Tải bản đầy đủ (.pdf) (1 trang)

Đề thi tuyển sinh vào lớp 10 môn Toán trường THPT Chuyên KHTN, ĐHQG Hà Nội năm 2013,2014

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (242.82 KB, 1 trang )

HÀ NỘI TRƯỜNG THPT CHUYÊN KHTN - ĐHQG HÀ NỘI
NĂM HỌC 2013 - 2014
ĐỀ CHÍNH THỨC
Môn: Toán (vòng 2)
Ngày thi: 09/06/2013
Thời gian làm bài: 150 phút.
Không kể thời gian giao đề
Câu 1: (2,0 điểm)
1) Giải h ệ phương trình:
33
x y 1 x y xy
7xy y x 7

    

  

2) Giải phương trình:
2
x 3 1 x 3 x 1 1 x      
Câu 2: (1,5 điểm)
1) Tìm cặp số nguyên (x, y) thỏa mãn
5x
2
+ 8y
2
= 20412.
2) Với x, y là các số thực dương thỏa mãn x + y ≤ 1.
Tìm giá trị n h ỏ nhất của biểu thức:
22
11


P 1 x y
xy

  


.
Câu 4: (3,5 điểm)
Cho tam giác nhọn A B C n ội t i ếp đường tròn (O) có trực tâm H. Gọi P là điểm n ằm trên đường
tròn ngoại t i ếp tam giác HBC (P khác B, C và H) và nằm trong tam giác ABC. PB cắt (O) tại
M khác B, PC cắt (O) tại N khác C. BM cắt AC tại E, CN cắt AB tại F. Đường tròn ngoại t i ếp
tam giác AME và đường tròn ngoại t i ếp tam giác ANF cắt nhau tại Q khác A.
1) Chứng minh rằng ba điểm M, N, Q thẳng hàng.
2) Giả sử AP là phân giác góc MAN. Chứng minh rằng khi đó PQ đi qua trung điểm c ủa BC.
Câu 5: (1,0 điểm)
Giả sử dãy số thực có thứ tự x
1
≤ x
2
≤ ≤ x
192
t hỏa mãn các điều kiện
x
1
+ x
2
+ + x
192
= 0 và |x
1

| + |x
2
| + + |x
192
| = 2013
Chứng minh rằng:
192 1
2013
xx
96

.
Hế t
Họ và tên thí sinh: Số báo danh:
Ghi chú: Cán bộ coi thi không giải thích gì thêm!

SỞ GIÁO DỤC VÀ ĐÀO TẠO K Ỳ THI TUYỂN SINH VÀO LỚP 10

×