Tải bản đầy đủ (.docx) (26 trang)

Tiểu luận Công nghệ tri thức và ứng dụng ỨNG DỤNG THUẬT TOÁN TÌM LUẬT KẾT HỢP PHÂN TÍCH CƠ SỞ DỮ LIỆU BÁN HÀNG

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (354.39 KB, 26 trang )

Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
ĐẠI HỌC QUỐC GIA TP.HCM
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN
BÀI TIỂU LUẬN
MÔN CÔNG NGHỆ TRI THỨC VÀ ỨNG DỤNG
ĐỀ TÀI:
ỨNG DỤNG THUẬT TOÁN
TÌM LUẬT KẾT HỢP
PHÂN TÍCH CƠ SỞ DỮ LIỆU BÁN HÀNG
GVHD: GS. TSKH. HOÀNG KIẾM
HVTH: TRẦN KHÁNH AN
MSHV: CH1301076
TP HCM, tháng 10 năm 2014
MỤC LỤC
HVTH:Trần Khánh An -CH1301076 1
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
HVTH:Trần Khánh An -CH1301076 2
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
MỞ ĐẦU
Trong xã hội hiện đại hôm nay, có vô số thông tin và tri thức được sáng tạo và
phát triển hằng ngày. Việc khai phá các dữ liệu để phục vụ cho mục đích nghiên cứu,
kinh doanh đang càng ngày được xem trọng. Một trong những yếu tố thành công trong
hoạt động kinh doanh ngày nay là biết sử dụng, khai thác thông tin một cách hiệu quả.
Điều đó có nghĩa là từ các dữ liệu có sẵn phải tìm ra những thông tin tìm ẩn chưa được
phát hiện, khai thác. Thực hiện công việc đó chính là quá trình phát hiện tri thức trong cơ
sở dữ liệu mà trong đó kỹ thuật cho phép ta lấy được các tri thức là nhờ vào kỹ thuật khai
phá dữ liệu. Mặt khác, trong môi trường cạnh tranh, người ta ngày càng cần có nhiều
thông tin với tốc độ nhanh để trợ giúp việc ra quyết định và ngày càng có nhiều câu hỏi
mang tính chất định tính cần phải trả lời dựa trên một khối lượng dữ liệu khổng lồ đã có.
Từ thực tế đó đã làm phát triển một khuynh hướng kỹ thuật mới đó là kỹ thuật phát hiện
tri thức và khai phá dữ liệu. Mục tiêu chính của khai phá dữ liệu là lấy được những thông


tin hữu ích từ lượng dữ liệu khổng lồ.
Trong bài tiểu luận em tập trung nghiên cứu thuật toán khai phái luật kết hợp và
xây dựng một chương trình phân tích cơ sở dữ liệu bán hàng nhằm phát hiện hành vi mua
sắm của khách hàng. Từ đó có thể nhận thấy tầm quan trọng trong việc tìm ra luật kết
hợp đến việc tăng doanh thu cho cơ sở kinh doanh.
Em xin chân thành cảm ơn GS.TSKH Hoàng Văn Kiếm đã truyền đạt kiến thức
chuyên đề môn Công nghệ tri thức & ứng dụng qua đó giúp em có đầy đủ kiến thức để
hoàn thành chuyên đề này.
HVTH:Trần Khánh An -CH1301076 3
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
CHƯƠNG 1: TỔNG QUAN VỀ KHAI PHÁ DỮ LIỆU
1.1. Đặt vấn đề
Trong kỷ nguyên Internet, Intranets, Warehouses, đã mở ra nhiều cơ hội cho
những nhà doanh nghiệp trong việc thu thập và xử lý thông tin. Hơn nữa, các công nghệ
lưu trữ và phục hồi dữ liệu phát triển một cách nhanh chóng vì thế cơ sở dữ liệu ở các cơ
quan, doanh nghiệp, đơn vị ngày càng nhiều thông tin tiềm ẩn phong phú và đa dạng.
Cơ sở dữ liệu trong các doanh nghiệp thì dữ liệu giao dịch đóng một vai trò rất
quan trọng cho việc hoạch định kế hoạch kinh doanh trên thương trường vào những năm
tiếp theo. Hiện tại, việc sử dụng các dữ liệu này tuy đã đạt được một số kết quả nhất định
song vẫn còn một số vấn đề tồn đọng như:
 Dựa hoàn toàn vào dữ liệu, không sử dụng tri thức có sẳn về lĩnh vực, kết
quả phân tích khó có thể làm rõ được.
 Phải có sự hướng dẫn của người dùng để xác định phân tích dữ liệu như thế
nào và ở đâu.
Trong điều kiện và yêu cầu của thương trường, đòi hỏi phải có những phương
pháp nhanh, phù hợp, tự động, chính xác và có hiệu quả để lấy được thông tin có giá trị.
Các tri thức chiết xuất được từ cơ sở dữ liệu trên sẽ là một nguồn tài liệu hỗ trợ cho lãnh
đạo trong việc lên kế hoạch hoạt động hoặc trong việc ra quyết định sản xuất kinh doanh.
Vì vậy, tính ứng dụng của khai thác luật kết hợp từ cơ sở dữ liệu giao dịch là một vấn đề
đang được quan tâm đặc biệt trong bài viết này.

Mục đích của việc nghiên cứu là xây dựng một giải pháp hiệu quả tính ứng dụng
luật kết hợp trong việc ra quyết định của cơ quan doanh nghiệp dựa trên cơ sở dữ liệu
giao dịch.
1.2. Khai phá dữ liệu
Khai phá dữ liệu là một khái niệm ra đời vào những năm cuối của thập kỹ 1980.
Nó là quá trình khám phá thông tin ẩn được tìm thấy trong các cơ sở dữ liệu và có thể
xem như là một bước trong quá trình khám phá tri thức. Data Mining là giai đoạn quan
trọng nhất trong tiến trình khai phá tri thức từ cơ sở dữ liệu, các tri thức này hỗ trợ trong
việc ra quyết định trong khoa học và kinh doanh.
Những thông tin có giá trị tiềm ẩn trong kho cơ sở dữ liệu sẽ được chiết xuất ra và
sử dụng một cách hữu ích nhờ khai phá dữ liệu. Chức năng khai phá dữ liệu gồm có gộp
nhóm phân loại, dự báo, dự đoán và phân tích các liên kết. Năm 1989 Fayyad, Smyth và
Piatestsky-Shapiro đã dùng khái niệm Phát hiện tri thức từ cơ sở dữ liệu (Knowledge
Discovery in Database-KDD). Trong đó, khai phá dữ liệu là một giai đoạn rất đặc biệt
trong toàn bộ quá trình, nó sử dụng các kỹ thuật để tìm ra các mẫu từ dữ liệu.
HVTH:Trần Khánh An -CH1301076 4
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
1.3. Quy trình phát hiện tri thức trong CSDL
Một trong những yếu tố thành công trong hoạt động kinh doanh ngày nay là biết sử
dụng, khai thác thông tin một cách hiệu quả. Điều đó có nghĩa là từ các dữ liệu có sẵn
phải tìm ra những thông tin tìm ẩn chưa được phát hiện, khai thác. Thực hiện công việc
đó chính là quá trình phát hiện tri thức trong cơ sở dữ liệu mà trong đó kỹ thuật cho phép
ta lấy được các tri thức là nhờ vào kỹ thuật khai phá dữ liệu.
Khi lưu trữ các dữ liệu khổng lồ thì chúng ta thấy rằng chắc chắn chúng phải chứa
những giá trị nhất định nào đó. Tuy nhiên, theo thống kê thì chỉ có một lượng nhỏ của
những dữ liệu này (khoảng từ 5% đến 10%) là được phân tích, số còn lại họ không biết sẽ
phải làm gì hoặc có thể làm gì với chúng nhưng họ vẫn tiếp tục thu thập rất tốn kém với ý
nghĩ lo sợ rằng sẽ có cái gì đó quan trọng đã bị bỏ qua sau này có lúc cần đến nó. Mặt
khác, trong môi trường cạnh tranh, người ta ngày càng cần có nhiều thông tin với tốc độ
nhanh để trợ giúp việc ra quyết định và ngày càng có nhiều câu hỏi mang tính chất định

tính cần phải trả lời dựa trên một khối lượng dữ liệu khổng lồ đã có. Từ thực tế đó đã làm
phát triển một khuynh hướng kỹ thuật mới đó là kỹ thuật phát hiện tri thức và khai phá
dữ liệu. Mục tiêu chính của khai phá dữ liệu là lấy được những thông tin hữu ích từ lượng
dữ liệu khổng lồ. Các bước chính của quá trình khai phá dữ liệu bao gồm:
 Gom dữ liệu (Gathering): tập hợp dữ liệu là bước đầu tiên trong quá trình khai phá dữ
liệu. Đây là bước được khai thác trong một cơ sở dữ liệu, một kho dữ liệu và thậm chí
các dữ liệu từ các nguồn ứng dụng Web.
 Trích lọc dữ liệu (Selection): ở giai đoạn này dữ liệu được lựa chọn hoặc phân chia theo
một số tiêu chuẩn nào đó, ví dụ chọn tất cả những người có tuổi đời từ hai lăm đến ba
lăm và có trình độ đại học.
 Làm sạch, tiền xử lý và chuẩn bị trước dữ liệu (Cleansing, Pre-processing and
Preparation): giai đoạn thứ ba này là giai đoạn hay bị sao lãng, nhưng thực tế nó là một
bước rất quan trọng trong quá trình khai phá dữ liệu. Một số lỗi thường mắc phải trong
khi gom dữ liệu là tính không đủ chặt chẽ, logic. Vì vậy, dữ liệu thường chứa các giá trị
vô nghĩa và không có khả năng kết nối dữ liệu.Giai đoạn này sẽ tiến hành xử lý những
dạng dữ liệu không chặt chẽ nói trên. Những dữ liệu dạngnày được xem như thông tin dư
thừa, không có giá trị. Bởi vậy, đây là một quá trình rất quan trọng vì dữ liệu này nếu
không được “làm sạch - tiền xử lý - chuẩn bị trước” thì sẽ gây nên những kết quả sai lệch
nghiêm trọng.
 Chuyển đổi dữ liệu (Transformation): tiếp theo là giai đoạn chuyển đổi dữ liệu, dữ liệu
đưa ra có thể sử dụng và điều khiển được bởi việc tổ chức lại nó. Dữ liệu đã được chuyển
đổi phù hợp với mục đích khai thác.
 Phát hiện và trích mẫu dữ liệu (Pattern Extraction and Discovery): đây là bước
mang tính tư duy trong khai phá dữ liệu. Ở giai đoạn này nhiều thuật toán khác nhau đã
được sử dụng để trích ra các mẫu từ dữ liệu. Thuật toán thường dùng là nguyên tắc phân
loại, nguyên tắc kết hợp hoặc các mô hình dữ liệu tuần tự, v.v…
HVTH:Trần Khánh An -CH1301076 5
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
 Đánh giá kết quả mẫu (Evaluation of Result): đây là giai đoạn cuối trong quá trình
khai phá dữ liệu. Ở giai đoạn này, các mẫu dữ liệu được chiết xuất ra bởi phần mềm khai

phá dữ liệu. Không phải bất cứ mẫu dữ liệu nào cũng đều hữu ích, đôi khi nó còn bị sai
lệch. Vì vậy, cần phải ưu tiên những tiêu chuẩn đánh giá để chiết xuất ra các tri thức cần
chiết xuất ra.
Quá trình này có thể được lặp lại nhiều lần, qua một hay nhiều giai đoạn dựa trên
phản hồi từ kết quả của các giai đoạn phía sau.
1.4. Các kỹ thuật khai phá dữ liệu
1.4.1. Các kỹ thuật tiếp cận trong khai phá dữ liệu
Căn cứ vào lớp các bài toán cần giải quyết, khai phá dữ liệu có các kỹ thuật áp dụng
sau:
Phân lớp và dự đoán: xếp một đối tượng vào một trong những lớp đã biết trước. Ví
dụ: phân lớp các bệnh nhân dữ liệu trong hồ sơ bệnh án. Hướng tiếp cận này thường sử
dụng một số kỹ thuật của học máy như cây quyết định, mạng nơ ron nhân tạo.
Luật kết hợp: Mục đích của luật kết hợp là tìm ra sự kết hợp (association) hay
tươngquan (correlation) giữa các items. Những luật kết hợp này có dạng X =>Y.
Luật kết hợp X =>Y có thể hiểu rằng những người mua các mặt hàng trong tập X
cũng thường mua các mặt hàng trong tập Y. (X và Y gọi là itemset).
Ví dụ, nếu X = {Apple, Banana} và Y = {Cherry, Durian} và ta có luật kết hợp X
=>Y thì chúng ta có thể nói rằng những người mua Apple và Banana thì cũng thường
mua Cherry và Durian.
Phân tích chuỗi theo thời gian: Tượng tự như khai phá luật kết hợp nhưng có thêm
tính thứ tự và tính thời gian. Hướng tiếp cận này được ứng dụng nhiều trong lĩnh vực tài
chính và thị trường chứng khoán vì nó có tính dự báo cáo.
Gom nhóm dữ liệu: xếp các đối tượng theo từng nhóm dữ liệu tự nhiên.
Mô tả khái niệm: thiên về mô tả, tổng hợp và tóm tắt khái niệm. Ví dụ: tóm tắt văn
bản.
1.4.2. Các dạng dữ liệu có thể khai phá
Do khai phá dữ liệu được ứng dụng rộng rãi nên nó có thể làm việc với rất nhiều
kiểu dữ liệu khác nhau. Sau đây là một số dạng dữ liệu điển hình: CSDL quan hệ, CSDL
đa chiều (multidimentional structures, data warehouses), CSDL dạng giao dịch, CSDL
quan hệ-hướng đối tượng, dữ liệu không gian và thời gian, Dữ liệu chuỗi thời gian,

CSDL đa phương tiện, dữ liệu Text và Web
HVTH:Trần Khánh An -CH1301076 6
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
CHƯƠNG 2: LUẬT KẾT HỢP TRONG KHAI PHÁ DỮ LIỆU
2.1. Khai phá luật kết hợp
Khai phá luật kết hợp là tìm các mẫu phổ biến, sự kết hợp, sự tương quan, hay các
cấu trúc nhân quả giữa các tập đối tượng trong các cơ sở dữ liệu giao tác, cơ sở dữ liệu
quan hệ, và những kho thông tin khác.
Luật kết hợp là dạng luật khá đơn giản nhưng lại mang khá nhiều ý nghĩa. Thông tin
mà dạng luật này đem lại là rất đáng kể và hỗ trợ không nhỏ trong quá trình ra quyết
định. Tìm kiếm được các luật kết hợp quý hiếm và mang nhiều thông tin từ cơ sở dữ liệu
tác nghiệp là một trong những hướng tiếp cận chính của lĩnh vực khai thác dữ liệu.
Luật kết hợp là một biểu thức có dạng: X ⇒Y, trong đó X và Y là tập các trường gọi
là item. Ý nghĩa của các luật kết hợp khá dễ nhận thấy: Cho trước một cơ sở dữ liệu có D
là tập các giao tác - trong đó mỗi giao tác T ∈ D là tập các item - khi đó X ⇒Y diễn đạt ý
nghĩa rằng bất cứ khi nào giao tác T có chứa X thì chắc chắn T có chứa Y.
Độ hỗ trợ (Support) và độ tin cây (Confidence) là 2 tham số dùng để đo lường luật kết
hợp:
 Độ hỗ trợ (Support) của luật kết hợp X =>Y là tần suất của giao dịch chứa tất cả
các items trong cả hai tập X và Y. Ví dụ, support của luật X =>Y là 5% có nghĩa là
5% các giao dịch X và Y được mua cùng nhau.
 Độ tin cậy (Confidence) của luật kết hợp X =>Y là xác suất xảy ra Y khi đã biết X.
Ví dụ độ tin cậy của luật kết hợp {Apple} =>Banana} là 80% có nghĩa là 80%
khách hàng mua Apple cũng mua Banana.
Như vậy, khai phá luật kết hợp là một phương pháp xử lý thông tin quan trọng và
phổ biến, nó nhằm khám phá mối liên hệ giữa các mẫu dữ liệu. Tiếp theo, khoá luận sẽ đề
cập đến luật kết hợp. Đây là một hướng nghiên cứu quan trọng trong lĩnh vực khai phá
dữ liệu và là nội dung tìm hiểu, nghiên cứu trọng tâm của khoá luận.
2.2.Lý thuyết về luật kết hợp
2.2.1. Khái niệm

Cho một tập I = {I1, I2, , Im} các tập m mục, một giao dịch T được định nghĩa
như một tập con của các khoản mục trong I (T⊆I).
Tương tự như khái niệm tập hợp, các giao dịch không được trùng lặp, nhưng có thể
nới rộng tính chất này của tập hợp và trong các thuật toán sau này, người ta đều giả thiết
rằng các khoản mục trong một giao dịch và trong tất cả các tập mục khác, có thể coi
chúng đã được sắp xếp theo thứ tự từ điển của các mục.
Gọi D là CSDL của n giao dịch và mỗi giao dịch được đánh nhãn với một định danh
duy nhất. Nói rằng, một giao dịch T ∈ D hỗ trợ một tập X ⊆ I nếu nó chứa tất cả các item
của X.
HVTH:Trần Khánh An -CH1301076 7
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
Điều này nghĩa là X ⊆ T, trong một số trường hợp người ta dùng ký hiệu T(X) để
chỉ tập các giao dịch hỗ trợ cho X. Kí hiệu support(X) (hoặc sup(X), s(X)) là tỷ lệ phần
trăm của các giao dịch hỗ trợ X trên tổng các giao dịch trong D, nghĩa là:
sup(X) = (2.1)
Độ hỗ trợ tối thiểu minsup là một giá trị cho trước bởi người sử dụng. Nếu tập mục
X có sup(X) ≥ minsup thì ta nói X là một tập các mục phổ biến. Một tập phổ biến được
sử dụng như một tập đáng quan tâm trong các thuật toán, ngược lại, những tập không
phải tập phổ biến là những tập không đáng quan tâm. Các phần sau sẽ sử dụng những
cụm từ khác như “X có độ hỗ trợ tối thiểu”, hay “X không có độ hỗ trợ tối thiểu” cũng để
nói lên rằng X thỏa mãn hay không thỏa mãn support(X) ≥ minsup.
→Một khoản mục X được gọi là k-itemset nếu lực lượng của X bằng k, tức là
.
Một luật kết hợp có dạng R: X => Y, trong đó X, Y là tập các mục, X, Y ⊆ I và X
∩Y = ∅. X được gọi là tiên đề và Y được gọi là hệ quả của luật.
Luật X => Y tồn tại một độ tin cậy c . Độ tin cậy c được định nghĩa là khả năng giao
dịch T hỗ trợ X thì cũng hỗ trợ Y. Ta có công thức tính độ tin cậy c như sau:
conf(X =>Y) = p(Y ⊆ I | X ⊆ I ) = (2.2)
Tuy nhiên, không phải bất cứ luật kết hợp nào có mặt trong tập các luật có thể được
sinh ra cũng đều có ý nghĩa trên thực tế. Mà các luật đều phải thoả mãn một ngưỡng hỗ

trợ và tin cậy cụ thể. Thực vậy, cho một tập các giao dịch D, bài toán phát hiện luật kết
hợp là sinh ra tất cả các luật kết hợp mà có độ tin cậy conf lớn hơn độ tin cậy tối thiểu
minconf và độ hỗ trợ sup lớn hơn độ hỗ trợ tối thiểu minsup tương ứng do người dùng
xác định. Khai phá luật kết hợp được phân thành hai bài toán con:
Bài toán 1: Tìm tất cả các tập mục mà có độ hỗ trợ lớn hơn độ hỗ trợ tối thiểu do
người dùng xác định. Các tập mục thoả mãn độ hỗ trợ tối thiểu được gọi là các tập mục
phổ biến.
Bài toán 2: Dùng các tập mục phổ biến để sinh ra các luật mong muốn. Quy trình
khai thác luật kết hợp
+ Bước một:Tìm tất cả các tập phổ biến (theo ngưỡng minsup)
+ Bước hai: Tạo ra các luật từ các tập phổ biến Đối với mỗi tập phổ biến S, tạo ra
tất cả các tập con khác rỗng của S. Đối với mỗi tập con khác rỗng A của S thì luật A =>
(S - A) là luật kết hợp cần tìm nếu: conf (A => (S - A)) = supp(S) / supp(A) ≥ minconf
HVTH:Trần Khánh An -CH1301076 8
{ }
D
TXDT
⊆∈
kX
=
)sup(
)sup(
)(
)TX(
X
YX
TXp
TYp

=


⊆∧⊆
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
(2.3)
Nếu conf ≥ minconf thì luật được giữ lại (luật này sẽ thoả mãn độ hỗ trợ tối thiểu vì
ABCD là phổ biến).
2.2.2. Một số tính chất liên quan đến các hạng mục phổ biến:
2.2.2.1. Với tập mục phổ biến, có 3 tính chất sau:
Tính chất 1 (Độ hỗ trợ của tập con):
Với A và B là tập các mục, nếu A ⊆ B thì sup(A) ≥ sup(B)
Điều này là rõ ràng vì tất cả các giao tác của D hỗ trợ B thì cũng hỗ trợ A.
Tính chất 2:
Một tập chứa một tập không phổ biến thì cũng là tập không phổ biến.
Nếu một mục trong B không có độ hỗ trợ tối thiểu trên D nghĩa là A ⊆ B và sup(A)<
minsup thì B sẽ không phải là một tập phổ biến vì support(B) ≤ support(A) < minsup
(theo tính chất 1)
Tính chất 3: Các tập con của tập phổ biến cũng là tập phổ biến
Nếu mục B là mục phổ biến trên D, nghĩa là support(B) ≥ minsup thì mọi tập con A
của B là tập phổ biến trên D vì support(A) ≥ support(B) > minsup.
2.2.2.2. Với luật kết hợp, có 4 tính chất sau:
Tính chất 1:( Không hợp các luật kết hợp)
Nếu có X→Z và Y→Z trong D thì không nhất thiết X∪Y→Z là đúng
Xét trường hợp X ∩Z =∅ và các tác vụ trong D hỗ trợ Z nếu và chỉ nếu chúng hỗ trợ
mỗi X hoặc Y, khi đó luật X∪Y→Z có độ hỗ trợ 0%.
Tương tự : X→Y ∧ X→Z ⇒ X→Y∪Z
Tính chất 2:(Không tách luật)
Nếu X∪Y→Z thì X→Z và Y→Z chưa chắc xảy ra
Ví dụ trường hợp Z có mặt trong một giao tác chỉ khi cả hai X và Y cũng có mặt, tức
là sup(X∪Y)= sup(Z), nếu độ hỗ trợ của X và Y đủ lớn hơn sup(X∪Y), tức là sup(X) >
sup(X∪Y) và sup(Y) > sup(X∪Y) thì hai luật riêng biệt sẽ không đủ độ tin cậy

HVTH:Trần Khánh An -CH1301076 9
)sup(
)sup(
AB
ABCD
conf =
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
Tuy nhiên đảo lại: X→Y∪Z ⇒ X→Y ∧ X→Z
Tính chất 3: (Các luật kết hợp không có tính bắc cầu)
Nếu X→Y và Y→Z, chúng ta không thể suy ra X→Z.
Ví dụ: giả sử T(X) ⊂ T(Y) ⊂ T(Z), ở đó T(X), T(Y), T(Z) tương ứng là các giao dịch
chứa X,Y,Z, và độ tin cậy cực tiểu minconf
conf(X→Y) =conf(Y→Z)=minconf thế thì: conf(X→Y) =minconf2 < minconf vì
minconf < 1, do đó luật X→Z không đủ độ tin cậy
Tính chất 4:
Nếu A→(L - A) không thoả mãn độ tin cậy cực tiểu thì luật
B →(L -B) cũng không thoả mãn, với các tập mục L,A,B và B ⊆ A ⊂ L
Vì supp(B) ≥ sup(A) (theo tính chất 1) và định nghĩa độ tin cậy, chúng ta nhận được:
conf(B →(L-B)) = < minconf (2.4)
Cũng như vậy: Nếu có (L-C)→ C thì ta cũng có luật (L – D)→D, với D⊆C và D≠∅.
Bởi vì D⊆C nên (L - D) ⊇ (L - C), do đó sup(L - D) ≤ sup(L-C)
⇒≥ minconf (2.5)
Các tính chất này sẽ được sử dụng trong thuật toán mô tả trong các chương sau.
2.2.3. Một số hướng tiếp cận trong khai phá luật kết hợp
Lĩnh vực khai thác luật kết hợp cho đến nay đã được nghiên cứu và phát triển theo
nhiều hướng khác nhau. Có những đề xuất nhằm cải tiến tốc độ thuật toán, có những đề
xuất nhằm tìm kiếm luật có ý nghĩa hơn… và có một số hướng chính như sau.
Luật kết hợp nhị phân là hướng nghiên cứu đầu tiên của luật kết hợp. Hầu hết các
nghiên cứu ở thời kỳ đầu về luật kết hợp đều liên quan đến luật kết hợp nhị phân. Trong
dạng luật kết hợp này, các mục, thuộc tính, chỉ được quan tâm là có hay không xuất hiện

trong giao tác của CSDL chứ không quan tâm về “mức độ” xuất hiện. Ví dụ: Trong hệ
thống tính cước điện thoại thì việc gọi 10 cuộc điện thoại và một cuộc được xem là giống
nhau. Thuật toán tiêu biểu nhất khai phá dạng luật này là thuật toán Apriori và các biến
thể của nó. Đây là dạng luật đơn giản và các luật khác cũng có thể chuyển về dạng luật
này nhờ một số phương pháp như rời rạc hoá, mờ hoá, …
Luật kết hợp có thuộc tính số và thuộc tính hạng mục: Các thuộc tính của các CSDL
thực tế có kiểu rất đa dạng, như số nhị phân, giá trị định tính, định lượng Để phát hiện
HVTH:Trần Khánh An -CH1301076 10
)sup(
)sup(
)sup(
)sup(
A
L
B
L

)sup(
)sup(
)sup(
)sup(
CL
L
DL
L



Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
luật kết hợp với các thuộc tính này, các nhà nghiên cứu đã đề xuất một số phương pháp

rời rạc hoá nhằm chuyển dạng luật này về dạng nhị phân để có thể áp dụng các thuật toán
đã có.
Luật kết hợp tiếp cận theo hướng tập thô: Tìm kiếm luật kết hợp dựa trên lý thuyết
tập thô.
Luật kết hợp nhiều mức: Cách tiếp cận theo luật này sẽ tìm kiếm thêm những luật
có dạng “mua máy tính PC =>mua hệ điều hành AND mua phần mềm tiện ích văn
phòng, …” thay vì chỉ những luật quá cụ thể như “mua máy tính IBM PC =>mua hệ điều
hành Microsoft Windows AND mua phần mềm tiện ích văn phòng Microsoft Office, …”.
Như vậy dạng luật đầu là dạng luật tổng quát hoá của dạng luật sau và tổng quát theo
nhiều mức khác nhau.
Luật kết hợp mờ: Với những hạn chế còn gặp phải trong quá trình rời rạc hoá các
thuộc tính số (quantitave attributes), các nhà nghiên cứu đã đề xuất luật kết hợp mờ nhằm
khắc phục các hạn chế trên và chuyển luật kết hợp về một dạng tự nhiên hơn, gần gũi hơn
với người sử dụng một ví dụ của dạng này là: “thuê bao tư nhân = ‘yes’ AND thời gian
đàm thoại lớn AND cước nội tỉnh = ‘yes’ =>cước không hợp lệ = ‘yes’, với độ hỗ trợ 4%
và độ tin cậy 85%”. Trong luật trên, điều kiện thời gian đàm thoại lớn ở vế trái của luật là
một thuộc tính đã được mờ hoá.
Luật kết hợp với thuộc tính được đánh trọng số: Trong thực tế, các thuộc tính trong
CSDL không phải lúc nào cũng có vai trò như nhau. Có một số thuộc tính được chú trọng
hơn và có mức độ quan trọng cao hơn các thuộc tính khác. Ví dụ khi khảo sát về doanh
thu hàng tháng, thông tin về thời gian đàm thoại, vùng cước là quan trọng hơn nhiều so
với thông tin về phương thức gọi Trong quá trình tìm kiếm luật, chúng ta sẽ gán thời
gian gọi, vùng cước các trọng số lớn hơn thuộc tính phương thức gọi. Đây là hướng
nghiên cứu rất thú vị và đã được một số nhà nghiên cứu đề xuất cách giải quyết bài toán
này. Với luật kết hợp có thuộc tính được đánh trọng số, chúng ta sẽ khai thác được những
luật “hiếm” (tức là có độ hỗ trợ thấp, nhưng có ý nghĩa đặc biệt hoặc mang rất nhiều ý
nghĩa).
Luật kết hợp song song: Bên cạnh khai thác luật kết hợp tuần tự, các nhà làm tin
học cũng tập trung vào nghiên cứu các thuật giải song song cho quá trình phát hiện luật
kết hợp. Nhu cầu song song hoá và xử lý phân tán là cần thiết bởi kích thước dữ liệu ngày

càng lớn hơn nên đòi hỏi tốc độ xử lý cũng như dung lượng bộ nhớ của hệ thống phải
được đảm bảo. Có rất nhiều thuật toán song song khác nhau đã đề xuất để có thể không
phụ thuộc vào phần cứng.
Bên cạnh những nghiên cứu về các biến thể của luật kết hợp, các nhà nghiên cứu
còn chú trọng đề xuất những thuật toán nhằm tăng tốc quá trình tìm kiếm tập phổ biến từ
CSDL.
Ngoài ra, còn có một số hướng nghiên cứu khác về khai thác luật kết hợp như: khai
thác luật kết hợp trực tuyến, khai thác luật kết hợp được kết nối trực tuyến đến các kho
dữ liệu đa chiều thông qua công nghệ OLAP, MOLAP, ROLAP, ADO.
HVTH:Trần Khánh An -CH1301076 11
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
CHƯƠNG 3: MỘT SỐ THUẬT TOÁN PHÁT HIỆN LUẬT KẾT HỢP
3.1. Thuật toán Apriori
3.1.1. Ý tưởng thuật toán Apriori
Apriori là một thuật giải được do Rakesh Agrawal, Tomasz Imielinski, Arun
Swami đề xuất lần đầu vào năm 1993. Thuật toán tìm giao dịch t có độ hỗ trợ và độ tin
cậy thoả mãn lớn hơn một giá trị ngưỡng nào đó.
Thuật toán được tỉa bớt những tập ứng cử viên có tập con không phổ biến trước
khi tính độ hỗ trợ.
Thuật toán Apriori tính tất cả các tập ứng cử của tập k trong một lần duyệt CSDL.
Apriori dựa vào cấu trúc cây băm. Tìm kiếm đi xuống trên cấu trúc cây mỗi khi ta chạm
lá, ta tìm được một tập ứng cử viên có tiền tố chung được bao gồm trong giao dịch. Sau
đó các tập ứng cử này được tìm trong giao dịch đã được ánh xạ trước đó. Trong trường
hợp tìm thấy biến đếm được tăng lên 1.
Ký hiệu:Giả sử các mục trong mỗi giao dịch được lưu giữ theo trật tự từ điển. Gọi
số các mục trong một tập mục là kích thước của nó và gọi tập mục có kích thước k là tập
k-mục (tập k mục). Các mục trong mỗi tập mục cũng được giữ ở trật tự từ điển. Ta sử
dụng các ký hiệu sau:
L
k

: Tập các tập k-mục phổ biến (với độ hỗ trợ cực tiểu minsup nào đó)
C
k
: Tập các tập k-mục ứng cử (các tập mục phổ biến tiềm năng)
3.1.2. Thuật toán Apriori
Input: CSDL D, minsup.
Output: Tập các tập mục phổ biến.
1. L
1
= {Các 1 - itemsetphổ biến};
2. k=2;
3. While( L
k-1
! =

)
4. { C
k
= apriori_gen(L
k-1
, minsup);// các ứng cử mới theo chương trình
con ở dưới đây.
5. for( ∀ giao dịch t∈ D)
6. { C
t
=Subset (C
k
,t);// ứng cử viên được chứa trong t
7. for (∀ứng cử c ∈ C
t

)
8. c.count ++;
10. }
11. L
k
={ c

C
k

c.count

minsup}
12. k++;
13. }
HVTH:Trần Khánh An -CH1301076 12
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
14. Return L=

k
L
k'
;
// sinh ứng cử viên mới (**)
Void apriori_gen(L
k-1
, minsup )
1. { for(

itemset l

1

L
k-1
)
2. for(

itemset l
2

L
k-1
)
3. if((L
1
(1)== L
2
(1)&&L
1
(2) == L
2
(2)&& && L
1
(k-2) == L
2
(k-2)) &&L
1
(k-
1) == L
2

(k-1))
4. { c= L
1
kết nối L
2
;
5. if( has_inrequent_subset(c,L
k-1
)) delete c;
6. else add c to C
k
;
7. }
8. return C
k
9.}
Boolean has_infrequent_subset(c,L
k-1
)
1.{ for(

(k-1)-subset s

c)
2. if(s∉ L
k-1
) return TRUE;
3. else return FALSE ;
4.}
Giải thích: Lần duyệt đầu tiên, sẽ tính số lần xuất hiện của mỗi mục để xác định các

1- itemset phổ biến. Lần duyệt thứ k (k ≥ 2) sẽ bao gồm 2 giai đoạn:
• Tập phổ biến L
k-1
đã tìm thấy ở lần duyệt thứ k-1 được sử dụng để sinh ra các tập ứng cử
viên C
k
bằng việc sử dụng hàm Apriori_gen.
• Dựa vào CSDL, tính độ hỗ trợ của các ứng của viên trong Ck. Các ứng cử viên trong C
k
mà được chứa trong giao dịch t có thể được xác định một cách hiệu quả bằng việc sử
dụng cây băm được mô tả như sau:
Trong giai đoạn 2 (giai đoạn sửa, tỉa): xoá bỏ các tập c

C
k
sao cho một vài (k-1) –
tập con của c không nằm trong L
k-1
. Thủ tục này là đầy đủ bởi đối với bất kì tập nào L
k
với
độ hỗ trợ tối thiểu thì các tập con kích cỡ (k-1) cũng có độ hỗ trợ tối thiểu, do đó nếu ta
mở rộng mỗi tập trong L
k-1
với tất cả các tập mục có thể và sau đó xoá tất cả các tập mà
(k-1) – tập con của nó không nằm trong L
k-1
, ta sẽ nhận được tập các tập trong L
k.
Việc kết nối là tương đương với việc mở rộng L

k-1
với mỗi mục nằm trong CSDL và
sau đó xoá bỏ các tập này mà đối với nó (k-1) –itemset nhận được bằng việc xoá đi mục
thứ (k-1) không nằm trong L
k-1
. Ở giai đoạn này C
k

L
k
. Với lập luận như vậy, giai đoạn
tỉa là giai đoạn người ta xoá khỏi C
k
tấtcả các tập mà các (k-1) tập con của nó không nằm
trong L
k-1
, cũng không xoá bất kỳ một tập nào có thể nằm trong L
k
.
Hàm Subset: Các tập ứng cử viên C
k
được lưu trữ trong một cây băm. Một nút của
cây này hoặc là chứa một danh sách của các tập (nút lá) hoặc bảng băm ( một nút trong).
Trong mỗi một nút trong, mỗi cụm (bucket) của bảng băm chỉ đến một nút khác. Gốc của
cây băm được xem ở độ sâu là 1. Một nút trong ở độ sâu d sẽ dẫn đến nút ở độ sâu d+1.
HVTH:Trần Khánh An -CH1301076 13
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
Các tập được lưu trữ trong các lá. Khi ta bổ sung thêm một tập c, ta bắt từ nút gốc và đi
xuống cây cho đến khi ta chạm vào một lá. Tại một nút ở độ sâu d, ta quyết định sẽ đi
theo cành nào bằng việc áp dụng hàm băm đối với mục thứ d của tập đó và theo con trỏ

trong Bucket tương ứng. Tất cả các nút ban đầu được tạo ra như là nút lá. Khi số các tập
trong một nút lá vượt quá ngưỡng được chọn, nút lá này được chuyển thành một nút
trong.
Bắt đầu từ nút gốc, hàm Subset tìm tất cả các ứng cử viên được chứa trong giao dịch t
như sau: Nếu ta bắt đầu tại một lá, ta tìm những tập trong nút lá này được chứa trong giao
dịch t và bổ sung các mối quan hệ với chúng đối với tập kết quả mong muốn. Nếu ta
đang ở một nút trong và ta đến được nó bằng việc băm mục i, ta băm trên mỗi mục đi sau
i trong t và áp dụng một cách đệ quy thủ tục đó đối với nút này trong Bucket tương ứng.
Đối với nút gốc, ta băm theo mỗi mục trong t.
Để thấy được tại sao hàm Subset trả lại tập các tham khảo mong muốn hãy để ý đến
những gì sẽ xảy ra tại nút gốc. Đối với bất kỳ tập c nào được chứa trong giao dịch t, mục
đầu tiên cần phải có trong t. Tại nút gốc, việc băm mọi mục trong t đảm bảo được rằng ta
chỉ không biết các tập mà nó bắt đầu với một mục không nằm trong t. Những lí luận
tương tự áp dụng cho các mức sâu hơn. Vì các mục trong bất kì tập nào cũng được sắp
thứ tự, nếu ta đến được một nút hiện tại bằng việc băm mục i, ta chỉ cần quan tâm đến
những mục trong t nó xuất hiện sau i.
// Bước tỉa: Xoá bớt tất cả các tập mục c ∈ C
k
mà (k-1) tập con của c không
phụ thuộc L
k-1
.
1. for (∀ tập mục c ∈ C
k
)
2. for (∀ (k-1) – tập con s của c)
3. if(s ∉ L
k-1
)
4. delete c khỏi C

k
;
Nhận xét: Thuật toán Apriori với n là độ dài lớn nhất của tập được sinh ra. Vậy thì
thuật toán sẽ thực hiện duyệt toàn bộ các giao tác n+1 lần. Như vậy, nếu bỏ qua thời gian
so sánh tìm sự xuất hiện của một mẫu trong một giao tác thì độ phức tạp của thuật toán
Apriori là O(A) > O(n*L) trong đó L là kích thước CSDL còn n là độ dài cần đạt được
của các mẫu.
Ngoài ra, nếu độ hỗ trợ tối thiểu minsup bị thay đổi thì thuật toán sẽ phải thực hiện lại
từ đầu, điều này sẽ rất mất thời gian. Thuật toán Apriori được xây dựng nhằm phát hiện
các luật kết hợp giữa các đối tượng với độ hỗ trợ và độ tin cậy tối thiểu.
3.1.3. Sinh các luật kết hợp từ tập mục phổ biến:
Sau khi các tập mục phổ biến từ các tác vụ trong CSDL đã được tìm thấy, nó có thể
sinh ra các luật kết hợp mạnh, ở đó luật kết hợp mạnh (strong association rule) là luật
thoả mãn cả hai độ hỗ trợ cực tiểu và độ tin cậy cực tiểu. Điều đó có thể thực hiện bằng
HVTH:Trần Khánh An -CH1301076 14
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
việc sử dụng tính độ tin cậy của luật, ta nhắc lại: độ tin cậy của luật X → Y là: conf (X →
Y) = P(Y/X) = sup(X∪Y)/sup(X)
ở đó sup(X∪Y) là độ hỗ trợ của X∪Y và sup(X) là độ hỗ trợ của X.
Có thể coi tỷ số trên là tỷ số giữa: số các tác vụ chứa X∪Y và số các tác vụ chứa X.
Dựa trên biểu thức tính toán đó, các luật kết hợp có thể được sinh như sau:
Với mỗi tập mục phổ biến l, sinh ra tất cả các tập con không rỗng của l
Với mỗi tập con không rỗng a của l, ta có luật a → (l-a) nếu
)sup(
)sup(
a
l
≥ minconf ở đó
minconf là ngưỡng độ tin cậy cực tiểu
Vì các luật được sinh ra từ các tập mục phổ biến nên độ hỗ trợ của luật đã được thoả

mãn, tức là độ hỗ trợ của luật chính là sup(l).
Thuật toán đơn giản.
Chúng ta cải tiến thủ tục xử lý bằng cách sinh ra các tập con của mục lớn theo kiểu đệ
qui ưu tiên độ sâu. Ví dụ: với tập mục ABCD, đầu tiên chúng ta xét tập con ABC, sau đó
đến AB,
Tiếp đến, nếu tập con a của tập mục lớn l không sinh ra được luật thì không cần xét
đến các tập con của nó nữa. Chẳng hạn: nếu luật ABC→ D không đủ độ tin cậy thì ta
không cần xét đến luật AB→ CD.
Điều này có thể chứng minh đơn giản như sau:
Nếu luật a →(l-a) không thoả mãn độ tin cậy, tức là: conf(a→l-a)) nhỏ hơn minconf,
thế thì với bất kỳ tập con b nào của a ta có:
Vì b⊂ a nên supp(b)≥supp(a), do vậy:
Conf(b→(l-b)) =
)sup(
)sup(
)sup(
)sup(
a
l
b
l

=conf((a→(l-a))<minconf
Tức là độ tin cậy của luật b→(l-b) cũng nhỏ hơn minconf
Thuật toán đơn giản này có thể mô tả như sau:
Thuật toán 1.
For all large itemsets l
k
, k≥2 do call genrules(l
k

,l
k
)
Procedure genrules(l
k
:large k-itemsets, a
m
: large m-itemsets)
HVTH:Trần Khánh An -CH1301076 15
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
A={(m-1)-itemsets a
m-1
|a
m-1
⊂ a
m
};
for all a
m-1
∈ A do again
conf=support(l
k
)/support(a
m-1
);
if (conf ≥ minconf) then
begin
output the rule a
m-1
→(l

k
-a
m-1
),
with confidence=conf and support=support(l
k
)
if (m-l > l) then call genrules(l
k
,a
m-1
);
//để sinh ra các luật với tập con của a
m-1
là phần tiền đề
end
end
Ở trên ta đã chỉ ra rằng nếu một luật không thoả mãn với tập cha a thì cũng không
thoả mãn với tập con của nó. Ví dụ như trên đã xét: nếu ABC→D không đủ độ tin cậy thì
luật AB→CD cũng không đủ độ tin cậy. Điều đó cũng có thể áp dụng theo hướng ngược
lại như sau: nếu xảy ra luật với tập con thì cũng xảy ra luật với tập cha. Ví dụ: nếu luật
AB→CD có đủ độ tin cậy thì luật ABC→D cũng đủ độ tin cậy.
Thuật toán 2.
For all larger itemsets l
k
, k≥ 2 do
Begin
H
l
={các phần kết luận của các luật nhận được từ l

k
với l-mục ở kết luận};
Call ap_genrules(l
k
,H
l
)
End
Procedure ap_genrules(l
k
:large k-itemsets, H
m
:set of m-item consequents)
If (k>m+1) then
begin
H
m+1
=apriori_gen(H
m
);
For all h
m+1
∈H
m-1
do
Begin
Conf = support(l
k
)/support(l
k

-h
m+1
);
If (conf ≥minconf) then
Output the rule(l
k
-h
m+1
)→h
m+1
HVTH:Trần Khánh An -CH1301076 16
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
//với độ tin cậy là conf và độ hỗ trợ là support (l
k
)
Else
Delete h
m+1
from H
m+1
End
Call ap_genrules(l
k
, H
m+1
)
End
Thuật toán nhanh hơn này sử dụng thủ tục apriori_gen mô tả ở phần thuật toán
Apriori ở trên. Ta xem tại sao thuật toán 2 này nhanh hơn thuật toán 1 trên:
Ví dụ, ta xét tập mục ABCDE: Giả sử rằng ACDE→B, ADE→CB là các luật có l-

mục ở phần kết luận thoả mãn độ hỗ trợ cực tiểu minconf.
Trong thuật toán đơn giản trên, gọi đệ quy genrules(ABCDE, ACD) sẽ kiểm tra các
luật với 2-mục ở phần kết luận là: ACD→BE, ADE→BC, CDE→AB và ACE→BD
Luật thứ nhất không xảy ra vì E ⊂ BE và ABCD →E không thoả mãn độ tin cậy. Các
luật thứ hai và thứ ba cũng không thoả mãn độ tin cậy với lý do tương tự.
Chỉ có một luật với 2 - mục ở phần kết luận nhận được là ACE→BD, ở đó B và D là
các kết luận của các luật kết hợp có 1- mục ở phần kết luận. Thuật toán nhanh hơn mô tả
ở trên chỉ kiểm tra một luật này.
3.2. Thuật toán FP-growth
3.2.1. Ý tưởng thuật toán
Thuật toán kinh điển Apriori tìm tập mục phổ biến thực hiện tốt bởi rút gọn kích
thước các tập ứng cử nhờ kỹ thuật tỉa. Tuy nhiên, trong tình huống mà số các mẫu nhiều,
mẫu dài hoặc độ hỗ trợ cực tiểu thấp, các thuật toán Apriori gặp phải 2 chi phí lớn:
Chi phí cho số lượng khổng lồ các tập ứng cử. Ví dụ: nếu có 10
4
tập 1-mục phổ
biến thì thuật toán Apriori sẽ cần sinh ra hơn 10
7
các ứng cử 2-mục và thực hiện kiểm tra
sư xuất hiện của chúng. Hơn nữa, để khám phá được một số mẫu phổ biến kích thước (độ
dài) là l, thuật toán phải kiểm tra (2
l
-2 ) các mẫu phổ biến tiềm năng. Ví dụ l=100, chẳng
hạn là {a
1
,a
2
, ,a
100
}, nó phải sinh ra tổng số 2

100
≈ 10
30
các ứng cử (đây chính là số tập
con của tập có 100 phần tử)
Đòi hỏi lặp lại nhiều lần duyệt CSDL để kiểm tra tập rất lớn các ứng cử. Số lần
duyệt CSDL của thuật toán Apriori bằng độ dài của mẫu phổ biến dài nhất tìm được.
Trong trường hợp mẫu phổ biến dài hơn và CSDL lớn, có nhiều bản ghi, điều này là
không thể thực hiện được. Thuật toán Apriori chỉ thích hợp cho các CSDL thưa (sparse),
với các CSDL dày (dense) thì thuật toán thực hiện kém hiệu quả hơn.
HVTH:Trần Khánh An -CH1301076 17
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
Thuật toán mới xuất hiện gần đây có tên là FP-growth được giới thiệu bởi Jiawei
Hai Jian Pei và Yiwen Yin năm 2000, sẽ khắc phục được các nhược điểm nêu trên. Thuật
toán tìm các tập phổ biến hiệu qủa hơn thuật toán Apriori bằng việc sử dụng một kỹ thuật
khác không cần sinh các ứng cử. Sự hiệu quả của khai phá nhận được với 3 kỹ thuật
chính:
Thứ nhất nó mở rộng của cấu trúc cây prefix (prefix tree), được gọi là cây mẫu
phổ biến (frequent pattern tree hoặc gọi tắt là FP- tree) dùng để nén dữ liệu thích hợp.
Chỉ có các mục độ dài l (l-item) ở trong cây và các nút của cây được sắp đặt để các nút
xuất hiện thường xuyên hơn có thể dễ dàng chia sẻ với các nút xuất hiện ít hơn. CSDL
lớn được nén chặt tới cấu trúc dữ liệu nhỏ hơn (FP-tree), tránh được chi phí lặp lại duyệt
qua CSDL.
Thứ hai, phương pháp khai phá phát triển (growth) từng đoạn dựa trên Fp-tree gọi
là phương pháp FP – growth đã được thực hiện. Bắt đầu từ mẫu phổ biến độ dài 1, FP-
growth chỉ xem xét cơ sở mẫu phụ thuộc của nó (condition pattern base) như là CSDL
con (sub-database) bao gồm tập các mục phổ biến cùng xuất hiện với mẫu hậu tố (suffix
pattern), xây dựng condition FP-tree tương ứng của nó và thực hiện khai phá đệ qui trên
cây này. Mẫu phát triển là nhận được qua việc nối mẫu hậu tố (suffix pattern) với một
đoạn mẫu được sinh ra từ condition FP-tree. Khai phá dựa trên FP-tree được thực hiện

theo cách phát triển (growth) các đoạn mẫu để tránh chi phí cho việc sinh ra số lượng lớn
các tập ứng cử.
Thứ ba, kỹ thuật tìm kiếm được dùng ở đây là dựa vào sự phân chia và chế ngự
(divide-and-conquer method) để phân rã nhiệm vụ khai phá thành tập các nhiệm vụ nhỏ
hơn với giới hạn các mẫu trong các CSDL nhằm thu gọn không gian tìm kiếm.
Phương pháp FP-growth đã chứng tỏ được tính hiệu quả của nó và thể hiện khai
phá cho cả các mẫu ngắn và dài, nhanh hơn thuật toán Apriori, luôn chỉ cần duyệt CSDL
2 lần.
3.2.2. Thuật toán FP-growth.
Đầu tiên, thuật toán duyệt CSDL lần thứ nhất để tính độ hỗ trợ của các tập mục (đếm
số lần xuất hiện của từng mục).
Tiếp đến, những mục không đủ độ hỗ trợ bị loại. Các mục còn lại được sắp theo thứ
tự giảm dần của độ hỗ trợ (cũng tức là giảm dần theo số lần xuất hiện trong CSDL), ta
nhận được danh sách L các mục đã sắp.
Duyệt CSDL lần thứ 2, với mỗi tác vụ t, loại các mục không đủ độ hỗ trợ, các mục
còn lại theo thứ tự giống như xuất hiện trong L (tức là thứ tự giảm dần theo độ hỗ trợ)
được đưa vào cây FP-tree.
Phần tiếp theo thuật toán khai phá tìm các mẫu phổ biến trên cây FP-tree đã xây dựng
mà không cần duyệt lại CSDL nữa.
Cấu trúc cây FP-tree như sau:
HVTH:Trần Khánh An -CH1301076 18
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
Gốc của cây nhãn null, các đường đi trên cây biểu diễn item prefixs
Các liên kết trên cây: liên kết các mục xuất hiện có tên giống nhau
Mỗi nút, (trừ nút gốc) bao gồm:
Tên mục (item identifier)
Count: số đếm
Node link: liên kết đến nút tiếp theo trên cây có cùng tên
Bảng các đầu mục phổ biến (header table): bắt đầu cho các liên kết
Thủ tục thêm một dãy các mục (đã sắp giảm dần theo độ hỗ trợ) của một tác vụ vào

cây thực hiện đệ quy như sau:
Procedure insert_tree(string [p|P], tree có gốc T)
(ở đó p là mục thứ nhất của dãy các mục và P là phần còn lại. Trong lần duyệt
thứ hai, với mỗi tác vụ t, gọi thủ tục insert_tree(t’,T), ở đó t’ là nội dung của tác vụ t sau
khi đã bỏ các mục không phổ biến và sắp theo thứ tự giảm dần của độ hỗ trợ, T là gốc
của cây)
Procedure insert_tree(string[p|P],tree có gốc T)
Nếu T có nút con N mà N.itemname=p thì N.count++
ngược lại
Tạo một nút mới N;
N.itemname:=p;N.count:=1
Thay đổi nút liên kết cho p bao gồm N;
Nếu p khác rỗng
gọi thủ tục insert_tree(P,N);
Tìm tập mục phổ biến:
Sau khi xây dựng xong FP-tree cho CSDL, việc khai phá tìm các mẫu phổ biến chỉ
thực hiện trên cây FP-tree mà không cần duyệt CSDL nữa.
Thuật toán FP-growth như sau:
Bắt đầu từ dưới lên của bảng header và cây, với mỗi mục A: dùng n liên kết duỵêt
qua tất cả các nút trên cây mà xuất hiện A, với mỗi nút mà n.itemname=A, xác định các
tập phổ biến có xuất hiện A, thực hiện bằng cách chỉ cần tìm các đường đi từ gốc tới n.
Thuật toán FP – growth.
Khai phá Fp-tree được thực hiện bởi gọi lần đầu FP-growth (Fp-tree, null), thực
hiện như sau:
Procedure FP-growth(Tree,α)
Nếu cây Tree chứa một đường đơn P thì
HVTH:Trần Khánh An -CH1301076 19
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
Với tất cả các tổ hợp (ký hiệu β) của các nút trong đường đi P
Sinh ra mẫu β∪α với support=độ hỗ trợ nhỏ nhất của các nút trong β;

Ngược lại: với mỗi mục a
i
trong header table của Tree{
Sinh ra β:= a
i
∪α với support=a
i
.count;
Xây dựng cơ sở mẫu phụ thuộc của β và sau đó FP-tree phụ thuộc của β là
Tree
β
;
Nếu Tree
β
≠∅ thì gọi FP-growth(Tree
β
,β)}
3.2.3. Đánh giá thuật toán FP-growth.
Thuật toán này như đã phân tích ở trên, nó thực hiện hiệu quả hơn thuật toán
Apriori, thực hiện tốt cho mẫu phổ biến ngắn cũng như dài. Ta có một số nhận xét về
thuật toán như sau:
Độ phức tạp về thời gian:
• Chỉ duyệt CSDL 2 lần
• Thời gian xây dựng cây là o(n), ở đó n là số các tác vụ của CSDL. Tức là tuyến
tính với số các tác vụ.
Độ phức tạp về không gian:
• O(n), n là số các tác vụ của CSDL
• Độ cao của cây được giới hạn bởi kích thước của tác vụ lớn nhất
Thuật toán không bao giờ bị ngắn bởi một mẫu dài nào của mọi tác vụ. Cây FP-tree
duy trì đầy đủ thông tin cho khai phá các mẫu phổ biến. Đồng thời thuật toán cũng rút

gọn hợp lý các thông tin không cần thiết bởi cách là các mục không phổ biến đã bị loại
bỏ ngay từ đầu.
Dùng kỹ thuật sắp theo trật tự giảm dần của tần số xuất hiện, điều đó dẫn đến các mục
phổ biến hơn được chia sẻ nhiều hơn. Cây FP-tree không bao giờ lớn hơn CSDL gốc.
CHƯƠNG 4:
ỨNG DỤNG LUẬT KẾT HỢP - PHÂN TÍCH DỮ LIỆU BÁN HÀNG
Như vậy, nhiệm vụ của khai thác dữ liệu là phải tìm được mối liên hệ giữa các mặt
hàng trong giao dịch đó. Mối quan hệ này có dạng X => Y, đây chính là các tri thức chiết
xuất được trong khi khai thác với độ hỗ trợ cho trước (minsupp), độ tin cậy cho trước
(minconf). Sau khi tìm hiểu về thuật toán khai phá luật kết hợp, tôi thực hiện viết một
chương trình phân tích cơ sở dữ liệu bán hàng để minh hoạ cho việc ứng dụng thuật toán.
HVTH:Trần Khánh An -CH1301076 20
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
Ngôn ngữ sử dụng để hiện thực chương trình là C# cùng với bộ công cụ Visual
Studio của Microsoft. Lưu trữ dữ liệu dựa trên công nghệ XML.
Chương trình cho phép người dùng nhập vào sản phẩm cần quản lý, hóa đơn giao
dịch của các sản phẩm, độ tác động (Support) và độ tin cậy (confidence) để tìm ra các
luật kết hợp.
4.1. Màn hình chính:
Khi chương trình khởi chạy, dữ liệu sản phẩm và hoá đơn được nạp nhằm phục vụ
thực hiện tìm luật kết hợp.
Các nút chức năng:
 “Thêm sản phẩm”: nhập thêm cơ sở dữ liệu tên các sản phẩm cần được quản
lý.
 “Xóa sản phẩm”: xoá bớt sản phẩm cần quản lý. Chọn item trên bảng và xóa.
 “Thêm hóa đơn”: chọn các sản phẩm cần giao dịch trên danh sách sản phẩm
và thêm vào dữ liệu hoá đơn.
 “Xóa giao dịch chọn”, “Xoá toàn bộ”: xóa hoá đơn trong database.
Sau khi đã nhập đầy đủ thông tin cho sản phẩm và hóa đơn, ta tiến hành nhập vào
độ tác động ở text box Min Sup và độ tin cậy ở text box Min Confvà nhấn button“Tìm

luật kết hợp” để tìm các luật dựa trên các hóa đơn hiện có.
4.2. Thiết kế chương trình
Dữ liệu
HVTH:Trần Khánh An -CH1301076 21
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
Input: chương trình dùng xml để lưu trữ dữ liệu bán hàng. Bao gồm hai tập tin
1) Items.xml chứa các thông tin về các mặt hàng.
<Items>
<Item ID="1" Name="Bánh mì" />
<Item ID="2" Name="Nước ngọt" />
<Item ID="3" Name="Bia" />
<Item ID="4" Name="Sữa" />
<Item ID="5" Name="Khăn giấy" />
</Items>
2) Orders.xml chứa thông tin đơn hàng
<Orders>
<Order ID="1">
<Item ID="1" Price="50" Amount="4" />
<Item ID="2" Price="50" Amount="4" />
<Item ID="4" Price="50" Amount="4" />
</Order>

</Orders>
Khi chương trình chạy sẽ load 2 tập tin này.
Cài đặt
Thuật toán cài đặt tìm kiếm luật kết hợp làApriori.ProcessTransaction
đặt trong lớp Apriori.cs
Prototype của hàm
// items: danh sách các mặt hàng cửa hàng kinh doanh
//transactions/itemset: danh sách các tổ hợp/nhóm các mặt hàng thực tế khách hàng mua

trong 1 lần giao dịch
publicOutput ProcessTransaction(double minSupport, double minConfidence,
IEnumerable<string> items, string[] transactions)
{
// trả về kết cấu trúc kết quả tìm luật kết hợp
}
Kết quả output của hàm:
• List<Rule> StrongRules: các luật kết hợp
• ItemsDictionary FrequentItems: có tổ hợp có ý nghĩa
Mã giả:
1. Tìm tất cả các tập phổ biến
- Tính tần suất của các tổ hợp 1 sản phẩm
HVTH:Trần Khánh An -CH1301076 22
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
- Chọn các tổ hợp lớn có tần suất >= minsup.
-Lặp tạo các tổ hợp i phần tử mớiđến khi không thể tạo tổ hợp nào khác
- Tạo ra các tổ hợp i từ các tập tổ hợp thế hệ (i-1).
- Loại kết quả các tổ hợp có tần suất < minsup

2. Tạo luật kết hợp từ tập phổ biến
Chọn các luật đáp ứng các ngưỡng minsup và minconf.
Chạy thử:
Giả sử ta có dữ liệu đơn hàng như sau (đã được rút gọn tên mặt hàng)
với minsup=0.5, minconf=0.8.
 Dòng không được tô màu nghĩa là tổ hợp đó bị loại (thấp hơn minsup).
 Dòng được tô màu nghĩa là tổ hợp sản phẩm của dòng đó có ý nghĩa.
Bước 1: Tìm tập phổ biến (minsup=0.5)
dữ liệu đơn hàng C1 support
1, 3, 4 {1} 2
2, 3, 5 {2} 3

1, 2, 3, 5 {3} 3
2, 5 {4} 1
{5} 3
C2 support
{1,2} 1
{1,3} 2
{1,5} 1
{2,3} 2
{2,5} 3
{3,5} 2
C3 support
{1,2,3} 0
{1,2,5} 1
{1,2,3,5} 1
{1,3,5} 1
{2,3,5} 2
Dừng
HVTH:Trần Khánh An -CH1301076 23
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
Bước 2: Tạo luật kết hợp (minconf=0.8)
rule support (X,Y) support (X) confidence
{1} => {3} 2 2 1
{2} => {3} 2 3 0.6
{2} => {5} 3 3 1
{3} => {5} 2 3 0.6
{2} => {3,5} 2 3 0.6
{3} => {2,5} 2 3 0.6
{5} => {2,3} 2 3 0.6
{3} => {1} 2 3 0.6
{3} => {2} 2 3 0.6

{5} => {2} 3 3 1
{5} => {3} 2 3 0.6
{3,5} => {2} 2 2 1
{2,5} => {3} 2 3 0.6
{2,3} => {5} 2 2 1
4.3. Màn hình kết quả chương trình:
HVTH:Trần Khánh An -CH1301076 24
Công nghệ tri thức và ứng dụng GVHD: GS.TSKH.HOÀNG KIẾM
HVTH:Trần Khánh An -CH1301076 25

×