Tải bản đầy đủ (.doc) (6 trang)

Đề thi thử đại học môn Toán có đáp án 23

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (175.76 KB, 6 trang )

Gv: Hong Vn Trng

THI TH I HC, CAO NG NM 2012.
Mụn thi : TON ( 194 )
Cõu I (2.0 im) Cho hm s
4 2
2 1y x mx m= +
(1) , vi
m
l tham s thc.
1.Kho sỏt s bin thiờn v v th hm s (1) khi
1m
=
.
2.Xỏc nh
m
hm s (1) cú ba im cc tr, ng thi cỏc im cc tr ca th to thnh mt
tam giỏc cú bỏn kớnh ng trũn ngoi tip bng
1
.
Cõu II : ( 2, 0 im)
Gii cỏc phng trỡnh
1.
3 3
4sin x.c 3x 4cos x.sin3x 3 3c 4x 3os os+ + =
2.
2 2
3 3 3
log (x 5x 6) log (x 9x 20) 1 log 8
+ + + + + = +
CõuVI:( 1,0 im)


Cho hỡnh chúp S.ABCD cú ỏy ABCD l hỡnh thoi ; hai ng chộo AC =
2 3a
,
BD = 2a v ct nhau ti O; hai mt phng (SAC) v (SBD) cựng vuụng gúc vi mt phng (ABCD).
Bit khong cỏch t im O n mt phng (SAB) bng
3
4
a
, tớnh th tớch khi chúp S.ABCD theo
a.
CõuV :( 2, 0 im).
1. Tính tích phân sau:
2
2 2
0
cos .cos 2 .I x x dx

=


1. Cho 3 số dơng x, y, z thoả mãn : x +3y+5z
3
.Chứng minh rằng:
46253
4
+zxy
+
415
4
+xyz

+
4815
4
+yzx

45
5
xyz.
Cõu VI :(2,0 im)
1. Trong mt phng (Oxy), cho ng trũn (C ):
2 2
2x 2y 7x 2 0+ =
v hai im
A(-2; 0), B(4; 3). Vit phng trỡnh cỏc tip tuyn ca (C ) ti cỏc giao im ca
(C ) vi ng thng AB.
2. Cho hm s
2
2x (m 1)x 3
y
x m
+ +
=
+
. Tỡm cỏc giỏ tr ca m sao cho tim cn ca th hm s
tip xỳc vi parabol y = x
2
+5
Cõu VII :(1,0 im) Cho khai trin
( )
x 1

3
x 1
2
2
8
1
log 3 1
log 9 7
5
2 2


+
+

+


. Hóy tỡm cỏc giỏ tr ca x bit rng s
hng th 6 trong khai trin ny l 224

***Hết***
Gv: Hoàng Văn Trường
ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012.
Môn thi : TOÁN (ĐỀ 194 )
(Đáp án- Thang điểm gồm 04 trang)
Câu Nội dung Điểm
I
(2điểm)
1.(1 điểm). Khi

1m
=
hàm số trở thành:
4 2
2y x x= −
• TXĐ: D=
¡
• Sự biến thiên:
( )
' 3 2
0
4 4 0 4 1 0
1
x
y x x x x
x
=

= − = ⇔ − = ⇔

= ±

0.25

( ) ( )
0 0, 1 1
CD CT
y y y y= = = ± = −
0.25
• Bảng biến thiên

x -

-1 0 1 +

y


0 + 0

0 +

y +

0 +

-1 -1
0.25
• Đồ thị
0.25
2. (1 điểm)
( )
' 3 2
2
0
4 4 4 0
x
y x mx x x m
x m
=


= − = − = ⇔

=

Hàm số đã cho có ba điểm cực trị

pt
'
0y =
có ba nghiệm phân biệt và
'
y
đổi dấu khi
x
đi qua các nghiệm đó
0m⇔ >
0.25
• Khi đó ba điểm cực trị của đồ thị hàm số là:
( )
( ) ( )
2 2
0; 1 , ; 1 , ; 1A m B m m m C m m m− − − + − − + −
0.25

2
1
.
2
ABC B A C B
S y y x x m m= − − =

V
;
4
, 2AB AC m m BC m= = + =
0.25

( )
4
3
2
1
2
. .
1 1 2 1 0
5 1
4
4
2
ABC
m
m m m
AB AC BC
R m m
S
m m
m
=

+


= = ⇔ = ⇔ − + = ⇔


=


V
0.25
Câu II
(2,0
1. (1,0 điểm)
Phương trình đã cho tương đương với phương trình :
1. Phương trình :
3 3
4sin x.cos3x 4cos x.sin 3x 3 3 cos4x 3
+ + =
2 2
4 (1 cos x)sin x.cos3x (1 sin x)cos x.sin 3x 3 3 cos4x 3[ ]⇔ − + − + =

4 sin x.cos3x cos x.sin 3x) cos xsin x(cosx.cos3x sin x.sin 3x) 3 3cos4x 3[( ]
⇔ + − + + =
1 1
4 sin 4x sin 2x.cos2x 3 3cos4x 3 4 sin 4x sin 4x 3 3co s4x 3 3sin 4x 3 3 cos4x 3
2 4
[ ]
 
⇔ − + = ⇔ − + = ⇔ + =
 ÷
 
0,50

8
6
4
2
-2
-4
-6
-8
-10
-5
5
10
f x
()
= x
4
-2

x
2
Gv: Hoàng Văn Trường
1 3 1
sin 4x 3 cos4x 1 sin 4x cos 4x sin(4x ) sin
2 2 2 3 6
π π
⇔ + = ⇔ + = ⇔ + =
4x k2 4x k2
4x k2 x k
3 6 3 6 6 24 2
(k Z)

5 5
x k
4x k2 4x k2
4x k2
8 23 6 3 6
2
π π π π π π π
   
+ = + π + = + π
= − + π = − +
   
⇔ ⇔ ⇔ ⇔ ∈
   
π ππ π π π
π
 
 
= +
+ = + π + = + π
= + π
 
 
 
 

0,50
Đáp án Điểm
2.(1,0 điểm) PT
2 2
3 3 3

log (x 5x 6) log (x 9x 20) 1 log 8
+ + + + + = +
(*)
+ Điều kiện :
2
2
x 5
x 5x 6 0 x 3 x 2
4 x 3
x 5 x 4
x 9x 20 0
x 2
< −


+ + > <− ∨ > −



⇔ ⇔ − < <−
 

<− ∨ >−
+ + >




> −


, và có :
3 3
1 log 8 log 24
+ =
+ PT (*)
2 2
2 2
3 3
log (x 5x 6)(x 9x 20) log 24
(x 5x 6)(x 9x 20) 24
(x 5) ( 4 x 3) (x 2)
(x 5) ( 4 x 3) (x 2)

 
+ + + + =

+ + + + =

 
⇔ ⇔
 
<− ∨ − < <− ∨ > −
<− ∨ − < <− ∨ > −


(x 2)(x 3)(x 4)(x 5) 24 (*)
(x 5) ( 4 x 3) (x 2) (**)


+ + + + =




< − ∨ − < <− ∨ > −

+ Đặt
2
t (x 3)(x 4) x 7x 12 (x 2)(x 5) t 2
= + + = + + ⇒ + + = −
, PT (*) trở thành :
t(t-2) = 24
2
(t 1) 25 t 6 t 4
⇔ − = ⇔ = ∨ = −
• t = 6 :
2 2
x 1
x 7x 12 6 x 7x 6 0
x 6
=−

+ + = ⇔ + + = ⇔

=−

( thỏa đkiện (**))
• t = - 4 :
2 2
x 7x 12 4 x 7x 16 0
+ + = − ⇔ + + =

: vô nghiệm
+ Kết luận : PT có hai nghiệm là x = -1 và x = - 6
0,25
0,25
0,25
0,25
Tính thể tích khối chóp S.ABCD theo a
Câu III
(1,0
điểm)
Từ giả thiết AC =
2 3a
; BD = 2a và AC ,BD vuông góc với nhau tại trung điểm O của
mỗi đường chéo.Ta có tam giác ABO vuông tại O và AO =
3a
; BO = a , do đó
·
0
60A DB =
Hay tam giác ABD đều.
Từ giả thiết hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD) nên
giao tuyến của chúng là SO ⊥ (ABCD).
0,25
Do tam giác ABD đều nên với H là trung
điểm của AB, K là trung điểm của HB ta có
DH AB⊥
và DH =
3a
; OK // DH và
1 3

2 2
a
OK DH= =
⇒ OK ⊥ AB ⇒ AB ⊥
(SOK)
Gọi I là hình chiếu của O lên SK ta có OI ⊥
SK; AB ⊥ OI ⇒ OI ⊥ (SAB) , hay OI là
khoảng cách từ O đến mặt phẳng (SAB).
0,25
Tam giác SOK vuông tại O, OI là đường cao 0,25
S
A
B
K
H
C
O
I
D
3a
a
Gv: Hong Vn Trng

2 2 2
1 1 1
2
a
SO
OI OK SO
= + =

Din tớch ỏy
2
4 2. . 2 3
D
S
ABC ABO
S OAOB a

= = =
;
ng cao ca hỡnh chúp
2
a
SO =
.
Th tớch khi chúp S.ABCD:
3
.
1 3
.
3 3
D DS ABC ABC
a
V S SO= =
0,25
IV
(1,0
im)
Cho 3 số dơng x, y, z thoả mãn : x +3y+5z


3 . Chứng minh rằng:

xy3
4625
4
+z
+
zx5
415481
44
+++ xyzy
xyz545
Bất đẳng thức

2
2
4
x
x +
+
2
2
9
4
9
y
y +
+
2
2

25
4
25
z
z +


45

VT
+++++
22
)
5
2
3
22
()53(
zyx
zyx
3
2
2
3
)5.3.(
36
)5.3.(.9
zyx
zyx +
. 0,25

Đặt t =
3
2
)5.3.( zyx

ta có
1
3
53
)5.3.(
3
3
=






++

zyx
zyx
do đó t

1 0,25
Điều kiện . 0 < t

1. Xét hàm số f(t)=
t9

+
t
36
36 36
36 27 2 36 . 27t t t
t t
= +
=45 0,25
Dấu bằng xảy ra khi: t=1 hay x=1; y=
3
1
; z=
5
1
. 0,25
Cõu V.
1.(1,0 im)
(2,0
im)
1/ + ng trũn (C ) :
2
2 2 2 2 2
7 7 65
2x 2y 7x 2 0 x y x 1 0 x y
2 4 16

+ = + = + =





(C ) cú tõm
7
I ;0
4



v bỏn kớnh
65
R
4
=
+ ng thng AB vi A(-2; 0) v B(4; 3) cú phng trỡnh
x 2 y x 2
y
6 3 2
, hay :
+ +
= =
+ Giao im ca (C ) vi ng thng AB cú ta l nghim h PT
2
2 2
2
x 2
5x(x 2) 0
2x 2y 7x 2 0
2x 2 7x 2 0
x 0; y 1
2

x 2
x 2
x 2; y 2
x 2
2
2
2
y =
y =
y =

+

=

+ =
+ =


= =




+
+

= =
+






0,25
0,25
Gv: Hoàng Văn Trường
Vậy có hai giao điểm là M(0; 1) và N(2; 2)
+ Các tiếp tuyến của (C ) tại M và N lần lượt nhận các vectơ
7
IM ;1
4
 
= −
 ÷
 
uuur

1
IN ;2
4
 
=
 ÷
 
uur
làm các vectơ pháp tuyến , do đó các TT đó có phương trình lần lượt là :

7
(x 0) 1(y 1) 0 7x 4y 4 0

4
, hay : − − + − = − + =

1
(x 2) 2(y 2) 0 x 8y 18 0
4
, hay : − + − = + − =
0,50
2/ Cho hàm số
2
2x (m 1)x 3
y
x m
+ + −
=
+
. Tìm các giá trị của m sao cho tiệm cận của đồ thị
hàm số tiếp xúc với parabol y = x
2
+5
Điểm
Hàm số
2
2x (m 1)x 3
y
x m
+ + −
=
+
xác định với mọi

x m≠ −
Viết hàm số về dạng
2
m m 3
y 2x 1 m
x m
− −
= + − +
+
+ TH1 :
2
1 13
m m 3 0 m
2
±
− − = ⇔ =
: Có hàm số bậc nhất
y 2x 1 m= + −
(
x m≠ −
) :
đồ thị không có tiệm cận
+ TH2 :
2
1 13
m m 3 0 m
2
±
− − ≠ ⇔ ≠
: Đồ thị hàm số có tiệm cận đứng là đường thẳng

(d
1
) x = -m
và tiệm cận xiên là đường thẳng (d
2
) y = 2x + 1 - m
+ Đường thẳng (d
1
) x = - m luôn cắt parabol parabol y = x
2
+5 tại điểm (-m ; m
2
+5) ( với
mọi
1 13
m
2
±

) và không thể là tiếp tuyến của parabol
+ Tiệm cận xiên (d
2
) y = 2x + 1 - m tiếp xúc với parabol y = x
2
+5

PT x
2
+5 = 2x + 1
- m , hay PT x

2
– 2x + 4 +m = 0 có nghiệm kép
'⇔ ∆ =
1-(4 + m) = 0
m 3⇔ = −
( thỏa
điều kiện) Kết luận : m = -3 là giá trị cần tìm

0,25
0,25
0,25
0,25
(1,0 điểm) Cho khai triển
( )
x 1
3
x 1
2
2
8
1
log 3 1
log 9 7
5
2 2


− +
+
 

+
 ÷
 
. Hãy tìm các giá trị của x biết rằng số hạng
thứ 6 trong khai triển này là 224
VI.
(1,0
điểm)
( )
x 1
3
x 1
2
2
8
1
log 3 1
log 9 7
5
2 2


− +
+
 
+
 ÷
 
Ta có :
( )

k 8
8
k 8 k k
8
k 0
a b C a b
=

=
+ =

với
( )
( )
( )
x 1
3
x 1
2
2
1
1 1
log 3 1
log 9 7
x 1 x 1
5
3 5
a 2 9 7 b 2 3 1 = ;



− +

+
− −
= + = = +
+ Theo thứ tự trong khai triển trên , số hạng thứ sáu tính theo chiều từ trái sang phải của
khai triển là
( ) ( ) ( ) ( )
3 5
1 1
1
5 x 1 x 1 x 1 x 1
3 5
6 8
T C 9 7 . 3 1 56 9 7 . 3 1
− −
− − − −
   
= + + = + +
 ÷  ÷
   
0,25
0,25
0,25
Gv: Hoàng Văn Trường
+ Theo giả thiết ta có :
( ) ( )
x 1
1
x 1 x 1 x 1 x 1

x 1
9 7
56 9 7 . 3 1 4 9 7 4(3 1)
3 1
= 224


− − − −

+
+ + ⇔ = ⇔ + = +
+

( )
x 1
2
x 1 x 1
x 1
3 1 x 1
3 4(3 ) 3 0
x 2
3 3

− −


= =

⇔ − + = ⇔ ⇔



=
=


0,25

×