y
'
\ong \a nhirng ehcr dgi eua sinh \ien ve hge tieng Anh cr dai hgc. Cau hoi 9
nham phat hien nhinig kho khan (ehu quan \ a khach quan) sinh vien gap phai
trong khi hoe liC'ng Anh cr dai hge. Cau hoi 10 nham tim hieu quan diem cua
sinh \ ien \c: phuong phap giang da\ eiia giao vien. Cau hcri 11 tim hieu xem
96
lieu hgc ti€ng Anh co la dich lau dai cua sinh vien hay khong. Cau hoi 12 tim
hieu chiln luge hay phong each hoc tiSng Anh cua sinh vien. Cau hoi 13 tim
hieu xem sinh vien thich hoc ngu virc ti^ng Anh nao: dai cuong, chuyen nganh
hay kk hop ca hai. Cac cau hoi 14 - 18 yeu cdu sinh vien (chu y§u la sinh vien
tu nam thu 2 tro len) tu danh gia tiln bo cua minh trong khi hoc tiing Anh. Cau
hoi 19 tim hieu quan diem chu quan cua sinh vien vl viec lam thi nao dl co thi
hoc tieng Anh co hieu qua hom trong moi trucmg ngoai ngu. Cau hoi 20 yeu c4u
sinh vien tu danh gia trinh do tiing Anh cua minh sau khi tdt nghiep dai hoc.
Cau hoi 21 yeu cau sinh vien tu danh gia dilm kilm tra/thi ma minh nhan dugc
vai trinh do thuc cua minh. Cau hoi 22 tim hilu quan diem cua sinh vien vl su
an khop giua ngi dung dugc day vai noi dung kilm tra/thi. Hai cau hoi 23 va
24 tim hilu them ve muc do tilp xuc vai tiing Anh cua sinh vien. Va Cau hoi
25 tim hilu xem sinh vien co dugc thong bao muc tieu cua mon hoc hay khong.
3.3.4.2. Phieu khao sat hoc vien cao hoc
Phieu khao sat hge vien cao hgc dugc bat dAu b^ng mgt s6 thong tin nen
nhir nam sinh, nam tot nghiep dai hgc, khoa va truang iol nghiep. Tiep theo
nhung thong tin nay, Cau hoi 2 nham muc dich lay thong tin xem a dai hgc
ngu-ai hgc hgc ngoai ngiJ nao, tieng Anh, tieng Nga, tieng Tnang, ha> ti^ng
Phap, v.v. Cac cau hoi 3, 5 va 6 nham muc dich lay thong tin ve do tiep xiie voi
tieng Anh va chien luge hgc tieng Anh eiia hgc vien cao hgc thong qua hoi ve
lugng thai gian hg sii' dung trong cong viec ciia minh (bai vi da so hge vien eao
hge dixge eho la nhung nguai da co viec lam), thai gian nguai hoe danh ra moi
tuan de hgc tieng Anh, va vai lucrng thai gian a\ nguai hgc tiep xiie \cri ngon
ngu tieng Anh dau vao qua nhung kenh nao: sach tham khao, hex them, doc
sach bao, tai lieu bang tieng Anh, v.v.. Cau hoi 4 tim hieu dgng ea hoe tieng
Anh ciia hgc vien cao hgc. Cau hcSi 7 tim hieu mcM quan tam ciia hgc vien eao
hgc ve tam quan trgng ciia cac khu vuc kien thirc ngcni ngu va kl nang giao tiep
trong khi hc>c tieng Anh. Cau hoi 8 tim hieu xem hgc vien mong muc)n hgc khoi
97
kien thirc ngon ngii va kl nang giao tiep nao nhat. Cau hoi 9 nhim phat hien
nhung kho khan (chii quan va khach quan) hgc vien gap phai trong khi hgc
tieng Anh a bac cao hgc. Hai cau hoi 10 va 11 tim hieu phong each hay chi^n
luge hgc tieng Anh ciia hgc vien. Cau hoi 12 tim hieu xem ngu vuc ti^ng Anh
nao hgc vien cao hgc thich hgc han; ngOr vuc tieng Anh dai cuang, ngu MJC
lieng Anh chuyen nganh hay ket hgp ca hai ngir vuc. Cau hoi 13 dugc hoi de
hgc vien tu danh gia trinh do va kT nang tieng Anh ciia minh sau khi hoc ket
thiic khoa cao hgc. Cau hoi 14 yeu cau hgc vien tu danh gia trinh do thuc ciia
minh so vai diem kiem tra va thi het mon ma minh dat dugc. Cau hoi 15 nham
tim hieu xem hgc vien cao hgc co dugc cho biet muc lieu ciia viec ho hoc tieng
Anh hay khong. Cau hcbi 16 tim hieu quan diem chii quan ciia hgc vien ve viec
kim the nao de hgc tieng Anh tot hem trong moi truang ngoai ngir. Cau hoi 17
rim hieu xem giao vien cc') hucrng dan hgc vien each tu hoc lieng Anh hay
khong. Cac eau hc')i 1 8 - 2 2 yeu cau hgc vien lu danh gia su tien bg ciia minh
trong qua tnnh hoc lieng Anh a bac cao hoe. Cau hoi 23 tim hieu quan diem
ciia hge vicMi ve su phu hcrp ciia giao irinh tieng Anh vcVi ngi dung chuyen mc)n
in.i \]o dang hoe. ( au hoi 23
24 iim hieu ve dc) tiep xiic vcri tieng Anh ciia hgc
vien CAO ht^e Ironu uioi Iruirng ngoai ngir. Va cau hoi 25 tim hieu xem hgc vien
eao hoe eo duoc eho hiel nuie lieu eua mon hoe iruiTc khi bat dau hoc mon hgc
khi>ng.
I lai phieu khao siil ducre thiet ke \ a trinh hay ro rang. Cac thanh vien ciia
nhom nghien euu ducre lap huan ki lucmg ve cac buac va each lay so lieu truac
khi di den eiie dia ban dieu tra. Sau do hg dugc gicri thieu bang con ducmg
ehinh ihire (llu^ng qua gia\ gicri thieu ciia Trung lam Boi duang nguon dao lao
lien sH de duoc phep xuong eae dcm \ i dao tao thuc^c Dai hcK' Quoc gia Ha Ngi,
true liep lam vice \oi iirng lcrp hge eua eae dcm \i dao tao nam trong dia ban
nghien eini. trire liep phai phieu khao sat cho sinh \ ien. hucrng dan. tra lai thac
mac. \a irue tiep thu phieu khao sat. Do each lam sat sao nhu vay cho nen so
phiini khao sal phai ra hi 4663 va sc> phieu khao sat thu ve la 4663 doi vcri doi
98