SỞGD&ĐTĐỒNGTHÁP ĐỀTHITHỬTUYỂNSINHĐẠIHỌCNĂM2014 LẦN1
THPTChuyênNguyễnQuangDiêu Môn:TOÁN;Khối A+ A
1
+B
Thờigianlàmbà i:180phút,khôngkểthờigianphátđề
ĐỀCHÍNHTHỨC
I.PHẦNCHUNGCHOTẤTCẢTHÍSINH(7,0 điểm)
Câu1(2,0 điểm).Chohàmsố
( )
3 2
3 3 2 1 = - + + + +y x x m m x
(1),với
m
làthamsốthực.
a) Khảosátsựbiến thiênvàvẽđồthịcủahàmsố (1) khi 0 m = .
b)Tìm
m
đểđồthịhàmsố (1) cóhaiđiểmcựctrịđốixứngnhauquađiểm
( )
1;3 I .
Câu2(1,0 điểm).Giảiphươngtrình cos tan 1 tan sin + = +x x x x .
Câu3(1,0 điểm).Giảihệphươngtrình
2 2
2
4 4 2 2 0
8 1 2 9 0
x xy y x y
x y
ì
+ + + + - =
ï
í
- + - =
ï
î
( , ) x yΡ .
Câu4(1,0 điểm).Tính tíchphân
3
1
2 4
0 1
=
+ +
ò
x dx
I
x x
.
Câu5(1,0 điểm). Chohìnhlăngtrụ . ' ' ' ' ABCD A B C D cóđáy ABCD làhìnhvuôngcạnh a ,cạnhbên
' AA a =
,hìnhchiếuvuônggóccủa ' A trênmặtphẳng ( ) ABCD trùngvớ itrungđiểm I của AB .Gọi K
làtrungđiểmcủa
BC
.Tính theoathểtíchkhốichóp
'. A IKD
vàkhoảngcáchtừ I đếnmặtphẳng
( )
' A KD .
Câu6(1,0 điểm).Chocácsốthựcdương , , x y z thỏamãn
3
2
x y z + + £ .Tìmgiátrịnhỏnhấtcủabiểu
thức
2 2 2
1 1 1 x y z
P
y z x x y z
= + + + + + .
II.PHẦNRIÊNG(3 ,0 điểm): Thísinhchỉđượclàmmộttronghaiphần(phầnAhoặcB)
A.Th eochươngtrìnhChuẩn
Câu7.a(1.0điểm).Trongmặtphẳngvớihệtrụctọađộ ( ) Oxy ,chohìnhchữnhật
ABCD
cóđườ ngchéo
: 2 9 0 AC x y + - = .Điểm (0;4) M nằmtrêncạnh BC .Xácđịnhtọađộcácđỉnhcủahìnhchữnhậtđãcho
biếtrằngdiệntíchcủahìnhchữnhậtđóbằng 6 ,đườngthẳng CD điqua (2;8) N vàđỉnh C cótungđộ
làmộtsốnguyên.
Câu8.a(1.0điểm).Trongkhônggian vớihệtọađộOxyz ,chomặtphẳng ( ): 3 0 P x y z + + + = vàhai
điểm (3;1;1), (7;3;9) A B .Tìmtrênmặtphẳng ( ) P điểm M saocho
MA MB +
uuur uuur
đạtgiátrịnhỏnhất.
Câu9.a(1.0điểm).Trongmộtchiếchộp có6viênbiđỏ,5viênbivàngvà4viênbitrắng.Lấy ngẫunhiên
tronghộpra4viênbi.Tínhxácsuấtđểtrong4bi lấyrakhông cóđủcả bamàu.
B.TheochươngtrìnhNângcao
Câu7.b (1.0 điểm). Trongmặtphẳngvớihệtrụctọađộ
( ) Oxy
,chohìnhchữnhật
ABCD
.Haiđiểm
, B C
thuộc trụctung.Phươngtrình đườngchéo :3 4 16 0 AC x y + - = .Xácđịnhtọađộcácđỉnhcủahìnhchữ
nhậtđ ãcho biếtrằngbánkínhđườngtrònnộitiếptamgiác
ACD
bằng1.
Câu8.b (1.0 điểm). TrongkhônggianvớihệtọađộOxyz,chođườngthẳng
1 1 1
( ):
1 2 3
x y z - + -
D = =
-
và
hai điểm (2;1;1); (1;1;0) A B .Tìm điểm
M
thuộc ( ) D saochotamgiác
AMB
códiệntíchnhỏnhất.
Câu9.b (1.0 điểm).Giảihệphươngtrình
1 lg( )
10 50
lg( ) lg( ) 2 lg5
x y
x y x y
+ +
ì
=
ï
í
- + + = -
ï
î
.
H ết
www.VNMATH.com