Tải bản đầy đủ (.pdf) (62 trang)

Về một lớp biểu diễn toàn phương thời gian - tần số dựa trên phép biến đổi Fourier thời gian ngắn

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (471.81 KB, 62 trang )

Z
d
+
:
R :
R
d
:
Rez : z
Imz : z
z : z
|z| : z
C
k
(Ω) : {u : Ω → C|u }.
C

0
(Ω) : =


k=0
C
k
0
(Ω), C
k
0
(Ω) C


k
(Ω)
C
0
(R
d
) : .
L
p
: L
p
f
L
p
, f
p
: L
p
.
D
α
f : α f D
α
f(x) = D
α
1
1
D
α
2

2
D
α
n
n
f(x)
D (Ω) :
D

(Ω) :
S(R
d
) :
S

(R
d
) :
STF T :
f(x), x ∈ R
d
L
2
f
L
2
|f(x)|
2


f(w)
|

f(w)|
2
w f
L
2
= 

f
L
2
f(x)

f(w) L
2
f(x) supp f
f(x)

f(w)
2d x ∈ R
d
w ∈ R
d
τ ∈ [0, 1] τ W ig
τ
(f, g)
f, g ∈ S


(R
d
)

[0,1]
W ig
τ
(f, g)(x, w)dτ


• Q
φ,ψ
• Q
φ,ψ
• Q
φ,ψ
Q
φ,ψ
Q
φ,ψ



Q
φ,ψ


Ω R
d
D (Ω) ϕ ∈ C


0
(Ω)

j
}

j=1
C

0
(Ω)
ϕ ∈ C

0
(Ω)
K ⊂ Ω supp ϕ
j
⊂ K, j = 1, 2, ,
lim
j→∞
sup
x∈Ω
|D
α
ϕ
j
(x) − D
α
ϕ (x)| = 0, ∀α ∈ Z

d
+
.
ϕ = D lim
j→∞
ϕ
j
.
D(R
d
) ϕ ∈ C

0
(R
d
)

j
}

j=1
⊂ C

0
(R
d
)
ϕ ∈ C

0

(R
d
)
K ⊂ R
d
supp ϕ
j
⊂ K, ∀j = 1, 2, ,
lim
j→∞
sup
x∈R
d
|D
α
ϕ
j
(x) − D
α
ϕ(x)| = 0, ∀α ∈ Z
d
+
D − lim
j→∞
ϕ
j
= ϕ
D (Ω)
S(R
d

)
S(R
d
) =

ϕ ∈ C

(R
d
)


sup
x∈R
d


x
α
D
β
ϕ(x)


< +∞, ∀α, β ∈ Z
d
+


k

}

k=1
⊂ S

R
d

ϕ ∈ S

R
d

S

R
d

lim
k→∞
sup
x∈R
d


x
α
D
β
ϕ

k
(x) − x
α
D
β
ϕ(x)


= 0, ∀α, β ∈ Z
d
+
.
S lim
k→∞
ϕ
k
= ϕ
ϕ ∈ C

(R
d
)
m ∈ Z
+
, β ∈ Z
d
+
(1 + |x|
2
)

m


D
β
ϕ(x)


≤ C
m,β
, ∀x ∈ R
d
,
m ∈ Z
+
(1 + |x|
2
)
m

|β|≤m


D
β
ϕ(x)


≤ C
m

, ∀x ∈ R
d
.
λ, µ ∈ C; ϕ
k
, ψ
k
, ϕ, ψ ∈ S(R
d
), k = 1, 2, S lim
k→∞
ϕ
k
=
ϕ, S lim
k→∞
ψ
k
= ψ S lim
k→∞
(λϕ
k
+ µψ
k
) = λϕ + µψ
C

0
(R
d

) S(R
d
)
a(·) ∈ C

(R
d
) α ∈ Z
d
+
m = m(α)
c = c(α) |D
α
a (x)| < c (1 + |x|)
m
ϕ aϕ S(R
d
) S(R
d
)
S

R
d

f Ω f
D (Ω)
Ω D

(Ω) f ∈ D


(Ω)
ϕ ∈ D (Ω) f, ϕ f, g
f, ϕ = g, ϕ, ∀ϕ ∈ D (Ω) .
f ∈ D

(Ω) α =

1
, α
2
, , α
d
) ∈ Z
d
+
α f Ω
D
α
f D (Ω) C
D
α
f : ϕ → (−1)
|α|
f, D
α
ϕ, ϕ ∈ D (Ω) .
S

(R

d
)
D

(R
d
)
D(R
d
) f ∈ D

(R
d
)
ϕ ∈ D(R
d
) f, ϕ
{f
k
}

k=1
f D

(R
d
) k
lim
k→∞
f

k
, ϕ = f, ϕ, ∀ϕ ∈ D(R
d
).
D

lim
k→∞
f
k
= f.
f ∈ D

(R
d
) f
m ∈ N C
|f, ϕ|  C sup
x∈R
d
(1 + |x|
2
)
m

|α|m
|D
α
ϕ(x)|, ∀ϕ ∈ D(R
d

)
f S

(R
d
)
f
k
, f ∈ S

(R
d
), k = 1, 2, {f
k
}

k=1
S

(R
d
) f ∈ S

(R
d
)
m C
|f
k
, ϕ|  C sup

x∈R
d
(1+|x|
2
)
m

|α|m
|D
α
ϕ(x)|, ∀ϕ ∈ C

0
(R
d
), k = 1, 2, ,
{f
k
}

k=1
D

(R
d
) f
S

lim
k→∞

f
k
= f
S


R
d

f R
d
f
Z
d
f(x) = f(x + k) k ∈ Z
d
Z
d
[0; 1]
d
[0; 1]
d
R
d
Z
d
d− T
d
:= R
d

/Z
d
e
2πin.x
, n ∈ Z
d
T
d
[0; 1]
d
L
2

T
d

f ∈ L
2

T
d


f (n) =

[0,1]
d
f (x) e
−2πin.x
dx, n ∈ Z

d
n f
f =

n∈Z
d

f (n) e
2πin.x

[0,1]
d
|f (x)|
2
dx = f
2
L
2
(T
d
)
=

n∈Z
d




f (n)




2
.
T
d

n∈Z
d




f (n)



< ∞ f (x) , ∀x ∈ R
d
f(x)
A

T
d

f
A
=


n∈Z
d




f (n)



A

T
d

f ∈ D


T
d

= (C

)

x.w =
d

i=1
x

i
w
i
R
d
x
2
= x.x
|x| =

x.x
f ∈ L
1

R
d

f

f (w) =

R
d
e
−2πix.w
f (x) dx, w ∈ R
d
.
Ff


f 2π
w

f(w)
w w
|

f (w)|
2


f
2
2




f



−2
2

I
|

f (w)|
2

dw
f I ⊆ R
d
L
1




f




≤ f
1
.
f ∈ L
1

R
d


f
R
d
lim
|w|→∞





f (w)



= 0.
C
0

R
d

F : L
1

R
d

→ C
0

R
d

.
f ∈ L
1
∩ L

2

R
d

f
2
=




f



2
.
F L
2
(R
d
)
f, g =


f, g

, ∀f, g ∈ L
2


R
d

.
f ∈ L
1

R
d


f ∈ L
1

R
d

f (x) =

R
d

f (w) e
2πix.w
dw x ∈ R
d
.
F
−1

= F.
f (x) = f (−x)
f
e
2πix.w
f
L
1
(R
d
)
S(R
d
)
ϕ ∈ S(R
d
) ϕ Fϕ
Fϕ (ξ) = (2π)

d
2

R
d
e
−ix.ξ
ϕ (x) dx.
S(R
d
)

ϕ F
−1
ϕ
F
−1
ϕ (ξ) = (2π)

d
2

R
d
e
ix.ξ
ϕ (x) dx.


e
−ix.ξ


=


e
ix.ξ


= 1, ϕ ∈ L
1


R
d


F
−1
ϕ R
d
Fϕ(ξ) =
F
−1
ϕ(−ξ), F
−1
ϕ (ξ) = Fϕ (ξ) f ∈ L
1

R
d

Ff, F
−1
f ∈ C
0

R
d

u ∈ S



R
d

u Fu u
Fu, ϕ = u (ϕ) = u ( ϕ) , ∀ϕ ∈ S

R
d

.
F
−1
(u) = F [u (−x)] , u ∈ S

R
d

.
α = (α
1
, , α
d
) ∈ Z
d
+
|α| =
d

j=1

α
j
, w
α
=
d

j=1
w
α
j
j
,
D
α
=

α
1
∂x
α
1
1


α
d
∂x
α
d

d
α X
α
f (x) = x
α
f (x)
(D
α
f)

(w) = (2πiw)
α

f (w)
((−2πix)
α
f)

(w) = D
α

f (w)
FD
α
= (2πi)
|α|
X
α
F FX
α

=

i


|α|
D
α
F
f ∈ C


R
d

D
α

f (w) =

R
d
f (x) D
α

e
−2πix.w

dx =


R
d
(−2πix)
α
f (x) e
−2πix.w
dx.
x, w ∈ R
d
x
T
x
f (t) = f (t − x) .
M
w
f (t) = e
2πiw.t
f (t) .
f, g ∈ L
1

R
d

f ∗ g
(f ∗ g) (x) =

R
d
f (y) g (x −y) dy.

f

(x) = f (−x)
f (x) = f (−x)
f ∗ g  f
1
g
1

(f ∗ g) =

f.g
T
x
M
w
f(t) = e
−2πix.w
M
w
T
x
f (t)

(T
x
f) = M
−x

f


(M
w
f) = T
w

f

T
x
M
w
f = M
−x
T
w

f = e
−2πix.w
T
w
M
−x

f.

f

=


f

f = I

f
(f ∗ g) (x) = f, T
x
g


R
f ∈ L
1

R
d

α > 0

R
d
f (x) dx =

[0,α]
d


k∈Z
d
f (x + αk)


dx.
αk +[0, α]
d
0
R
d

R
d
f (x) dx =

k∈Z
d

αk+[0,α]
d
f (x) dx =

[0,α]
d

k∈Z
d
f (x + αk) dx.
f ∈ L
1

R
d


ε > 0 C > 0
|f (x)| ≤ C (1 + |x|)
−d−ε




f (w)



≤ C (1 + |w|)
−d−ε

n∈Z
d
f (x + n) =

n∈Z
d

f (n) e
2πin.x
.
∀x ∈ R
d
x ∈ R
d
ϕ(x) =


n∈Z
d
f(x + n) Z
d
f ∈ L
1

R
d

ϕ ∈ L
1
(T
d
)
ϕ(n) =

[0,1]
d
ϕ(x)e
−2πin.x
dx
=

[0,1]
d


k∈Z

d
f(x + k)e
−2πin.(x−k)

dx
=

R
d
f(x)e
−2πin.x
dx =

f(n).

n∈Z
d




f(n)



< ∞, ϕ
ϕ(x) =

k∈Z
d


f(n)e
2πin.x
ϕ
a
(x) = e

πx
2
a
a > 0 R
d
a > 0
ϕ
a
(w) = a
d/2
ϕ
1/a
(w) .
a = 1,

e
−πx
2


= e
−πw
2

a > 0 x, u, w, η ∈ R
d
T
x
M
w
ϕ
a
, T
u
M
η
ϕ
a
 =

a
2

d/2
e
πi(u−x)(η+w)
ϕ
2a
(u − x) ϕ
2
a
(η −w) .
ϕ
a

, M
w
T
x
ϕ
a
 =

R
d
e
−πt
2
/a
e
−π(t−x)
2
/a
e
−2πiw.t
dt
= e
−πx
2
/(2a)

R
d
e
−2π(t−x/2)

2
/a
e
−2πiw.t
dt
= ϕ
2a
(x)

T
x
2
ϕ
a
2


(w)
= e
−πix.w

a
2

d
2
ϕ
2a
(x)ϕ
2

a
(w).
M
−w
T
u−x
M
η
= e
−2πiη.(u−x)
M
η−w
T
u−x
T
x
M
w
ϕ
a
, T
u
M
η
ϕ
a
 = ϕ
a
, M
−w

T
u−x
M
η
ϕ
a

= e
2πiη.(u−x)
ϕ
a
, M
η−w
T
u−x
ϕ
a

=

a
2

d
2
e
2πiη.(u−x)
e
−πi(u−x).(η−w)
ϕ

2a
(u − x)ϕ
2
a
(η −w)
=

a
2

d
2
e
πi(u−x).(η+w)
ϕ
2a
(u − x)ϕ
2
a
(η −w).
a > 0

T
x
M
w
ϕ
a
: x, w ∈ R
d


L
2

R
d

X
ϕ
1
X = span

T
x
M
w
ϕ
1
: x, w ∈ R
d

(T
x
M
w
ϕ
1
)

= M

−x
T
w
ϕ
1
= e
−2πi x.w
T
w
M
−x
ϕ
1
,
X F
L
2

R
d

T
x
M
w
ϕ
1
, T
u
M

η
ϕ
1
 = F (T
x
M
w
ϕ
1
) , F (T
u
M
η
ϕ
1
),
X F X X
L
2

R
d

T
x
M
w
ϕ
1
, T

u
M
η
ϕ
1
 = 2
−d/2
e
πi(u−x).(η+w)
ϕ
2
(u − x) ϕ
2
(η −w) .
F (T
x
M
w
ϕ
1
) , F (T
u
M
η
ϕ
1
)
= e
−2πi(x.w−u.η)
T

w
M
−x
ϕ
1
, T
η
M
−u
ϕ
1

= 2
−d/2
e
−2πi(x.w−uη)
e
πi(η−w).(−x−u)
ϕ
2
(η −w) ϕ
2
(−u + x)
= T
x
M
w
ϕ
1
, T

u
M
η
ϕ
1
.
f =
n

k=1
c
k
T
x
k
M
w
k
ϕ
1
X
f
2
2
=
n

k,l=1
c
k

c
l
T
x
k
M
w
k
ϕ
1
, T
x
l
M
w
l
ϕ
1

=
n

k,l=1
c
k
c
l
F(T
x
k

M
w
k
ϕ
1
), F(T
x
l
M
w
l
ϕ
1
)
=


f,

f

=




f




2
2
.
f ∈ X
g = 0
f g
V
g
f(x, w) =

R
d
f(t)g(t − x)e
−2πit.w
dt, ∀x, w ∈ R
d
.
g V
g
f(x, ·)
f
x x x
V
g
f(x, w)
w x V
g
f(x, ·)
x
d = 1 R

2d
R
2d
f
g g V
g
f
R
d
R
2d
V
g
f f → V
g
f
g
f, g ∈ L
2

R
d

V
g
f R
2d
V
g
f (x, w) = (f · T

x
g)

(w)
= f, M
w
T
x
g
=


f, T
w
M
−x
g

= e
−2πix.w


f · T
w
g


(−x)
= e
−2πix.w

V
g

f (w, −x)
= e
−2πix.w
(f ∗ M
w
g

) (x)
=


f ∗ M
−x
g


(w)
= e
−πix.w

R
d
f

t +
x
2


g

t −
x
2

e
−2πit.w
dt.
g
(f, g) →
V
g
f f ⊗g f ⊗ g(x, t) = f(x)g(t) T
a
T
a
F (x, t) = F (t, t − x) F
2
F
2
F (x, w) =

R
d
F (x, t)e
−2πit.w
dt F
R

2d
f, g ∈ L
2
(R
d
)
V
g
f = F
2
T
a
(f ⊗
g).
V
g
f
V
g
(T
u
M
η
f)(x, w) = e
−2πiu.w
V
g
f(x − u, w − η),
x, u, w, η ∈ R
d

|V
g
(T
u
M
η
f)(x, w)| = |V
g
f(x − u, w − η)|.
f
1
, f
2
, g
1
, g
2
∈ L
2

R
d

V
g
j
f
j
∈ L
2


R
2d

j = 1, 2
V
g
1
f
1
, V
g
2
f
2

L
2
(R
2d
)
= f
1
, f
2

g
1
, g
2

.
f, g ∈ L
2
(R)
V
g
f
2
= f
2
g
2
.
g
2
= 1
f
2
= V
g
f
2
, f ∈ L
2

R
d

.
L

2

R
d

L
2

R
2d

g, γ ∈
L
2

R
d

g, γ = 0 f ∈ L
2

R
d

f =
1
γ, g

R
2d

V
g
f (x, w) M
w
T
x
γdwdx.
V
g
f ∈ L
2

R
d


f =
1
γ, g

R
2d
V
g
f (x, w) M
w
T
x
γdxdw
L

2

R
d



f, h

=
1
γ, g

R
2d
V
g
f (x, w)

h, M
w
T
x
γ

dxdw
=
1
γ, g
V

g
f, V
γ
h = f, h.

f = f
g, γ ∈ L
2
(R
d
) K
n
⊆ R
2d
n ≥ 1

n≥1
K
n
= R
2d
K
n
⊆ int K
n+1
, n = 1, 2, f
n
f
n
=

1
γ, g

K
n
V
g
f (x, w) M
w
T
x
γdxdw.
lim
n→∞
f − f
n

2
= 0.
f
2
= g
2
= 1 U ⊆ R
2d
ε  0

U
|V
g

f (x, w)|
2
dxdw  1 − ε.
|U|  1 − ε
|V
g
f (x, w)| = |f, M
w
T
x
g|  f
2
g
2
(x, w) ∈ R
2d
.
1 − ε 

U
|V
g
f (x, w)|
2
dxdw  V
g
f
2

|U| ≤ |U|.

f, g ∈ L
2

R
d

2  p < ∞

R
2d
|V
g
f (x, w)|
p
dxdw 

2
p

d
(f
2
g
2
)
p
.
f ∈ L
2


R
d

Af(x, w) =

R
d
f

t +
x
2

f

t −
x
2

e
−2πitw
dt
= e
πix.w
V
f
(x, w) .
f g ∈ L
2


R
d

A (f, g) (x, w) =

R
d
f

t +
x
2

g

t −
x
2

e
−2πitw
dt
= e
2πit.w
V
g
f (x, w) .
(Af)

(x, w) = Af (−x, −w)) = Af (x, w) .

V
f
f
2
= f
2
f
2
= f
2
2
|Af (x, w)|
2
=
|V
f
(x, w)|
2

R
2d
|Af (x, w)|
2
dxdw =

R
2d
|V
f
(x, w)|

2
dxdw = V
f
f (x, w)
2
= f
4
2
.
f
2
= 1 U ⊂ R
2d
ε > 0

U
|Af (x, w)|
2
dxdw  1 − ε,
|U|  1 − ε.

×