Tải bản đầy đủ (.pdf) (13 trang)

Nonlinear oscillations of the third order systems. Part III Parametric oscillation

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (4.13 MB, 13 trang )

Journal o f Technical Physics, J. Tech. P h y s 21, 2, 253 -26 5, 1980.
Polish Academy o f Sciences, Institute o f Fundamental Technological Research, Warszawa.
NONLINEAR OSCILLATIONS OF THE THIRD ORDER SYSTEMS
PART m . PARAMETRIC OSCILLATION
N G U Y E N V A N D A O (H A N O I)
Introductio n
"he theory o f the parametric oscillation o f the second-order system has been in-
vestgated in a lot o f publications. F o r a long tim e it has played an im portant role in the
theory o f nonlinear oscillations. R ecently, in som e problem s o f the dynam ics on e can
mee. the param etric oscillation o f the third-order system [7], to the study o f w h ich this
charter is devoted (cf. [11, 12]).
n the first Section the approxim ate solution o f the m otion eq uation is constructed.
The stationary solutions are studied.
The second Section is concerned with the stability condition o f the stationary oscilla-
tioi. T he R ou th-H urw itz criteria are taken out.
The influence o f the C oulom b friction on the param etric oscillation is considered in
the Sect. 3. In this case the resonance curve has the d o sed form .
n Sect. 4 the influence o f the turbulent friction on the param etric oscillation is studied.
T h i friction limits the growth o f the parametric oscillation and causes a considerable
chaige in the rigidity o f the system investigated.
Under the influence o f the com bination friction (Sect. 5), the resonance curve is
simlar in quality to that in the case o f the C oulom b friction. It is o f closed form as w ell.
1. Construction o f A pp ro xim ate S olution
Let us consider the parametric oscillation o f the system described by the third order
diferential equation o f the form :
(1 .) x '+ Ệ x + Q 2x + Ệ Q 2x + e [k x 3 + hx3 + R (x,x ,x )-cxco s y t] = 0,
w b re Ệ ,Q ,k ,h ,c ,y are con stan ts and R (x ,x ,x ) is the function characterizing the
ncilinear friction.
W e assume that there is a resonance relation
eA = Q2(l -Tj2), ri=-^Q-
T hen, Eq. (1.1) can be written as:


Ỉ54
Nguyen Van Dao
^ h e n
1.3) f ( x , X, x) = A X + ỆẠx + k x 3 + hx3 + R (x , X, x ) .
A partial tw o -p a ram eters solu tio n o f (1.2) is fo u n d in the series:
1.4) X = ỠCOS
+ + EU1 ịa , ip,
-y/j
+ e2u2 ịa ,
ip, -yfj +
n w iich us (a , y, 0) are p erio dic fu n c tio n s o f 6 a nd w ith-th e period 2 71, an d a, ip are
u ncto ns o f time d ete rm in ed fr om th e set o f e quatio ns:
~ = eAl(a,xp )+£2A 2{ a ,y )+ •••,
; i . 5 )
. ^ = eBL(a, ỳ )+ e2B 2(a, y>) +
1 ) d eterm in e th e functio n s US, A S, B S, first w c calculate:
dx y
~dt = 2
d 2x
• I A n . CUị \ 2
asm(p + s \A X cos(p—aB1sm(p+ + £ • • 9
y2 I d2ui \
— acoscp+ —yA ! sin(p — yaB1 COSẹ?+ - Ỵ T I + 8
1.6 )
í/3A' y 3 / 3 3 ổ3Mj \ 2
- ^ - 3- = asm 9? + £ I — ~ ^ -yM 1 cosẹ> + fl-Sj SÌ1199 + —^ 3 I + £ •••’
<p = y f + y .
S ib stitu tin g E qs. (1.4), (1.6) in to (1.2) a nd co m parin g the coefficients o f e w ith eq
ỉegrtes, w e ob ta in :
Ô3U1 ô2u1 y 2 dul y 2 I y 2 \

1.7)
+ sinọ? = - / o + ữ c o s ^ c c o s
/o = / ịa c o s ọ ) , —-yứsinọ?, — -~ ac o sẹ> Ị.
N)W, w e expan d th e fu n c tio n / o in the F o u rier series:
0 0
; i . 8 ) / o = J j ? [qm(a)cosm(p+pm(a)sinm(p],
m = 0
Nonlinear oscillations o f the third order systems. Part III 255
lere
2.71
q0 = — Ị fiacosq), — -y ứ sin ọ ? , — ^ị-ứcosọ?! d(p,
o '
271 I
.9) qm = — J" /Ịa c o s ẹ ? , — ~-a sin ẹ > , — ^ -aco sọ?! cosmcpdcp,
o '
. 271
pm = — Ị / Ị a c o s ạ ) , —-y ứ sin ọ ?, — —-a c o s ^ Ị smmĩpdcp.
Ố '
T he function «! satisfying Eq. (1.7) will be fou nd in the form
1.10) ^ [G„(a, yj)cosn<p + B n(a, y)sinm<p]
/ith the additional con dition that it contains no resonance terms. It will be seen later
hat this condition is equivalent to the following: the function Wi does not contain COS99,
in 99.
By substituting (1.8), (1.10) into (1.7), w e have1.10) into (1.7), w e have:
|yyGn- ! / / „ j s i n A ! 9 5 - ỈƠ„Ị cosnọ? -
Ị-^-v41 + y £ a 5 iỊco s 9 9 + Ị^2 ~ ứjBi - y M ij s i n g j = c a c o s ỹ c o s y í
00
- ) (ạmcosrn(p+pmsinm<j
- y , (<7 mCoswẹ>+/>msinwẹ>).
m = 0

By com parin g the harm onics sinọ?, COS op, one obtains:
y Al +yỆaB1 = - - ^ c o s 2 rp+q^
(1.12)
y Ệ A i - ^ - a B i = - - ^ - s i n 2 y + P i
By com paring the other harm onics, w e get:
nguy en van ưao
On solv in g Eqs. (1.13), w e ha ve:
(1 — 2 ,, -ị- accos2v>j ổ 3,
c " =
y / y £ . I
- y + £/>„ - |-j-r tứ cco s2y > + -^ -a c s i n 2 y I ỗ 3n
=
n 2
r
I t u i Y ' 1— — U(
(„*_!) Ị^+rl^Ị
From (1.12), w e have
Q 1
£ < /0 sin99> + .í2</0 cosẹ>> — -Ị-ac COS 2^-* Ạ-OCỆs in 2 y
^ = i 2 ( l 2 + £ 2) ’
( 1 . 1:)
£ < /o c os<p> — í2< /0sinẹ>> + -^-acsin2y> — ^-flccos2y>
Bl = a(Ệ2 + ũ 2) ’
wheie ( F ) is th e o perator o f the a veraging function F on tim e. By p uttin g in E q. (1.
fo fn m Eqs. (1.3) an d (1.7) a nd calcu latin g, w e h a ve th e fo llo w in g eq u a tio ns o f th e Í
approxim ation:
(1.10
da £
d t = Ệ2 + Q 2 [ 8
dip ■ E

dt = a (i2 + Q*)
ĩ-^ -(fc —£Q 2h)a3 — -^ -ứ ccos2y — -^ -^ sin 2 ^ y + i?! j ,
Ị^— (Ệ2 + & 2) A a + -^-(Ệk + Q*h)a3 + ^ - s i n 2 xp-
ac .
■ ~ —ỆQos2tp+R
.2 Y
w h ec
2Ệ
R i = <JR0COSỌỊ>4- — </?0sino9>,
y
2Ẽ
' l . n R 2 = — ( R 0c o s (p )-(R 0sinq)'),
y
i v y 2
R q = Rịacoscp, — |- a s i n (p, — — acoscp
Ttus, in the first a p p r o xim a tio n w e h ave a partial so lu tio n o f E q. (1.1) in th e for
L
2
Nonlinear oscillations o f the third order systems. Part ỈII
257
iere a and Iff are the solution o f Eqs. (1.16). The refinement o f the first approxim ation is:
9)
.Y = a c O S
0 Ệ \
Ệq„—Qnp„+ \-ịnacsm2y)— ~accos2tp jỗ3n
~Ó2{n2-ỉ)(Ệ 2 + n2Q2)
- X
X C O S /7ọ? +
Qnq„ + Ệp„ — ị^-nac cos2ĩf + y -ứcsin 2^Ị<5 3n
Q20 ? - ì ) ( Ệ 2 + n2Q 2)

sin H(p
th a and y> being the solution o f Eq. (1.16).
The stationary solution o f the set (1.16) is determ ined from the equations:
.2 0)
^ - a 0sin2ĩp + ^ - c o s l i f = -— { k - Ệ Q 2h ) a ị + R y ,
l y 4 o
~ ~ a 0co$2y.'- sin 2 y = — (Ệ2 + Q 2)Aa0 + -^-(Ệk + Q4h)ao + R 2-
2 y 4 y 4 y
By elim inating the phase y), we obtain the equation for the am plitude a0 :
.21) W(ao,y) = 0
here
3 ~>QZ
.22) W(a0, y) :
ỆA+ 4 ka2° + a0( f + Q 2) V 1 + > Rl
+
0 2
c
4
Relation (1.21) is plotted in Fig. 1 for the case R = 0, -Ệ = ũ = Ỉ, c* = 0.05, kị,
—0.1 and /7* = 0 (curve 1), /7 * = 0.05 (curve 2) and /7* = 0.1 (curve 3). From this
cure, it is seen that with increacing h, the maximum of the amplitudes decreases and
le nonlinear system b ecom es harder. In Fig. 2 the resonance curves are presented for
ie case R = 0, Ệ = o = \, c* = 0.05, /?* = 0.1 and k* = 0 (curve 1), k* = - 0 .0 5
:urve 2), /c* = -0 .1 (curve 3). With decreasing k, the maximum of the amplitude
ecreases and the nonlinear system becom es softer. Ịả'* = -Qĩk, /7* — c* — p T c j-
F i g . 1
i J o u rn a l T ec hn . Ph ys. 2/80
Nguyen Van Dao
B\ contrast with the parametric oscillation in the well known second-order system,
ie riiidity of the nonlinear system and the maximum of the amplitudes of oscillation

ĩre tepend on the com bination o f the param eters h and k. The system considered is
hart system if T = £ k + Q Ah > 0 and a soft one if T < 0. I f Q = ỆQ2h — k is positive,
len tie m axim um o f am plitudes decreases w ith increasing Q.
2. S tability o f S tationary O sc illa tio n
F ist we shall con sider the stability o f the stationary solution a0 Ỷ 0 o f Eqs. (1.16).
ubsttuting in them
a = a0+ỗa, y = ip0+ồy)
'iíh í0 , xp0 being the solution of Eqs. (1.20), we have the following variational equations:
ỊỊ^-(& -£í22/7)ứẳ + aoỊ— Ị j < 5 c - (Ậ2 + Q 2)Aa0
dt
Ệ2 + Q 2
+
2. 1)
+ *tfỉc+ữ*h)al
2 y
cỉôyj
- 2 ỗ y > Ị,
I Ả-(Ệk + QVi)a0+ Ị * ì Ị ]ôa + ị j { k - Ệ Q 2h ) a l + ~ R ^ ỏ v } -
dt Ệ2 + Q 2
Tie characteristic equation of this system is:
2.2 )
yheri
2.3)
Ằ2~ZÂ + S = 0 ,
z =
5 =
ễ2 + Q
2 r ~ ( i ' - ỉ ữ 2/ i ) « ỗ + — (0 0 * 1) ' ] .
s2a
[ 2/1

4Q 2(Ệ2 + Q 2) X y
+
2 Q2
Ỵy(Ệk + L)4h) a0 -f 4Í22 (— 2
+ - ị ( k 2 + Q 6h2)aị +
3ao(fc- í f i V , ) ( f } + + « ( £ ) ( £ ) ’
+4 í ă í ă i
+
Ệ2 + w
+
a 0 \ a 0
Nonlinear oscillations o f the third order systems, Pari III
25!
( 2 .‘ )
rhe expression z can be also written in the form:
d W
e2a 0
4 Q 2(Ệ2 + Q 2) da0
h er w is o f the form (1.22). C onseq uen tly, the stability condition o f stationary solu
tioi is:
(2.3 3(k -ỆQ 2h)al + 2(a0R iy < 0,
ÔÌV
(2.0
ôa0
> 0 .
Mow, let us consider a special case o f the stability o f equilibrium a = 0, w h en th
sysem (1.16) has the form :
( 2 .')
da £ [ 3 r, c „ ca - . _ 1
= ~ỆĨ + Õ T [ 8 4 1ccos2 ^ ~ 2 ’

= ~nr + 5 r [7 (f 2+ fi2^ a + Ậ +
. i/r £2 + £ 2 8
<7
dtp
h i
c ■ n c a t o
— flsin2v> — - y - f c o s 2 ^ .
(2.r
or
In this case we put a = ỗữ, y = ^o + ổ y and the variational eq uation s are:
d ò a
dt
EC I y \
= “ Ị 2 c o s 0 + ^ ° /
0 =
V
+ Q2)A 4- -ysin2vj0 - f cos2y>o
ỗứ
£C • M c
—— =

1 ■ ■_ sin(2u’o 4- v) 00,
eft 2 y ý Ệ r + ữ 2
(2.0
0
£C
2y (Ệ 2 + Q 2)
- (Ệ2 + Q2)A - \/ệ2 + Q2 cos(2tPo + O)
ỗ a ,
0 = arete

V
2Ệ •
The second Eq. (2.9) yields:
cos(2 tpo + 0) — —- A y i 2 + Q 1
sin(2 Y’o + ớ) = ± ~ \ / c 2—4(Ệ2 + £}2) A 2
am therefore the first Eq. (2.9) is o f the fo rm 1:
dòa
~ dt~
^ ỹ | = f » V - 4 T F ’ + i F ) 2 * í « .
Hence, there fo llow s the stability co ndition o f equilibrium a = 0
c
M l >
2
] /ệ 2 + Q 2
8*
Nguỵetì Van Dao
2.10) rị1 < 1

, ĩ]2 > 1 H

— = = = = , ĩ] = y/2í2.
2í 2 2 | / | 2 + £ 2 2& 2 > / f 2 + í 2 2
In the figures presented the stability conditions are satisfied on the lines in b old face.
3. Th e In fluence o f C oulom b Fric tio n
Let us consider the case
3.1) R(x, X , x) = ÌĨQsig n * ,
vhere h0 is a positive constant,
•+ 1 if À '> 0,
3.2) sig n * = — 1 if X < 0,
0 if X = 0.

In this case it is easy to verify that
3.3)
71
h0 if Ũ ^ 0 ,
<i?0sinọ9) =
'o if a = 0 .
<i?0cosọ)) = 0 for all a.
N o w , Eqs. (1.16), (1.17), (1.22) are o f the form : for a 0:
da £
~dt = Ệ2+ Q
3.4)
; dt a{Ệ2 + Q 2)
Ợc — ỆQ2h)a3 ^-ứcos2y — ^£sin2y> — p ~ ^ o | »
± ( p + Q *)Aa+ — (Ệk + Q V i W + ^ s m 2 ụ ,-
3.5)
ca f- ", 2
~ f c o s 2 v +
2 Ệ ,
Ri — 77
n II
R-> = —-ho
71
V - (ỉ a + f f a V + O * L + ị « Í V + ^ h X - $
3.6)
The equation w — 0 yields:
;3.7) r 1 + ~4 Ỵ ị
2
+ -Q
2
) (Ệk* + Q*h*)a 2 + ntf2 + Q'2)a 1

* £ 2 + £ 2
1 -X / 1 2 + Q 2
VÍP V 4 -
?
1 4 f J 2
- 0 ( f / i J|(i 2 2 - A - lls) f l 2 + - ^ - / i S ,
7 1 (2
(3.8)
ố‘/c
yt = /; = e] \ /;* = E^ °
* Í 22 ’ * ~ Í 2 2 ’ 0 Í 3 2 ’
c * =
£C
Í P
V
y
2 Q ■
Nonlinear oscillations o f the third order systems. Part III 261
In Fie. 3 the dependence of a0 on i f is presented for the case Ệ = Q = 1, /z* = 0.05,
¥ — —0.1, c* = 0.05 and h0 = 2 .5- 10-3 (curve I), /? 0 = 5 • 10-3 (curve 2). H ere the
:sonance curve has a closed form. H owever, only the upper branch lim ited by the
ỉrtical taneencies corresponds to the stability o f the stationary cond ition (2.6). T he
lerease in h0 leads to the narrowing o f the resonance curve. W ith sufficiently high values
f h0, there is no stationary oscillation.
T o find the expressions (1.14) first we expan d:
00
4 V I 1
sign sin 09 = — > ——-—— sin(2;?7+ 1) 09.
7r 2m + 1
m — 0

N o w the form ulae (1.9) are o f the form :
Po = P i = 4s = 0, i# l , 3 ,
q1 = ỆAa + ~ kaz,
Pl = - A Q a - Ặ h Q 3a3,
4
g3 = - L ka3, p 3 = ~ h ũ 3a3
r\ _ 4/7 o ' o
Pin, - 0 , p 2m+1 - ^ i + T r ’ m ^
Therefore, the expressions (1.14) are:
Ho = G0 = 0,
- - T f S W T W ) ( ^ 0 + ^ - 3 ^ - f « > c o s 2 V + 3i2Ca s m 2 ,, |,
" 3 = W t f ‘ + 9Q2) I - ^ - 0 + ■§- (3fr + n3 - 3 £ c a c o s2 y - ĩ c a s i n 2 y I ,
2m+1 nQ m (m + l ) [ f 2 + (2m + l ) 2i32] ’ ^ 2m ’ ^
2m+1 7T Í32w ( w + l ) ( 2 m + 1 )[£ 2 + ( 2m + 1) 2Í 2 2] ’ 2m
Nguyen Van Dao
4. The Influence of Turb ulen t Frictio n on P ara m etric O scillatio n
N ow, we turn to the study on the case o f the turbulent friction, when R(x, X, x) has
2 form:
.1) R(x, x,x) = /?2 x 2sign x ,
lere h2 is a positive constant. It is easy to see that:
( / ỉo S Ì n ọ ? ) =
.2) — ■ 2,71
<R 0coscp) = 0,
d therefore Eqs. (1.16) take the form:
for a =£ 0:
I ? _ 2
h2y a ,
da
dt
dtp

Ệ2+ Q 2
(ỆQ2h —k)a3 + ~a co s2tp+ -^ -£sin 2 y > + ^ - h 2Qa2 ,
4 4 Í2 371 j
w = £
dt a(Ệ2 + Q2)
^ 7 ( f 2 4 - £ ? 2) z l a 4 - (£Ả ' + í 24/0 ữ 3 + - ^ - s i n 2y>
2Q
Ệ c o s 2 w + -^ -A 2 i3 2a 2| .
4Í2
By com paring with Eq. (1.16), w e have:
* , -
.4)
3ti
hi Qaz.
R2 = -Z— h 2 Qza2.
07Z
Consequently, the expression (1.22) is:
\ 2
U Ỉ
5) W(a0, y ) = U A + ~ k a l\ + q 4 a + ± h Q 2a2o + ^ f - h 2a0
Fig. 4.
Nonlinear oscillations of the third order systems. Part III 263
The equation w — 0 yields:
V2
1 + 4 (Ệ2 + Q 2) ^ k * + Q *h * )a ° + 37i(Ệ2+ Q 2) h *ũ o ±
ì /
, - v , i 2 + ữ 2 2
} ± Ệ2 + Q 7^ / A c
h* = J Ỉ * y
2 m 9 V

Q(ỆQ2h!t.—k^)a0+ ỆQ2h2
j 7 l
2
a2
Q 2 ’ ' 2Q '
This relation is plotted in Fig. 4 for the case Ệ = Q = 1, A* = 0.05, fc* = —0.1,
= 0.05 and /2 * = 0.01 (curve 1), /2* = 0.1 (curve 2). Here the change o f the coefficient
leads not only to the change in the m aximum o f the amplitudes of oscillation but
3 to the change in rigidity o f the system considered. The increase in h2 leads to a de-
ase in the m axim um o f the am plitudes and the system becom es harder.
5. Th e Influence o f C om bination F riction on th& Param e tric Oscillation
In this Section we study the influence on the parametric oscillation o f the com bina-
n friction:
1)
R(x, X, x) = (h0 + h2x 2) sig nx
N o w , Eqs. (1.16) are o f the form :
for ữ / 0:
da e
~dt = ~Ệ 2+ Í2 2
dy E
dt a(Ệ2 + Q2)
| i ( f f l ^ - f c ) a > + ^ - c o s 2v + ^ f s i n 2v > + ^ ( 4 * 0 + 3 j A . w )
ca
4Í2
£ c o s 2y +
2 4 . . I
+ —-h0+ ~ h 2Q2a2 .
7 1
Nguyen Van Dao
Th: expression (1.22) is:

3) w — ịặA + ị k a ị J + Ì Q / i + ị / i Q 3a20+ ^ - h 0+ ^ - h 2Q2a0\
Th: equation that yields the relationship between the am plitude o f oscillation and the
Lcitirg frequency will be:
.4) r = 1 +
A Q ht
4(Ệ 2 + Q 2)
371 Ệ2 + Q
7i(Ệ2 + Q 2)a 0
+
± v h p ' \ / ^ 2 + Q2)cl-
8
. (ỆQ2h * - k * ) a 20 + ~ Ệ Q 2/ĩ* a 0 + - ^ - h * 0
4 . 3 n 7ian
In this case the response curve is closed too (see Fig. 5) for Ệ = Q = 1 , /7* = 0.05,
* = -0.1, c* = 0.05, hi = 2.5* 10"3, h*2 = 0.01.
References
. z. )SIKSKI, Vibrations o f an one-degree o f freedom system with non-linear internal friction and relaxa
tion Proceedings o f Inte rn atio n al Confere nce o n N o n -lin ear O scillatio ns, I I I, K ie v 1963.
z . )SINSKI, G . B o yad jie v, The vibrations o f the system with non-linear friction and relaxation with
slo\ly variable coefficients, Pro c. 4th Con ference on N o n -L in e ar O scillatio ns, Prague 1967.
. H . V. S r ir a n g a ra ja n , p. S r in iv a s a n , Application o f ultraspherical polynomials to forced oscillations
o f . third order non-linear system, J . So un d V ib r., 36, 4, 1974.
L H . V. S r ir a n g a ra ja n , p. S rin iv a s a n , Ultraspherical polynomials approach to the study o f third-order
nonlinear systems, J. So un d V ib r., 40, 2, 1975.
>. A . ONDL, Notes on the solution o f forced oscillations o f a third-order non-linear system, J. S ound V ib r.,
3 7,2 , 1974.
j. A . T o n dl , A d d i t i o n a l n o te o n a t h i r d - o r d e r s y s te m , J. S o u n d Vibr., 47, 1, 1976.
K z . ♦sinsk i, N g u y e n v a n D a o , Parametric oscillation o f an uniform beam in a Theological model, P ro c.
2nc N a tio nal Conference on M ech anics, H a noi 1977.
}. N . 'í. B o g o liu b o v , Y u . a . M it ro p o ls k y , Asymptotic methods in the theory o f non-linear oscillations,

M ocow 1963. r*
K N g u y e n v a n D a o , F u n d a m e n t a l m e th o d s o f n o n - l i n e a r o s c i ll a t i o n s , H a n o i 1969.
). H . C a n d e r e r , N i c h t l in e a r e M e c h a n i k , Berl in 1958;
. N g'YE n v a n D ao, Non-linear oscillations o f the third order systems. Part /. Autonomous systems,
J. rechn. Phys., 20, 4, 1979.
N g ' Y E n v a n D a o , N o n - l i n e a r o s c il l a t i o n s o f t h e t h i r d o r d e r s y s t e m s . P a r t I I . N o n - a u t o n o m o u s s y s te m s ,
J. rechn. Phys., 21 , 1, 1980.
S t r e s z c z e n i e
N IE L 1 N IO W E D R G A N IA U K L A D 0 W T R Z E C IE G O R Z Ẹ D U
C Z Ẹ ắ C III. P A R A M E T R Y C Z N E D R G A N IA
N iie jsza p ra c'1 stanow i czẹsc I I I p ra c [11] i [12]. R oz patrzon o w niej p aram etryczne drgan ia n ielinio -
*go uia du trzeciego rzẹd u.
W ^ na czo no przyblizo ne ro zw iạz an ie róvvnania ru ch u o ra z p od ano w aru nki statecznosci sta cjon ar-
ĩgo rcw i^ za nia.
Z bda no w plyw tarcia kulo m bow skieg o i turb ulentnego na d rg an ia param etryczne. R o zp atrz on o
kze dgania w p rzypadku ko m bina cy jnego tarcia.
N on lin ea r oscillations o f the th ird order systems. Part 111 265
p e 3 K) M e
HEJIHHEHHLIE KOJIEEAHHil CHCTEM T PETLErO nOPflJIKA
^ ỈA C T L I I I . I IA P A M E T P M ^ E C K J iE K O J IE B A H H H
HacTOHiuan paooTa cocraB jifleT TpeTLK) ^lâCTL paốoT [1 1] H [1 2] . PaccMOTpeHbi B Heổ napaM eT pii'
He KOJie6aHHH HejniHeHH OH CHCTeMbi T p eT b ero n op H A K a.
OnpeAejieHO np H ốjm > K eH H 0 e pem eH n e y p aBH eH HH H n pu B eA C H bi VCJIOBHH yc TO H H H B ocm
noHapHoro pemeHHH.
Iic cjie flo B a H o BjiHHHH e K yjioH O B CK oro H T yp G yjieH T H oro TpeHHH H a n ap aM eT p m e cK H e KO Jie6aH HH.
PaccM O Tp eH bi TOH<e KOJieSaHHH B CJiyMae KOMốHHaiỊHOHHOrO T peH H H.
Received October 17, 1978.

×