Sở gd & đt nghệ an
Tr ờng Thpt ặng thai mai
Đề thi khảo sát chất lợng cuối học kỳ II
Năm học 2010-2011
Đề chính thức
Môn Toán . Khối 10. Thời gian 90 phút
C âu1 .(2,5đ) Giải các bất phơng trình sau:
1) x
2
- 7x - 8
0
2)
0
1
)52)(2(
++
x
xx
Câu2:(1,5 đ)
1. Giải phơng trình
45
2
+ xx
- x = 4.
2. Tìm các giá trị của m để phơng trình sau có nghiệm :
2
)4)(2( xx +
+ x
2
- 2x + m = 0
Câu 3:(1,5đ)
1. Cho tan
= - 2 ,
2
3
2
<<
.Tính các giá trị lợng giác còn lại của cung
2. Rút gọn biểu thức :
M = cos (
+ 20
) + cos(13
+
) + cos (
+
2
9
) + cos
)
2
21
(
Câu 4:(1đ)Cho bảng số liệu thống kê :
Điểm thi học kỳ I , môn Toán , của một nhóm gồm 15 học sinh nh sau:
8 6 7 7 4
5 8 8 9 10
8 6 5 9 9
a) Lập bảng phân bố tần số
b) Tính số trung bình cộng ( chính xác đến hàng phần trăm), tìm số trung vị và
mốt của bảng số liệu trên.
Câu 5:(3,5 đ) Cho đờng tròn (C) có phơng trình x
2
+ y
2
- 4x + 2y - 4 = 0.
1) Tìm tọa độ tâm I và tính bán kính của (C).
2)Viết phơng trình tổng quát đờng thẳng (d) đi qua tâm I của đờng tròn và vuông
góc với đờng thẳng
)(
: x - 2y + 2 = 0
3) Lập phơng trình tiếp tuyến của đờng tròn (C) biết tiếp tuyến đi qua M(-1;- 5) .
4) Tìm quỹ tích các điểm N mà từ đó kẻ đợc tới (C) hai tiếp tuyến vuông góc nhau.
*** Hết ***
đáp án và biểu điểm toán 10 - học kỳ ii năm học 2010-2011
1
câu nội dung điểm
câu 1
1. ) x
2
- 7x - 8
0
Tập nghiệm T = [-1; 8]
1 đ
2)
0
1
)52)(2(
++
x
xx
Đk : x
1
* x + 2 = 0
2
=
x
* -2x +5 = 0
2
5
= x
* x - 1 = 0
1= x
Bảng xét dấu vế trái
x -
-2
1
2
5
+
x+2 - 0 + + +
-2x+5 + + + 0 -
x - 1 - - 0 + +
vế trái + 0 - // + 0 -
Tập nghiệm của BPT là T = (-
; -2]
(1;
2
5
]
0,25
0,25
0,75
0,25
Câu 2
1. Giải phơng trình
45
2
+ xx
- x = 4
pt
45
2
+ xx
= x +4
+=+
+
222
)4()45(
04
xxx
x
=++
0)4()45(
4
222
xxx
x
=+
0)6)(84(
4
22
xxxx
x
=
=
6
0
x
x
0,25
0,25
0,5
2.Tìm các giá trị của m để phơng trình sau có nghiệm :
2
)4)(2( xx +
+ x
2
- 2x + m = 0 (1)
Giải : Đk -2
4
x
Pt
2
82
2
++ xx
+ x
2
- 2x + m = 0
Đặt t =
82
2
++ xx
=
129
2
+ xx
3
]3;0[t
Khi đó ta có phơng trình 2t - t
2
+ 8 + m = 0
t
2
- 2t - 8 = m (2)
pt (1) có nghiệm
pt (2) có nghiệm
]3;0[t
Xét hàm số f(t) = t
2
- 2t - 8 trên [0;3]
bảng biến thiên của f(t)
t 0 1 3
f(t) -5
-8
-9
Từ bảng biến thiên suy ra m
[ -9; -5]
0,25
0,25
0,25
0,25
Câu 3
1. Cho tan
= - 2 ,
2<<
.Tính các giá trị lợng giác còn lại của cung
Giải:* cot
=
tan
1
=
2
1
0,25
0,25
2
*Do tan
< 0 , và
2
3
2
<<
nên cos
< 0, sin
>0
* áp dụng công thức
2
2
tan1
cos
1
+=
5
1
cos =
* từ công thức tan
=
cos
sin
sin
= tan
.cos
=
5
2
0,25
0,25
2. Rút gọn biểu thức :
M = cos (
+ 20
) + cos(13
+
) + cos (
+
2
9
) + cos
)
2
21
(
Ta có:
cos (
+ 20
) = cos
;
cos(13
+
) = cos(
+
) = - cos
cos (
+
2
9
) = cos(
+
2
+ 4
) = cos(
+
2
) = cos(
2
-(-
)) = sin (-
)= -sin
cos
)
2
21
(
= cos(
)
2
= sin
Vậy M = 0
0,25
0,25
Câu 4 a, Bảng phân bố tần số
Điểm 4 5 6 7 8 9 10
tần số 1 2 2 2 4 3 1 N= 15
b.
x
=
27,7
15
10.19.38.47.26.25.24.1
++++++
M
e
= x
8
= 8
M
o
= 8
0,25
0,25
0,25
0,25
Câu 5
Cho đờng tròn (C) có phơng trình x
2
+ y
2
- 4x + 2y - 4 = 0.
1. Tâm I ( 2; -1)
bán kính R = 3
0,5 đ
0,5
2. Viết phơng trình tổng quát đờng thẳng (d) đi qua tâm I của đờng tròn và vuông góc với
đờng thẳng
)(
: x - 2y + 2 = 0
*Do d
nên pt (d ) có dạng 2x + y + c = 0
* Do (d) qua I(2;-1) nên 2.2 + (-1) + c = 0
c = - 3
vậy (d) 2x + y - 3 = 0
0,5
0,5
3) Lập phơng trình tiếp tuyến của đờng tròn (C) biết tiếp tuyến đi qua
M(-1;- 5)
* Đờng thẳng (D) đi qua M (-1;-5) có pt dạng a( x+ 1 ) + b (y + 5) = 0 (a
2
+ b
2
0
)
hay (D) : ax + by + a+ 5b = 0.
* (D) tiếp xúc (C)
d( I, (D)) = R
22
52
ba
baba
+
++
= 3
ba 43 +
= 3
22
ba +
24ab + 7 b
2
= 0
=
=
ba
b
724
0
* với b= 0 ta chọn a = 1 đợc tiếp tuyến là x + 1 = 0;
* Với 24a = -7b ta chọn a =7 , b = -24 ta đợc tiếp tuyến là 7x - 24y - 113 = 0 .
Chú ý : Nếu hs viết đợc 1 tiếp tuyến thì cho 0,5
0,25
0,25
0,25
0,25
Đáp án này chỉ nêu một cách giải , nếu học sinh làm bài theo cách khác mà đúng thì vẫn cho điểm câu đó
3
Gi¶i bÊt ph¬ng tr×nh
2
43
2
<
++−
x
xx
2.Gi¶i bÊt ph¬ng tr×nh
2
43
2
<
++−
x
xx
§k:
≥++−
≠
043
0
2
xx
x
⇔
≤<
<≤−
3
4
0
01
x
x
* Víi -1
0<≤ x
ta thÊy tö d¬ng , mÉu ©m , nªn mäi x
∈
[-1;0) lµ nghiÖm cña BPT.
* Víi 0< x
3
4
≤
ta cã BPT
⇔
43
2
++− xx
+2 < 2x
⇔
43
2
++− xx
< 2(x -1)
⇔
>−
>
097
1
2
xx
x
⇔
>
<
>
7
9
0
1
x
x
x
3
4
7
9
≤<⇒ x
VËy tËp nghiÖm cña bÊt ph¬ng tr×nh lµ T = [-1;0)
]
3
4
;
7
9
(∪
0,25
0,25
0,25
0,25
4