Tải bản đầy đủ (.doc) (30 trang)

BỘ ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG THEO QUY CHẾ MỚI 2015

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (345.9 KB, 30 trang )

ĐỀ 1

PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)
Câu I (2 điểm)
1. 
 

x
y
x

=

2.  !"#$% &'()#*+,- 
&'.#

/
Câu II (2 điểm)
 0 !"#$%

1
  2  3/  4  
  
x
x x x
π π
+ + = + +
 05 !"#$%6
7 3  
3 



x x y x y
x y x xy

− + =


− + = −


Câu III (1 điểm): 899 :6,;
7
4
 /< 

x x
dx
x
π

Câu IV (1 điểm):
%= >/?@='?@<#&A#B?C?@;(D
<#:BE>/FD G#>?@>?H#BCD G#
'#=24
4
/89I#=#JD G#>?@>@/
Câu V: (1 điểm) ((<K!"#LMNN;/O#$.#6

3
a b b c c a

ab c bc a ca b
+ + +
+ + ≥
+ + +
PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)
A. Theo chương t&nh Chuẩn
Câu VI.a (1 điểm)
8$#D G#PQRS'+?-!T#G#

6SN3'N7;4/
8
U
PQ+@&Q!T#G#

!T#G#?@

V C&
#W7X
4
/
Câu VII.a (1 điểm): 8$#)A##C5PQRS'Y(+Z-[-
!T#G#

  6
  3
x y z
d
+
= =
− −


 7
 \6
  X
x y z
d
− −
= =
O#6+Z(K(K]H#.$QD G#/ !"#^D
G#=/
Câu VIII.a (1 điểm)
0 !"#^6
 

7 
7  7 
<# <#
+
+ +
+ =
x
x x x x
log x x x

Theo chương trình Nâng cao
Câu VI.b (1 điểm)
8$#D G#PQRS'!T#L_`
 
 6 C x y+ =
(!T#G#

  6 4d x y m+ + =
/8
U
%
m
+
 C
a
 d
B?@K59#?@R
<Cb/
Câu VII.b (1 điểm)
8$#)A##C5PQRS'Y(D G#6
c6Sd'NYN;4(e6Sd'NYN3;4(f6SN'd3YN;4
!T#G#


6



−x
;

+y
;
3
z
/0P



<#&'ce/
 !"#$%!T#G#K&A##=Cfa!T#G#


(


/
Câu VIII.b (1 điểm) 0b !"#$%6<#
S
<#
3
g
S
d1


[[[[[[[[[[F[[[[[[[[[[
ĐÁP ÁN VÀ THANG ĐIỂM ĐỀ 1
Câu 1: 1,h8i S6
{ }
j D = ¡
h89


\ 4
 
y x D
x


= < ∀ ∈

F#$)#
 -−∞

- +∞
hF)A#=$
h0CB
x
Limy
+

= +∞

x
Limy


= −∞


x
Lim y
→+∞
=


x
Lim y

→−∞
=
k=5iO#6S;(5i##';
h@#
h
Câu 1: 2,*8 &'B+
4 4
 -    M x f x C∈
= !"#$%
4 4 4
\    y f x x x f x= − +
F'
 
4 4 4
     4x x y x x+ − − + − =
h
h#*+,- &'h.#


4
7
4
 

  
x
x

⇔ =
+ −


#!V#5
4
4x =

4
x =
i'6 &'l%6
 4x y+ − =

X 4x y+ − =
Câu 2: 1,h@m !"#$%=!"#!"#C
 3  4   2 4
2
c x x c x
π
− + + + =

  X   3 4
3 2
c x c x
π π
⇔ + + + + =

    X    4
2 2
c x c x
π π
⇔ + + + + =
/0!V


 
2 
c x
π
+ = −

  
2
c x
π
+ = −
<B
h0

 
2 
c x
π
+ = −
!V#5


x k
π
π
= +

X


2
x k
π
π
= − +
Câu 2: 2,h@m5!"#!"#C
  3
3 
  
  
x xy x y
x y x xy

− = −


− − = −


hkDn I

3
x xy u
x y v

− =


=



(!V5



u v
v u

= −

− = −

h05$!V#5&-<6
-4[-[3h8*=#!V#5S-'<-4[-4
Câu 3: *Đặt t=cosx 89K;[SKS(miS;4o;(
7
x
π
=
%


t =
8*=



 




< <t t
I dt dt
t t
= − =
∫ ∫
hkD


< -u t dv dt
t
= =

 
-du dt v
t t
⇒ = = −
>&'$




 
   
< < 
 

 
I t dt
t t t

= − + = − −

hp&

  < 

I = − −

Câu 4: *Vẽ hình
h0PF<$&#+@(O#
 SH ABC⊥
hqW##=#JD G#>?@(>?CD'<
4
24SEH SFH= =
hr
HK SB⊥
(<i <&i&'$#=#JD G#>?@>@.#
HKA
/
hsi <&i9!V?;?@;(


a
HA =
(
4
3
 24

a

SH HF= =
h8#>F&A#BF=
  
   3
4
KH a
HK HS HB
= + ⇒ =
h8#?F&A#BF=

4


3
3
4
a
AH
AK H
KH
a
= = =

3

3
AK H⇒ =

Câu 56h@m
 

   
a b c c
ab c ab b a a b
+ − −
= =
+ + − − − −
h8*=
  
        
c b a
VT
a b c a c b
− − −
= + +
− − − − − −
t((K!"#NN;((&Q)#4-;u[([([K!"#
h KI#bG#OAK!"#!V
3
  
3/ / /
        
c b a
VT
a b c a c b
− − −

− − − − − −
;3 
kG#OS'$)E)


3
a b c= = =
Câu 6a:h

= !"#$%
 3
 
x t
y t
= −


= − +

= 
 3-u = −
ur
h?&Q


 3 -   A t t⇒ − − +
h8=?@-

;7X
4


 - 

c AB u⇔ =

uuuur ur
/


/
AB u
AB u
⇔ =
uuuur ur
ur


X 3
2g X2 7X 4
3 3
t t t t⇔ − − = ⇔ = ∨ = −
h+l%<
 
3 7  3
 - (  - 
3 3 3 3
A A− −
Câu 7a: *(Kp&

4- -4M −
= 

- - 3u = − −
uur
K]p&


4--7M
= 

--Xu =
uur
h8=
 
-  7- v-7u u O
 
= − − ≠
 
uur uur ur
(
 
4--7M M =
uuuuuuur
qw
   
- / 2 7 4u u M M
 
= − + =
 
uur uur uuuuuuur
 KK]# G#/
h0Pc<D G#OKK];ucW 
-- n = −
ur
p&Z


=
!"#$%
  4x y z+ − + =
htxb'+Z-[-&Qyc(*== 
Câu 8a:hkz&)56Su4
h8F6SwS;<#5
h8F6Sw
x ≠
(m !"#$%!"#!"#C

  
 <# 7   <# 7  <# 7 
x x x
x x x
+ =
+ + + + +
kD
<#  
x
x t+ =
(!V !"#$%6
  
  t t t
+ =
+ +
#!V;;[{3
hC;
<#   
x
x⇒ + =

 !"#$%'A#5
hC;[{3

<#  
3
x
x⇒ + = −

 3
/7  x x⇔ + =
h
|ib'

v
x =
<#5h|&

v
x >
%8hu
|&

v
x <
%8h}(i'h=#5K&'b

v
x =
h<&i6#5 !"#$%=<S;


v
x =
Câu 6b:*(=:R4-4()9f;hKaB+ :5
 -  d O d⇔ <
h8=
  
/ / /
  
OAB
S OAOB AOB AOB= = ≤
8*=K59#?R@<Cb)E)
4
g4AOB =

 - 

d I d⇔ =
m⇔ = ±
Câu 7b:h


= !"#$%
 

3
x t
y t
z t
= −



= − +


=

h


= !"#$%

X 3
x s
y s
z s
= +


= +


=

h0~
 
-d A d B∩ ∆ = ∩ ∆ =

  -  -3 @N-XN3-A t t t⇒ − − +
h
  -3 2- 3 AB s t s t s t= + − + −

uuuur
(yf= 
-- 3n = −
ur
h
  •d R AB n⊥ ⇔
uuuur ur
H# !"#
 3 2 3
  3
s t s t s t+ − + −
⇔ = =

3
7
t⇒ =
hKp&
  3
 - - 
  v
A
= 
-- 3n = −
ur
;uK= !"#$%
3
 
v
 
  3

z
x y

− −
= =

Câu 8b:*Điều kiện6
3
4
<# g 1 4
g 1 4
x
x
x >


− >


− >

#!V
g
<# 13x >
%
g
<# 13x >
u =!"#!"#C
3
<# g 1

x
x− ≤

g 1 3
x x
⇔ − ≤

3 v
3 g
x
x

≥ −







x
⇔ ≤
h<&ii #56
g
<# 1-€T =
ĐỀ 2
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH ( 7 điểm )
Câu I ( 2,0điểm) ';S
3
−NSNX−


/
 );-
 8%+=+B++&(#T+
B(+&+,4-7G##/
Câu II:(2.0điểm)(0 !"#$%6
( )
3
2 7
log 1 x log x+ =
/
(0 !"#$%






−=−+
24
cos2sin
2
cossin
2
sin1
22
x
x
x
x

x
π
Câu III (1.0 điểm)0b !"#$%&
  
v X 7 v v  Xx x x x x x− + ≤ − + − + −
Câu IV(1.0 điểm)899 :I;

+−+
7

3
 xx
dx

Câu V/4+<M#$I#?@/?

@



=bB.#(#=B
•BD G#'.#34
4
/F%&F+?$D G#
?

@




&Q!T#G#@



/89)##J!T#G#??

@



‚/
PHẦN RIÊNG CHO TỪNG CHƯƠNG TRINH ( 3 điểm )
A/ Phần đề bài theo chương trinh chuẩn
Câu VI.a: (2.0điểm)
1. 8$#D G#C5PQRS'!T#$ƒ= !"#$%S[

N
'N

;g
!T#G#K6SN'N;4/8%+$!T#G#K=K&'bQ+?
*=)r!V &'?@(?C!T#$ƒ@(< +
#?@&A#/
2.8$#)A##C5PQRS'Y+?4--[!T#G#K= !"#
$%






+=
=
+=
tz
ty
tx
3

si  !"#$% cp&?(##CK)#*KC
c<<Cb/
Câu VII.a: (1.0điểm)
G#O6
n 1 n 2 n 3 2n 1 2n 8
2n 1 2n 1 2n 1 2n 1 2n 1
C C C C C 2 1
+ + + -
+ + + + +
+ + + + + = -
/
8%5B#OS
4
$#)$+
( )
n
3 4
1 x x x- + -
/
B/ Phần đề bài theo chương trình nâng cao
Câu VI.b: (2 .0 điểm)
1 8$#D G#C5PQRS'!T#$ƒ= !"#$%S[


N
'N

;g
!T#G#K6SN'N;4/8%+$!T#G#K=K&'bQ+?
*=)r!V &'?@(?C!T#$ƒ@(< +
#?@&A#/
2.8$#)A##C5PQRS'Y+?4--[!T#G#K= !"#
$%





+=
=
+=
tz
ty
tx
3

si  !"#$% cp&?(##CK)#*KC
c<<Cb/
Câu VII.b: (1.0 điểm)0b !"#$%6
3
7
33




≤−++
−−+− xxxx
Hết


HƯỚNG DẪN ĐÁP ÁN ĐỀ 1
Câu 1 : 1,';S
3
−NSNX−

/
);-F$•6';S
3
−3SN
h8qk6t;
R

h>6h0CBBA6
( )
<
x
f x
→−∞
= −∞
6
( )
+∞=
+∞→

xf
x
<

h@#6='];3S

−3(
\ 4 y x= ⇔ = ±
S[„[N„
']N4[4N

'3N„
[„[

F#$…)#
( )
-−∞−

( )
+∞-
(F#$…)#
( )
-−

FBBBB
- 3
CD
x y= − =
(+&B
- 

CT
x y= = −
(
3hk6hk+&6
\\ 2y x=
(+&<6
( )
4-U
h0+C$IR'B6
( )
4-U

hk6

Câu 1: 2:8%+=+B++&(#T+
B(+&+,4-7G##/ ='];3S

−N/F=k(8
⇔'];4=#5 :56⇔3Nu4⇔u−h
c!"#$%!T#G#p&+B(+&<


  X
3
y m x m= + + −
+B(+&+,4-7G##/


X 7 m m⇔ − = ⇔ = ±
i';

Câu 2: 1, Giải phương trình6
( )
3
2 7
log 1 x log x+ =
/
kz&)56Su4/kD
t
7
t log x x 7= Û =
/

( ) ( )
t t
t t t t
3 3
t
3 3 3 3
2
1 7
pt log 1 7 t 1 7 2 1 7 8 1
8 8
æ ö
÷
ç
÷
Û + = Û + = Û + = Û + =
ç
÷
ç

÷
ç
è ø
h/
O# h=#5K&'b;3/
i' !"#$%=#5S;373/
Câu 2: 2, Giải phương trình6






−=−+
24
cos2sin
2
cossin
2
sin1
22
x
x
x
x
x
π

7













−=−+
x
x
x
x
x
π
( )
xsin1x
2
cos1xsin
2
x
cosxsin
2
x
sin11
2
+=








π
+=−+⇔

01
2
x
cos
2
x
sin2.
2
x
cos
2
x
sinxsin01xsin
2
x
cos
2
x
sinxsin =







−−⇔=






−−⇔

01
2
x
sin2
2
x
sin21
2
x
sinxsin
2
=







++






−⇔


 4( (   4
  
x x x
x = = + + =

[
[

 S

3
[
[
'
R

( 
7

 
x k
x
x k k x k
x k
π
π
π π π
π π
=

⇔ = = + ⇔ ⇔ =

= +


Câu 3: Giải bất phương trình sau
  
v X 7 v v  Xx x x x x x− + ≤ − + − + −

8qk
X( X( 3x x x≥ ≤ − =
8FS;3<#5
8F
Xx

%
1
X X 7 2
3

x x x x⇔ − + + ≤ − ⇔ ≤
/i'@c8=#5
1
X
3
x≤ ≤
8F3
Xx
≤ −
%
1
X X 2 7
3
x x x x⇔ − + − − ≤ − ⇔ ≤
/i'@c8=#5
Xx
≤ −
<68i #5b <
{ }
1
 - X 3 X- 
3
S = −∞ − ∪ ∪
Câu 4: Tính tích phân: I=

+−+
7

3
 xx

dx
+I=

+−+
7

3
 xx
dx
kD t=
 +x



+= xt

K;KS Nkmi6S;

3

;
S;7

;
3
N= I=

−+

3






t
t
tdt
;


3




t
tdt

dt
t
t


+−
3





;
∫∫

+

3


3






t
dt
dt
t
;
3

3



<

−−
t

t
;<NNi'I;<N
Câu 56<M#$I#?@/?

@



=bB.#(#=B•B
D G#'.#34
4
/F%&F+?$D G#?

@




&Q!T#G#@



/89)##J!T#G#??

@



‚/
t



CBAAH ⊥
#=
·

AA H
<#=#J??

?

@



(‚#%#=
·

AA H
.#34
4
/qw#&A#?F?

=??

;(#=
·

AA H
;34

4


3

a
HA =⇒
/
t#?

@



<#z&B(F&Q@





3

a
HA =
?

F
&A##=C@




/ZD)

CBAH ⊥



HAACB ⊥
?



? @



@


F
r!T#F#??

F%F9<)##J??

@



8=??


/F;?

F/?F
7
3
/


a
AA
AHHA
HK ==⇒

Câu 6a:
(8$#D G#C5PQRS'!T#$ƒ= !"#$%S[

N
'N

;g
!T#G#K6SN'N;4/8%+$!T#G#K=K&'bQ+?
*=)r!V &'?@(?C!T#$ƒ@(< +
#?@&A#/8* !T#$ƒ=:,-[(f;3(*?)r!V
 &'?@(?C!T#$ƒ
ACAB ⊥
;uO#?@,<%&A#B
.#3
3=⇒ IA



X

3   2
1

m
m
m
m
= −


⇔ = ⇔ − = ⇔

=

Câu 6a: 2(8$#)A##C5PQRS'Y+?4--[!T#G#
K= !"#$%





+=
=
+=
tz
ty
tx
3


/si  !"#$%D G#cp&?(##CK
)#*KCc<<Cb/0PF<%&?$K(D G#c
p&?c{{K()=)##JKc<)#*Fc/
0~+,<%&F<c(=
HIAH ≥
;uF,<Cb)
IA ≡
i'cl%<D G#p&?i
AH
<w"  &'/
3  tttHdH ++⇒∈
%F<%&?$K
3--4/ ==⇒⊥ uuAHdAH
<w"E !"#K
X--17--3 −−⇒⇒ AHH
i'c61Sd4N'ddXYN
;4
1SN'[XY[11;4
Câu 7a:G#O6
n 1 n 2 n 3 2n 1 2n 8
2n 1 2n 1 2n 1 2n 1 2n 1
C C C C C 2 1
+ + + -
+ + + + +
+ + + + + = -
/
8%5B#OS
4
$#)$+

( )
n
3 4
1 x x x- + -
/
n 1 n 2 n 3 2n 1 2n
2n 1 2n 1 2n 1 2n 1 2n 1
S C C C C C
+ + + -
+ + + + +
= + + + + +
, ta có:
( )
2n 1 0 1 2 n 1 n n 1 n 2 2n 2n 1
2n 1 2n 1 2n 1 2n 1 2n 1 2n 1 2n 1 2n 1 2n 1
(1 1) C C C C C C C C C
+ - + + +
+ + + + + + + + +
+ = + + + + + + + + + +
( ) ( )
2n 1 0 2n 1 2n 2n 1 n 2 n 1 n 1 n 2 2n 1 2n
2n 1 2n 1 2n 1 2n 1 2n 1 2n 1 2n 1 2n 1 2n 1 2n 1
2 C C C C C C C C C C
+ + - + + + + -
+ + + + + + + + + +
Þ = + + + + + + + + + + +
2n 1 2n 2n 8
2 2 2S 2 1 S 2 2 n 4
+
Þ = + Þ = + Þ = Þ =

.

( )
( )
( )
n 44
4
3 4 3 3
1 x x x (1 x) x (1 x) 1 x 1 x
é ù
Þ - + - = - + - = - +
ê ú
ë û
( ) ( )
0 1 2 2 3 3 4 4 0 1 3 2 6 3 9 4 12
4 4 4 4 4 4 4 4 4 4
C C x C x C x C x C C x C x C x C x= - + - + + + + +
.
8=5S
4
<6
1 3 4 2
4 4 4 4
C .C C .C 10- + = -
.
Câu 6b: 1(0#!"#$%&n
Câu 7b:0b !"#$%6
3
7
33




≤−++
−−+− xxxx
@ 
( ) ( )
733


≤−++⇔
−− xxxx
kD
( )
43


>+=

tt
xx
(!V6
7

≤+
t
t
47

≤+− tt

33 +≤≤−⇔ t

=6
( )
333


+≤+≤−
− xx


≤−≤−⇔ xx


4

+≤≤−⇔≤−− xxx
s6
Hết
ĐỀ 3
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I +
43
23
+−= xxy
/C/
/0Pd<!T#G#p&+A3-7=5#=<m/8%m+da
CB3+ :5A(M(N &'CBMN &A##=C
&/
Câu II +

/05 !"#$%6



=−++
=+++
yyxx
yyxyx
)2)(1(
4)(1
2
2
x(y
∈R

/0 !"#$%6
8
1
3
tan
6
tan
3coscos3sin.sin
33
−=







+







+
ππ
xx
xxxx
Câu III +899 :

++=
1
0
2
)1ln( dxxxxI

Câu IV +%<M#$IABC/A]B]C]='<#z&Ba(%
&&A##=A]<D G#ABC$H#C$P#:O#ABC/
ZQD G#POBC&A##=CAA](a<M#$I‚QK5=
K59.#
8
3
2
a
/89+9)<M#$IABC/A]B]C]/

Câu V +a(b(c<K!"#L_abc;/8%#$<Cb
+&O
32
1
32
1
32
1
222222
++
+
++
+
++
=
accbba
P
cF†|8‡Fˆ|89E!V<Q$# l6clDcl
Phần 1 .Câu VI.a+
/8$#D G#C5$IPQOxy $<P6
xxy 2
2
−=
‚<
E6
1
9
2
2
=+ y

x
/O#$.#P#EB7+ :5H#.$Q
!T#$ƒ/ !"#$%!T#$ƒp&7+=/
/8$#)A##C5$IPQOxyzDl&S= !"#$%
011642
222
=−−+−++ zyxzyx
D G#
α
= !"#$%xNydzN1;4/
 !"#$%D G#
β
##C
α
aS‚#&'<!T#
$ƒ=&.#2π/
Câu VII.a+8%5B#Ox

$#)$+O|&"
n
x
x









+
4
2
1
(     $.# n <    #&'  K!"#  L  _6
1
6560
1
2
3
2
2
2
2
1
2
3
1
2
0
+
=
+
++++
+
n
C
n
CCC
n

n
n
nnn


k
n
C
<mV i kn l~
Phần 2 Câu VI.b+
/8$#D G#C5$IPQOxy!T#G#d

6xNyNX;4(d

6x
Ny[1;4#ABC=A-3($P#:<+G-4(+B&Qd
 

+C&Qd

/ !"#$%!T#$ƒ#B #ABC/
/8$#)A##C5$IPQOxyz#ABCCA--X(B-
7-3(CX--D G#P6Sd'dYd3;4/0PM<Q+'m$
D G#P/8%#$Lb+&O
222
MCMBMA ++
Câu VII.b +05 !"#$%




+−=
+=+
+
+−
1
)1(2
yxe
xee
yx
yxyx
x(y
∈R

Hết
HƯỚNG DẪN CHẤM ĐỀ 3
Câu 1: 1, Khảo sát hàm số
43
23
+−= xxy
/Tập xác định6f
/Sự biến thiên6
0CB6
+∞=+−=−∞=+−=
+∞→+∞→−∞→−∞→
)4x3x(limylim,)4x3x(limylim
23
xx
23
xx
@#6'\;3S


[2S('\;4

S;4(S;
@#6
S
[

4
N

'\ N4[4N
'
7
N

[

4
[F#$[

-4-N

(#$4-
[FBBBS;4('
k
;7(B+&BS;('
8
;4/
3/Đồ thị6k#C$I&#B4-7(#C$IB[-4(-4/|i

+&,-<:SO#
Câu1 : 2,Tìm m để hai tiếp tuyến vuông góc
K= !"#$%';Sd3N7/
FQ#+K<#5 !"#$%



=−
=
⇔=−−⇔+−=+−
0mx
3x
0)mx)(3x(4)3x(m4x3x
2
223
8‚$=z&)5u4
1)m('y).m('y −=−
9
35318
m01m36m91)m6m3)(m6m3(
2
±
=⇔=+−⇔−=+−⇒
L_
Câu 2: 1, Giải hệ phương trình đại số
8b'';4)A# <#55
F5 !"#$%!"#!"#C








=−+
+
=−++
+
1)2yx(
y
1x
22yx
y
1x
2
2
kD
2yxv,
y
1x
u
2
−+=
+
=
8=
5
1vu
1uv
2vu

==⇔



=
=+
>&'$





=−+
=
+
12yx
1
y
1x
2
/
05$!V#5 _<-([-X
Câu 2: 2,Giải phương trình lương giác
kz&)56
0
3
xcos
6
xcos
3

xsin
6
xsin ≠






π
+






π







π
+







π

8=
1x
6
cot
6
xtan
3
xtan
6
xtan −=







π






π

−=






π
+






π

S
'
[

R
7


c!"#$%_!"#!"#C
8
1
x3cosxcosx3sin.xsin
33

=+⇔
1 cos 2x cos 2x cos 4x 1 cos2x cos2x cos 4x 1
2 2 2 2 8
− − + +
⇔ × + × =
2
1
x2cos
8
1
x2cos
2
1
)x4cosx2cosx2(cos2
3
=⇔=⇔=+⇔






π+
π
−=
π+
π
=

k

6
x
(lo¹i) k
6
x
(
(k )∈Z
/i' !"#$%=#5
π+
π
−=
k
6
x
(
(k )∈Z
Câu 3:Tính tích phân kD





=
++
+
=





=
++=
2/xv
dx
1xx
1x2
du
xdxdv
)1xxln(u
2
2
2
1
1
2 3 2
2
2
0
0
x 1 2x x
I ln(x x 1) dx
2 2 x x 1
+
= + + −
+ +


∫∫∫
++


++
+
+−−=
1
0
2
1
0
2
1
0
1xx
dx
4
3
dx
1xx
1x2
4
1
dx)1x2(
2
1
3ln
2
1
( )
11
1
0

2
1
0
2
I
4
3
3ln
4
3
I
4
3
)1xxln(
4
1
xx
2
1
3ln
2
1
−=−+++−−=
h89,

6










+






+
=
1
0
2
2
1
2
3
2
1
x
dx
I
/kD







ππ
−∈=+
2
,
2
t,ttan
2
3
2
1
x
>&'$
9
3
t
3
32
ttan1
dt)ttan1(
3
32
I
3/
6/
3/
6/
2

2
1
π
==
+
+
=

π
π
π
π
i'
12
3
3ln
4
3
I
π
−=
:&760PZ<$&#+@(#PF<%&&A##=Z<??](
=c

@F/t#=
·
A ' AM
PF.#J??]/8K5<M#$Ia
•c<#@F/
?

@

]
@]
?]
F
R
Z
t#?@z&B
3
3a
AM
3
2
AO,
2
3a
AM ===
8‚$
4
3a
HM
8
3a
BC.HM
2
1
8
3a
S

22
BCH
=⇒=⇒=
4
a3
16
a3
4
a3
HMAMAH
22
22
=−=−=
t#?]?RZ?F#KB#
AH
HM
AO
O'A
=
&'$
3
a
a3
4
4
3a
3
3a
AH
HM.AO

O'A
===
8+9)<M#$I6
12
3a
a
2
3a
3
a
2
1
BC.AM.O'A
2
1
S.O'AV
3
ABC
====
Câu 5 : Tìm giá trị lớn nhất
8=

N

≥(


N≥⇒
1bab
1

2
1
21bba
1
3b2a
1
22222
++

++++
=
++
8!"#
1aca
1
2
1
3a2c
1
,
1cbc
1
2
1
3c2b
1
2222
++

++

++

++
2
1
bab1
b
ab1b
ab
1bab
1
2
1
1aca
1
1cbc
1
1bab
1
2
1
P
=
++
+
++
+
++
=
++

+
++
+
++













2
1
P =
);;;/i'cB#$<Cb.#
2
1
);;;/
Câu 6a: 1,Viết phương trình đường tròn đi qua giao điểm của(E) và (P)
FQ#+‰c<#5 !"#$%
09x37x36x91)x2x(
9
x
23422

2
=−+−⇔=−+
h
qw
9x37x36x9)x(f
234
−+−=
(yS<I$f=y[y4}4(
y4y}4(yy}4(yy3}4&'$h=7#5 :5(K=‰
acB7+ :58BQ#+‰cL_5





=+
−=
1y
9
x
x2xy
2
2
2
09y8x16y9x9
9y9x
y8x16x8
22
22
2

=−−−+⇒



=+
=−

hh
hh< !"#$%!T#$ƒ=:






=
9
4
;
9
8
I
()9f;
9
161
t=7#
+‰cH#.$!T#$ƒ= !"#$%hh
Câu 6a: 2,Viết phương trình mặt phẳng (
β
)

tβ{{αβ= !"#$%SN'dYNt;4t

1
ZDl&>=:,-[-3()9f;X/k!T#$ƒ=&2π=)9
$;3/
#*,Cβ<;
435rR
2222
=−=−
t=



=
−=
⇔=+−⇔=
−++
+−−+
(lo¹i) 17D
7D
12D54
)1(22
D3)2(21.2
222
i'β= !"#$%SN'dY[1;4
Câu 7a : Tìm hệ số của x
2
8=
( )
∫∫

++++=+=
2
0
nn
n
22
n
1
n
0
n
2
0
n
dxxCxCxCCdx)x1(I 
2
0
1nn
n
32
n
21
n
0
n
xC
1n
1
xC
3

1
xC
2
1
xC






+
++++=
+

&'$,
n
n
1n
2
n
3
1
n
2
0
n
C
1n
2

C
3
2
C
2
2
C2
+
++++=
+


ZD)
1n
13
)x1(
1n
1
I
1n
2
0
1n
+

=+
+
=
+
+


8*=
n
n
1n
2
n
3
1
n
2
0
n
C
1n
2
C
3
2
C
2
2
C2
+
++++=
+

1n
13
1n

+

=
+
8‚$%
7n65613
1n
6560
1n
13
1n
1n
=⇒=⇔
+
=
+

+
+
8=)$+
( )
∑∑


=









=








+
7
0
4
k314
k
7
k
k
7
0
4
k7
k
7
7
4
xC

2
1
x2
1
xC
x2
1
x
>B#OS

O#C)L_
2k2
4
k314
=⇔=

i'5l%<
4
21
C
2
1
2
7
2
=
Câu b:1, Viết phương trình đường tròn
t@∈K

@;-[dX(∈K


;1d-
t0<$P#:#?@



=+−−
=−++
0.3n5m3
2.3n27m2




=
−=




=+−
−=−

1n
1m
2nm
3n2m
>&'$@;[-[7(;X-
0~!T#$ƒ#B #?@= !"#$%
0cby2ax2yx

22
=++++
/t?(@(∈=5





−=
=
−=






=++++
=+−−+
=++++
27/338c
18/17b
54/83a
0cb2a10125
0cb8a2161
0cb6a494

i'= !"#$%
0
27

338
y
9
17
x
27
83
yx
22
=−+−+
Câu 6b :2, Tìm giá trị nhỏ nhất 0P0<$P#:#?@(&'$0;






3;
3
8
;
3
7
8=
( ) ( ) ( )
222
222
GCMGGBMGGAMGMCMBMAF +++++=++=
22222222
GCGBGAMG3)GCGBGA(MG2GCGBGAMG3

+++=++++++=
ŠLb⇔Z0

Lb⇔Z<%&0<c
⇔
33
19
111
333/83/7
))P(,G(dMG =
++
−−−
==

3
64
9
104
9
32
9
56
GCGBGA
222
=++=++
i'ŠLb.#
9
553
3
64

33
19
.3
2
=+








)Z<%&0<c
Câu 7b: Giải hệ phương trình mũ



+−=
++=




+−=
+=+
+

+
+−

1yxe
1yxe
1yxe
)1x(2ee
yx
yx
yx
yxyx
kD&;SN'(;S['=5



−=−
+=




+=
+=
)2(uvee
)1(1ue
1ve
1ue
vu
v
u
v
[|&&u%=$K!"#( :A#5
[8!"#&&}%A#5(

vu =⇔
8=‚
&
;&N3/qwy&;‚
&
[&[(y\&;‚
&
[
@#6
& [ 

                         4
N

y\& [4N
y&
4
8‚#=y&;4
0u
=⇔
/
t=3=#5&;4



=
=





=−
=+
⇒=⇒
0y
0x
0yx
0yx
0v

i'5 !"#$%_=Q#54-4
Hết
ĐỀ 4
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I +
43
23
+−= xxy
/C/
/0Pd<!T#G#p&+A3-7=5#=<m/8%m+da
CB3+ :5A(M(N &'CBMN &A##=C
&/
Câu II +
/05 !"#$%6



=−++
=+++
yyxx

yyxyx
)2)(1(
4)(1
2
2
x(y
∈R

/0 !"#$%6
8
1
3
tan
6
tan
3coscos3sin.sin
33
−=






+








+
ππ
xx
xxxx
Câu III +899 :

++=
1
0
2
)1ln( dxxxxI

Câu IV +%<M#$IABC/A]B]C]='<#z&Ba(%
&&A##=A]<D G#ABC$H#C$P#:O#ABC/
ZQD G#POBC&A##=CAA](a<M#$I‚QK5=
K59.#
8
3
2
a
/89+9)<M#$IABC/A]B]C]/
Câu V +a(b(c<K!"#L_abc;/8%#$<Cb
+&O
32
1
32
1
32

1
222222
++
+
++
+
++
=
accbba
P
cF†|8‡Fˆ|89E!V<Q$# l6clDcl
Phần 1 .Câu VI.a+
/8$#D G#C5$IPQOxy $<P6
xxy 2
2
−=
‚<
E6
1
9
2
2
=+ y
x
/O#$.#P#EB7+ :5H#.$Q
!T#$ƒ/ !"#$%!T#$ƒp&7+=/
/8$#)A##C5$IPQOxyzDl&S= !"#$%
011642
222
=−−+−++ zyxzyx

D G#
α
= !"#$%xNydzN1;4/
 !"#$%D G#
β
##C
α
aS‚#&'<!T#
$ƒ=&.#2π/
Câu VII.a+8%5B#Ox

$#)$+O|&"
n
x
x








+
4
2
1
(     $.# n <    #&'  K!"#  L  _6
1
6560

1
2
3
2
2
2
2
1
2
3
1
2
0
+
=
+
++++
+
n
C
n
CCC
n
n
n
nnn


k
n

C
<mV i kn l~
Phần 2 Câu VI.b+
/8$#D G#C5$IPQOxy!T#G#d

6xNyNX;4(d

6x
Ny[1;4#ABC=A-3($P#:<+G-4(+B&Qd
 

+C&Qd

/ !"#$%!T#$ƒ#B #ABC/
/8$#)A##C5$IPQOxyz#ABCCA--X(B-
7-3(CX--D G#P6Sd'dYd3;4/0PM<Q+'m$
D G#P/8%#$Lb+&O
222
MCMBMA ++
Câu VII.b +05 !"#$%



+−=
+=+
+
+−
1
)1(2
yxe

xee
yx
yxyx
x(y
∈R

Hết
HƯỚNG DẪN CHẤM ĐỀ 4

Câu 1: 1, Khảo sát hàm số
43
23
+−= xxy
/Tập xác định6f
/Sự biến thiên6
0CB6
+∞=+−=−∞=+−=
+∞→+∞→−∞→−∞→
)4x3x(limylim,)4x3x(limylim
23
xx
23
xx
@#6'\;3S

[2S('\;4

S;4(S;
@#6
S

[

4
N

'\ N4[4N
'
7
N

[

4
[F#$[

-4-N

(#$4-
[FBBBS;4('
k
;7(B+&BS;('
8
;4/
3/Đồ thị6k#C$I&#B4-7(#C$IB[-4(-4/|i
+&,-<:SO#
Câu1 : 2,Tìm m để hai tiếp tuyến vuông góc
K= !"#$%';Sd3N7/
FQ#+K<#5 !"#$%




=−
=
⇔=−−⇔+−=+−
0mx
3x
0)mx)(3x(4)3x(m4x3x
2
223
8‚$=z&)5u4
1)m('y).m('y −=−
9
35318
m01m36m91)m6m3)(m6m3(
2
±
=⇔=+−⇔−=+−⇒
L_
Câu 2: 1, Giải hệ phương trình đại số
8b'';4)A# <#55
F5 !"#$%!"#!"#C







=−+
+

=−++
+
1)2yx(
y
1x
22yx
y
1x
2
2
kD
2yxv,
y
1x
u
2
−+=
+
=
8=
5
1vu
1uv
2vu
==⇔



=
=+

>&'$





=−+
=
+
12yx
1
y
1x
2
/
05$!V#5 _<-([-X
Câu 2: 2,Giải phương trình lương giác
kz&)56
0
3
xcos
6
xcos
3
xsin
6
xsin ≠







π
+






π







π
+






π

8=

1x
6
cot
6
xtan
3
xtan
6
xtan −=







π






π
−=







π
+






π

c!"#$%_!"#!"#C
8
1
x3cosxcosx3sin.xsin
33
=+⇔
S
'
[

R
7


1 cos 2x cos 2x cos 4x 1 cos2x cos2x cos 4x 1
2 2 2 2 8
− − + +
⇔ × + × =
2

1
x2cos
8
1
x2cos
2
1
)x4cosx2cosx2(cos2
3
=⇔=⇔=+⇔






π+
π
−=
π+
π
=

k
6
x
(lo¹i) k
6
x
(

(k )∈Z
/i' !"#$%=#5
π+
π
−=
k
6
x
(
(k )∈Z
Câu 3:Tính tích phân kD





=
++
+
=




=
++=
2/xv
dx
1xx
1x2

du
xdxdv
)1xxln(u
2
2
2
1
1
2 3 2
2
2
0
0
x 1 2x x
I ln(x x 1) dx
2 2 x x 1
+
= + + −
+ +


∫∫∫
++

++
+
+−−=
1
0
2

1
0
2
1
0
1xx
dx
4
3
dx
1xx
1x2
4
1
dx)1x2(
2
1
3ln
2
1
( )
11
1
0
2
1
0
2
I
4

3
3ln
4
3
I
4
3
)1xxln(
4
1
xx
2
1
3ln
2
1
−=−+++−−=
h89,

6









+







+
=
1
0
2
2
1
2
3
2
1
x
dx
I
/kD






ππ
−∈=+
2

,
2
t,ttan
2
3
2
1
x
>&'$
9
3
t
3
32
ttan1
dt)ttan1(
3
32
I
3/
6/
3/
6/
2
2
1
π
==
+
+

=

π
π
π
π
i'
12
3
3ln
4
3
I
π
−=
:&760PZ<$&#+@(#PF<%&&A##=Z<??](
=c

@F/t#=
·
A ' AM
PF.#J??]/8K5<M#$Ia
•c<#@F/t#?@z&B
3
3a
AM
3
2
AO,
2

3a
AM ===
8‚$
4
3a
HM
8
3a
BC.HM
2
1
8
3a
S
22
BCH
=⇒=⇒=
4
a3
16
a3
4
a3
HMAMAH
22
22
=−=−=
t#?]?RZ?F#KB#
AH
HM

AO
O'A
=
&'$
3
a
a3
4
4
3a
3
3a
AH
HM.AO
O'A
===
8+9)<M#$I6
12
3a
a
2
3a
3
a
2
1
BC.AM.O'A
2
1
S.O'AV

3
ABC
====
Câu 5 : Tìm giá trị lớn nhất
8=

N

≥(


N≥⇒
1bab
1
2
1
21bba
1
3b2a
1
22222
++

++++
=
++
?
@

]

@]
?]
F
R
Z
8!"#
1aca
1
2
1
3a2c
1
,
1cbc
1
2
1
3c2b
1
2222
++

++
++

++
2
1
bab1
b

ab1b
ab
1bab
1
2
1
1aca
1
1cbc
1
1bab
1
2
1
P
=
++
+
++
+
++
=
++
+
++
+
++














2
1
P =
);;;/i'cB#$<Cb.#
2
1
);;;/
Câu 6a: 1,Viết phương trình đường tròn đi qua giao điểm của(E) và (P)
FQ#+‰c<#5 !"#$%
09x37x36x91)x2x(
9
x
23422
2
=−+−⇔=−+
h
qw
9x37x36x9)x(f
234
−+−=

(yS<I$f=y[y4}4(
y4y}4(yy}4(yy3}4&'$h=7#5 :5(K=‰
acB7+ :58BQ#+‰cL_5





=+
−=
1y
9
x
x2xy
2
2
2
09y8x16y9x9
9y9x
y8x16x8
22
22
2
=−−−+⇒



=+
=−


hh
hh< !"#$%!T#$ƒ=:






=
9
4
;
9
8
I
()9f;
9
161
t=7#
+‰cH#.$!T#$ƒ= !"#$%hh
Câu 6a: 2,Viết phương trình mặt phẳng (
β
)
tβ{{αβ= !"#$%SN'dYNt;4t

1
ZDl&>=:,-[-3()9f;X/k!T#$ƒ=&2π=)9
$;3/
#*,Cβ<;
435rR

2222
=−=−
t=



=
−=
⇔=+−⇔=
−++
+−−+
(lo¹i) 17D
7D
12D54
)1(22
D3)2(21.2
222
i'β= !"#$%SN'dY[1;4
Câu 7a : Tìm hệ số của x
2
8=
( )
∫∫
++++=+=
2
0
nn
n
22
n

1
n
0
n
2
0
n
dxxCxCxCCdx)x1(I 
2
0
1nn
n
32
n
21
n
0
n
xC
1n
1
xC
3
1
xC
2
1
xC







+
++++=
+

&'$,
n
n
1n
2
n
3
1
n
2
0
n
C
1n
2
C
3
2
C
2
2
C2

+
++++=
+


ZD)
1n
13
)x1(
1n
1
I
1n
2
0
1n
+

=+
+
=
+
+

8*=
n
n
1n
2
n

3
1
n
2
0
n
C
1n
2
C
3
2
C
2
2
C2
+
++++=
+

1n
13
1n
+

=
+
8‚$%
7n65613
1n

6560
1n
13
1n
1n
=⇒=⇔
+
=
+

+
+
8=)$+
( )
∑∑


=








=









+
7
0
4
k314
k
7
k
k
7
0
4
k7
k
7
7
4
xC
2
1
x2
1
xC
x2
1

x
>B#OS

O#C)L_
2k2
4
k314
=⇔=

i'5l%<
4
21
C
2
1
2
7
2
=
Câu b:1, Viết phương trình đường tròn
t@∈K

@;-[dX(∈K

;1d-
t0<$P#:#?@



=+−−

=−++
0.3n5m3
2.3n27m2




=
−=




=+−
−=−

1n
1m
2nm
3n2m
>&'$@;[-[7(;X-
0~!T#$ƒ#B #?@= !"#$%
0cby2ax2yx
22
=++++
/t?(@(∈=5






−=
=
−=






=++++
=+−−+
=++++
27/338c
18/17b
54/83a
0cb2a10125
0cb8a2161
0cb6a494

i'= !"#$%
0
27
338
y
9
17
x
27
83

yx
22
=−+−+
Câu 6b :2, Tìm giá trị nhỏ nhất 0P0<$P#:#?@(&'$0;






3;
3
8
;
3
7
8=
( ) ( ) ( )
222
222
GCMGGBMGGAMGMCMBMAF +++++=++=
22222222
GCGBGAMG3)GCGBGA(MG2GCGBGAMG3
+++=++++++=
ŠLb⇔Z0

Lb⇔Z<%&0<c
⇔
33
19

111
333/83/7
))P(,G(dMG =
++
−−−
==

3
64
9
104
9
32
9
56
GCGBGA
222
=++=++
i'ŠLb.#
9
553
3
64
33
19
.3
2
=+









)Z<%&0<c
Câu 7b: Giải hệ phương trình mũ



+−=
++=




+−=
+=+
+

+
+−
1yxe
1yxe
1yxe
)1x(2ee
yx
yx
yx

yxyx
kD&;SN'(;S['=5



−=−
+=




+=
+=
)2(uvee
)1(1ue
1ve
1ue
vu
v
u
v
[|&&u%=$K!"#( :A#5
[8!"#&&}%A#5(
vu =⇔
8=‚
&
;&N3/qwy&;‚
&
[&[(y\&;‚
&

[
@#6
& [ 

                         4
N

y\& [4N
y&
4
8‚#=y&;4
0u =⇔
/
t=3=#5&;4



=
=




=−
=+
⇒=⇒
0y
0x
0yx
0yx

0v

i'5 !"#$%_=Q#54-4
Hết
ĐỀ 5
PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I+';S
3
d3S

N
//
/8%+Z&Q!T#G#';3S[m#)#*ZC+
$Lb/
Câu II +
/0 !"#$%
S  S   S S 4+ − − =
/0b !"#$%
( )

7S 3 S 3S 7 vS 2− − + ≥ −
Câu III +899 :
3
2
S
, KS
S/ S
7
π
π

=
π
 
+
 ÷
 

Câu IV +
%= >/?@=D'?@<#z&B/:!T#
&A##=B*>S&#D G#?@<Q+&Q@/89)#
#J!T#G#@>?>?;>?BCD G#'Q
#=.#34
4
/
Câu V +((K!"#

N

N

;3/8%#$Lb+&O

×