Tải bản đầy đủ (.pdf) (5 trang)

ÔN TOÁN ĐẠI HỌC ĐỀ 1 NĂM 2014

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (196.94 KB, 5 trang )

Website: dophuongthcsnt.violet.vn


Biên soạn: Đỗ Việt Phương - Nam Trực, Nam Định
ÔN TOÁN ĐẠI HỌC ĐỀ 1 NĂM 2014
Thời gian làm bài 150 phút

Câu I (2,0 điểm) Cho hàm số
3 2
3( 1) 6 3 4y x m x mx m     
.
1. Khảo sát và vẽ đồ thị hàm số với
m 0
.
2. Gọi

là tiếp tuyến của đồ thị (C
m
) tại điểm A có hoành độ là 1. Tìm m để

cắt đồ
thị tại một điểm B khác A sao cho
OAB
là tam giác vuông cân tại O.

Câu II (2,0 điểm)
1. Giải phương trình lượng giác:
3
4sin 2cos (sin 1) 4sin 1 0x x x x    
.
2. Giải hệ phương trình:


2 2
1 3
2
xy x y
x y x y
  


 



Câu III (1,0 điểm) Tính tích phân:
1
0
(3 1)(2 1)
x
x x dx  



Câu IV (1,0 điểm) Cho khối chóp S.ABCD có ABCD là hình chữ nhật,
2AB a
,
2AD a
.
SA
vuông góc với đáy
ABCD
. Gọi M là trung điểm CD và góc giữa hai mặt phẳng (SBM)

và (ABCD) là 60
o
. CMR
( )BM SAC
và tính thể tích khối chóp S.BCM theo a.

Câu V(1,0 điểm) Cho
, , , 0a b a b 
CMR:
2 2
3 3 1 1
2 2
4 4 2 2
a b a b a b
     
      
     
     


Câu VI(1,0 điểm) Trong mặt phẳng (Oxy) cho
ABC
có đỉnh A(1;2) đường trung tuyến BM:
2 1 0x y  
đường phân giác trong CD:
1 0x y  
Viết phương trình cạnh BC.


Câu VII(1,0 điểm) Trong không gian với hệ tọa độ Oxyz cho

   
A 2;2; 2 , B 0; 1;2 ,   

 
C 2;2; 1
. Viết phương trình mặt phẳng (P) đi qua A, song song với BC và các trục
y’Oy, z’Oz
tại M và N khác với gốc tọa độ sao cho
ON 2OM
.

Câu VIII(1,0 điểm) Tìm số nguyên dương n biết:

  
   
         
2 3 2 2 1 2 1
2 1 2 1 2 1 2 1
2 3.2.2 ( 1) ( 1)2 2 (2 1)2 40200
k k k n n
n n n n
C C k k C n n C
.














Website: dophuongthcsnt.violet.vn


Biên soạn: Đỗ Việt Phương - Nam Trực, Nam Định
ĐÁP ÁN ÔN TOÁN ĐẠI HỌC ĐỀ 1 NĂM 2014
Câu Đáp án
I
a) Khi
0m 
ta có
3 2
y x 3x 4   .
* Tập xác định: D = R
* Sự biến thiên:
 Chiều biến thiên:
2
' 3 6y x x 
0
' 0
2
x
y
x



 




 H/s ĐB trên các khoảng
( ;0)

(2; )
, NB trên khoảng
(0;2)

 Cực trị: H/s đạt CĐ tại
D
0 : 4
C
x y 
H/s đạt CT tại 2 : 0
CT
x y 
 Giới hạn:
lim
x
y

  lim
x
y


 

 Chiều biến thiên:
 
, 2
y 3x 6x 3x x 2   

H/s không có tiệm cận
 Bảng biến thiên:

* Đồ thị :
Đồ thị đi qua (0;4) và (-1;0), nhận
điểm uốn I(1;2) làm tâm đối xứng






.



2) Ta có:
2
' 3 6( 1) 6y x m x m   
1 2 ' 3x y y     

PTTT:
3( 1) 2y x   


PT hoành độ giao điểm của tiếp tuyến

và đồ thị (C
m
):
3 2
3( 1) 6 3 4 3( 1) 2x m x mx m x        
2
1
( 1) ( 3 1) 0
3 1
x
x x m
x m


    

 


Ta có: B(
3m 1; 9m 2  
)
 
1;2 , (3 1; 9 2)OA OB m m  
 



1B A m  

OAB
vuông cân tại A
2 2 2 2
(3 1) 2( 9 2) 0
. 0 1
3
(3 1) ( 9 2) 1 2
m m
OA OB
m
OA OB
m m
    



 
   
 

     




 

Vậy

1
3
m 
là giá trị cần tìm.
II
1. Giải phương trình lượng giác:
3
4sin 2cos (sin 1) 4sin 1 0x x x x     .
2
4sin (1 os ) 2cos (sinx 1) 4sin 1 0x c x x x      
x

0 2


'y

+ 0 - 0 +
y 4






0


x
y

O
4
2
I
-1
2
1

Website: dophuongthcsnt.violet.vn


Biên soạn: Đỗ Việt Phương - Nam Trực, Nam Định
2
4sin cos 2sin cos 2cos 1 0x x x x x      (2cos 1)( 2sin 1) 0x x    

2
2
3
2 ( )
6
5
2
6
x k
x k k
x k








  



   



 





2. Giải hệ phương trình:

2 2
1 3 (1)
2 (2)
xy x y
x y x y
  


 



Nhận thấy
0y 
không phải là nghiệm của hệ nên chia cả hai vế của phương trình (1) cho y
và phương trình (2) cho
2
y ta được:
2
2
1
1
3 (3)
3
1
2 (4)
2
x
x
x
x
y y
y y
x
x x
x
y y
y y


  
  



 

 
 
 
 
 
 
 
 



1
(3) 3
x
x
y y
   
thay vào (4) ta có:
2
1
3 2 0
2
x
y
x x
x

y y
y



   

   
   

   




+ 1
x
x y
y
   thay vào (2) ta được:
3 2
1 2
2 0
1 2
y
y y y
y

 
   


 



+ 2 2
x
x y
y
   thay vào (2) ta được:
3 2
1
4 2 2 0
1
2
y
y y y
y



   

 


Vậy hệ có 4 nghiệm:
1
(1 2;1 2), (2,1), ( 1; )
2

   

III
Tính tích phân:
1
0
(3 1)(2 1)
x
x x dx  


Ta có:
1 1 1
0 0 0
(3 1)(2 1) 3 (2 1) 1(2 1)
x x
x x dx x dx x x dx M N         
  

1
0
3 (2 1)
x
M x dx 


Đặt
2
2 1
3

3
ln3
x
x
du dx
u x
dv dx
v


 



 





1
1
1
2 2
0
0
0
3 2 8 2 8ln3 4
(2 1) 3 3
ln3 ln 3 ln 3 ln 3 ln 3

x
x x
M x dx

      


1
0
1(2 1)N x x dx  


Đặt
1 1t x x t dx dt      

Đổi cận:

x 0 1
t 1 2

Website: dophuongthcsnt.violet.vn


Biên soạn: Đỗ Việt Phương - Nam Trực, Nam Định
2
2 2
3 1 5 3
2 2 2 2
1 1
1

4 2 28 2 2
(2 1) (2 )
5 3 15
N t t dt t t dt t t
 

      
 
 
 

Vậy
1
2
0
8ln3 4 28 2 2
(3 1)(2 1)
ln 3 15
x
x x dx
 
    


IV
Gọi I là giao điểm của AC và MB. Xét
ABC


BCM



Ta có
2
AB BC
ABC BCM
BC CM
    







90
o
ACB BMC MBC BMC MBC ACB     
BIC 
Vuông tại I hay
BM AC
,

( )SA ABCD BM 

BM SA 

( )BM SAC 

SI BM  

góc giữa hai mặt phẳng
( )ABCD

( )SBM

Là góc giữa SI và AI hay

60
o
SIA  .
Ta có:
ABC ABI 

2 2 2
2 2
4 4 2 6
3
6
AI AB AB a a a
AI
AB AC AC
a
AB BC
      

.
Xét
SAI
vuông tại A. Ta có:
 

2 6
tan tan . 3 2 2
3
SA a
SIA SA AI SIA a
AI
    
.
2
1 2
.
2 2
BCM
a
S BC CM 
. SA là chiểu cao của khối chóp
.S BCM
nên
2 3
.
1 2 2
. .2 2
3 3.2 3
S BCM BCM
a a
V S SA a  
(đvtt)
V
Cho
, , , 0a b a b 

CMR:
2 2
3 3 1 1
2 2
4 4 2 2
a b a b a b
     
      
     
     

CM
Ta có
2
2 2
3 1 1 1 1 1
4 4 2 2 2 2
a b a a a b a a b a b
 
               
 
 

Tương tự
2
3 1
4 2
b a a b    

Ta sẽ CM:

2
1 1 1
2 2 (*)
2 2 2
a b a b
    
    
    
    

Thật vậy:
2 2
1 1
(*) 2 4
4 4
a b ab a b ab a b         
2
( ) 0a b  
Dấu “=” xảy ra
1
2
a b  


I
M
B
D
A
C

S
Website: dophuongthcsnt.violet.vn


Biên soạn: Đỗ Việt Phương - Nam Trực, Nam Định
VI
Điểm
: 1 0 ( ;1 )C CD x y C t t
     
suy ra trung điểm của AC

1 3
;
2 2
t t
M
 
 
 
 
.
Điểm
1 3
: 2 1 0 2 1 0
2 2
t t
M BM x
 
 
      

 
 

7 ( 7;8)t C    
.
Từ A(1;2) kẻ
: 1 0 ( )AK CD x y K BC    
.
: ( 1) ( 2) 0 1 0AK x y x y        
.
Tọa độ điểm I thỏa mãn hệ
1 0
(0;1)
1 0
x y
I
x y
  



  

.
ACK
cân tại C nên I là trung điểm của AK nên tọa độ của K(-1;0)
Đường thẳng BC qua C, K nên có phương trình
4 3 4 0x y  
.
VII

Từ giải thiết ta chọn
(0; ;0)M m

(0;0; )N n
trong đó
0mn


2n m
 
.
Gọi
n

là vectơ pháp tuyến của (P) thì do (P)//BC và (P) đi qua M, N nên
(2;3; 3)
n BC  
 
,
(0; ; )n MN m n  
 
nên ta chọn , (3 4 ; 2 ; 2 )n BC MN n m n m
 
    
 
  

+
2 (9 ; 4 ; 2 )n m n m m m    


và (P) đi qua
( 2;2; 2)A  
nên (P) có phương trình:
3 4 2 10 0x y z   
.
+
2 ( 9 ;4 ; 2 )n m n m m m     

và (P) đi qua
( 2;2; 2)A  
nên (P) có phương trình:
9 4 2 30 0x y z   
.
Vậy
 
P :3 4 2 10 0x y z   

Hoặc
9 4 2 30 0x y z   


VIII
Tìm số nguyên dương n biết:
2 3 2 2 1 2 1
2 1 2 1 2 1 2 1
2 3.2.2 ( 1) ( 1)2 2 (2 1)2 40200
  
   
         
k k k n n

n n n n
C C k k C n n C

* Xét
1n21n2
1n2
kk
1n2
k22
1n2
1
1n2
0
1n2
1n2
xC xC)1( xCxCC)x1(




(1)
* Lấy đạo hàm hai vế của (1) ta có:
2 1 2 1 2 1 2
2 1 2 1 2 1 2 1
(2 1)(1 ) 2 ( 1) (2 1)
n k k k n n
n n n n
n x C C x kC x n C x
 
   

          
(2)
Lại lấy đạo hàm hai vế của (2) ta có:
1n21n2
1n2
2kk
1n2
k3
1n2
2
1n2
1n2
xC)1n2(n2 xC)1k(k)1( xC3C2)x1)(1n2(n2







Thay x = 2 vào đẳng thức trên ta có:
2 3 k k 2 k 2n 1 2n 1
2n 1 2n 1 2n 1 2n 1
2n(2n 1) 2C 3.2.2C ( 1) k(k 1)2 C 2n(2n 1)2 C
  
   
          

Phương trình đã cho
100n020100nn240200)1n2(n2

2




I
K
D
M
A
C
B

×