Tải bản đầy đủ (.pdf) (152 trang)

Luận án tiến sĩ hóa học nghiên cứu tính chất điện hóa và khả năng ức chế ăn mòn thép cacbon thấp trong môi trường axit của một số hợp chất có nguồn gốc tự nhiên

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (5.99 MB, 152 trang )


T

BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM
VIỆN HÓA HỌC
********


TRƯƠNG THỊ THẢO



NGHIÊN CỨU TÍNH CHẤT ĐIỆN HÓA VÀ KHẢ NĂNG
ỨC CHẾ ĂN MÒN THÉP CACBON THẤP TRONG
MÔI TRƯỜNG AXIT CỦA MỘT SỐ HỢP CHẤ
CÓ NGUỒN GỐC TỰ NHIÊN



LUẬN ÁN TIẾN SĨ HÓA HỌC








Hà Nội – 2012



T

BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM
VIỆN HÓA HỌC
********

TRƯƠNG THỊ THẢO



NGHIÊN CỨU TÍNH CHẤT ĐIỆN HÓA VÀ KHẢ NĂNG
ỨC CHẾ ĂN MÒN THÉP CACBON THẤP TRONG
MÔI TRƯỜNG AXIT CỦA MỘT SỐ HỢP CHẤ CÓ
NGUỒN GỐC TỰ NHIÊN


Chuyên ngành: Hóa lý thuyết và Hóa lý Mã
số ngành: 62.44.31.01


LUẬN ÁN TIẾN SĨ HÓA HỌC


NGƯỜI HƯỚNG DẪN KHOA HỌC
1. GS.TS. Lê Quốc Hùng
2. PGS.TS. Vũ Thị Thu Hà



Hà Nội - 2012


Lời cảm ơn

Tôi xin gửi lời cảm ơn tới Ban lãnh viện, Bộ phận Đào tạo, các phòng
chức năng Viện Hóa học, Viện Khoa học và Công nghệ Việt Nam.
Tôi xin bày tỏ lòng kính trọng và biết ơn sâu sắc đến thầy giáo, GS.TS
Lê Quốc Hùng, cô giáo PGS.TS Vũ Thị Thu Hà đã tận tình hướng dẫn và tạo
mọi điều kiện giúp đỡ tôi trong suốt quá trình thực hiện luận án.
Tôi xin được cảm ơn anh chị em tập thể Ứng dụng tin học trong nghiên
cứu hóa học – Viện Hóa học – Viện Khoa học và Công nghệ Việt Nam và anh
chị em trong Khoa Hóa học, trường ĐH Khoa học, ĐH Thái Nguyên đã hỗ trợ
tôi rất nhiều trong quá trình thực hiện luận án.
Tôi cũng xin gửi lời cảm ơn đến Phòng Ăn mòn, Trung tâm Đánh giá
Hư Hỏng vật liệu – Viện Khoa học Vật liệu và phòng Tổng hợp Hữu cơ – Viện
Hóa học – Viện Khoa học và Công nghệ Việt Nam.
Tôi chân thành cảm ơn gia đình, bạn bè, học trò đã quan tâm, động viên
và tạo điều kiện giúp tôi hoàn thành luận án.

Hà Nội, tháng 05 năm 2012
Nghiên cứu sinh


Trương Thị Thảo



MỤC LỤC
Trang
LỜI CẢM ƠN
DANH MỤC CÁC KÝ HIỆU VIẾT TẮT

DANH MỤC BẢNG
DANH MỤC HÌNH
MỞ ĐẦU 1
CHƯƠNG 1: TỔNG QUAN 5
1.1. Tổng quan về ăn mòn kim loại 5
1.1.1. Định nghĩa ăn mòn kim loại 5
1.1.2. Phân loại ăn mòn 5
1.1.3. Khái quát về thép 8
1.2. Các phương pháp bảo vệ chống ăn mòn kim loại 10
1.2.1. Thiết kế hợp lý 10
1.2.2. Lựa chọn vật liệu thích hợp 10
1.2.3. Xử lý môi trường 10
1.2.4. Tạo lớp phủ bảo vệ 11
1.2.5. Phương pháp điện hóa 11
1.3. Sử dụng các chất ức chế bảo vệ chống ăn mòn kim loại 11
1.3.1. Giới thiệu về chất ức chế chống ăn mòn kim loại 11
1.3.2. Cơ chế hoạt động của chất ức chế ăn mòn kim loại 2
1.3.3. Phân loại chất ức chế ăn mòn kim loại 14
1.3.4. Các chất ức chế ăn mòn kim loại thực tế đã được sử dụng 15
1.3.5. Chất ức chế thân thiện môi trường 19
1.3.5.1. Khái niệm 19
1.3.5.2. Tình hình nghiên cứu về chất ức chế xanh trong và ngoài nước 19
1.3.5.3. Thuận lợi và hạn chế 9
1.3.6. Giới thiệu một số cây trồng có tiềm năng dùng ức chế ăn mòn kim 30 loại
ở Thái Nguyên
CHƯƠNG 2: PHƯƠNG PHÁP NGHIÊN CỨU VÀ THỰC 36
NGHIỆM
2.1. Hóa chất, dụng cụ, thiết bị 36

2.1.1. Hóa chất 36

2.1.2. Dụng cụ 36
2.1.3. Thiết bị 36
2.2. Điều chế và khảo sát thành phần hóa học các chất ức chế ăn 37 mòn kim loại
2.2.1. Điều chế các chất ức chế 37
2.2.1.1 Xử lý mẫu lá tươi 37
2.2.1.2. Chiết mẫu thực vật 37
2.2.1.3. Tách cao chiết chè trong nước 38
2.2.1.4. Tách caffein 39
2.2.2. Phương pháp khảo sát thành phần hóa học mẫu thực vật 39
2.2.2.1. Phương pháp sắc ký lớp mỏng 39
2.2.2.2. Phương pháp phổ cộng hưởng từ hạt nhân(NMR) 40
2.2.3. Thực nghiệm khảo sát thành phần hóa học các mẫu thực vật 42
2.3. Phương pháp nghiên cứu ăn mòn kim loại 42
2.3.1 Các phương pháp nghiên cứu ăn mòn kim loại 42
2.3.1.1 Phương pháp quan sát 42
2.3.1.2 Phương pháp tổn hao khối lượng 44
2.3.1.3 Các phương pháp điện hóa 45
2.3.2. Thực nghiệm nghiên cứu ăn mòn kim loại 50 2.3.2.1. Các loại mẫu kim loại
nghiên cứu 50
2.3.2.2. Chuẩn bị mẫu kim loại 50
2.3.2.3 Chuẩn bị dung dịch 51
2.3.2.4. Thử nghiệm 52
CHƯƠNG 3: KẾT QUẢ THẢO LUẬN 55
3.1. Khảo sát ức chế ăn mòn thép bằng các sản phẩm chiết từ các 55 mẫu thực
vật
3.1.1. Chiết mẫu thực vật 55
3.1.2. Khảo sát khả năng ức chế ăn mòn thép của các cao chiết thu được 55
3.1.2.1. Ảnh hưởng của nồng độ cao chiết 56
3.1.2.2. Ảnh hưởng của nồng độ axit 62
3.1.2.3. Ảnh hưởng của thời gian thử nghiệm 65


3.1.3. Kết hợp một số phương pháp nghiên cứu ăn mòn và bảo vệ ăn mòn 69 thép
CT38 bằng một số chất ức chế khác nhau
3.2. Ức chế ăn mòn thép CT38 trong môi trường axit bằng các sản 81 phẩm tách
từ cao chiết chè trong nước
3.2.1. Tách và khảo sát thành phần hóa học cao chiết chè trong nước 81
3.2.1.1. Tách cao chiết chè trong nước W(C) 81
3.2.1.2. Khảo sát sơ bộ thành phần hóa học các cặn chiết phân đoạn từ cao 82
chiết W(C)
3.2.2. Khả năng ức chế ăn mòn thép CT38 trong môi trường axit của các
83
cặn chiết phân đoạn từ cao chiết chè
3.2.3. Khảo sát một số yếu tố trong sự ức chế ăn mòn thép CT38 trong 87
môi trường axit của cặn nước tách từ cao chiết chè
3.2.3.1. Ảnh hưởng của nồng độ axit và nồng độ cặn chiết 87
3.2.3.2. Ảnh hưởng của thời gian thử nghiệm 89
3.2.4. Tách caffein và khảo sát khả năng dùng caffein làm chất ức chế ăn 92 mòn
thép CT38 trong môi trường axit
3.2.4.1. Tách và xác định cofein 92
3.2.4.2. Ảnh hưởng của nồng độ cofein 94
3.2.4.3. Ảnh hưởng của nhiệt độ 100
3.2.4.4. Ảnh hưởng của thời gian thử nghiệm 101
3.3. Đề xuất ban đầu cơ chế ức chế ăn mòn thép CT38 trong môi 105 trường axit
của các chất ức chế nghiên cứu
3.3.1. Cơ chế hấp phụ 105
3.3.2. Nhiệt động học quá trình hấp phụ và quá trình ăn mòn 110
3.3.3. Cơ chế ức chế ăn mòn 114
KẾT LUẬN 116
DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ 118
TÀI LIỆU THAM KHẢO 119

PHỤ LỤC 128





DANH MỤC CÁC KÝ HIỆU VIẾT TẮT
Ký hiệu Ý nghĩa
AES
Phổ điện tử Auger
AFM
Atomic force microscopy - Kính hiển vi lực nguyên tử
B
Cặn n-butanol
C
Nồng độ chất ức chế (g/l)
C
dl

điện dung lớp kép
CPE
Nguyên tố pha
D
Cặn diclometan
DNA
Acid Deoxyribo Nucleic (ADN - tiếng pháp hay DNA - tiếng anh)
DPD
Phương pháp phân cực thế động
E
*


Năng lượng hoạt hóa quá trình ăn mòn
Eam
Thế ăn mòn (Thế mạch hở, thế nghỉ, thế oxy hóa khử) (V)
EA
Cặn etylaxetat
E(C)
Dịch chiết chè trong etanol (cao chiết)
EDS
Phổ tán sắc năng lượng tia X
EGCG
Epigallocatechin-3-gallat
EIS
Đo tổng trở
∆E
Năng lượng cộng hưởng từ hạt nhân
FTIR
Fourier transform infrared spectroscopy - Quang phổ hồng ngoại chuyển
đổi Fourier
∆G
hp

Biến thiên thế đẳng nhiệt đảng áp quá trình hấp phụ
H
Cặn hexan
H (%)
Hiệu quả bảo vệ (%)
Hz
Hertz (héc)Tần số
∆H

Biến thiên entanpi quá trình (hấp phụ)
i
am

Mật độ dòng ăn mòn (mA/cm
2
)
iđo
Mật đo dòng đo được đáp ứng theo thế áp vào (mA/cm
2
)
K
Hằng số cân bằng hấp phụ

LSA
Viết tắt tên hóa chất - d-lysergic axitamin


M
Nồng độ mol/l
m
Khối lượng (g)
M80(T)
Dịch chiết thuốc lá trong dung môi methanol:nước = 8:2
NRM
Phổ cộng hưởng từ hạt nhân
NTG
N-(5,6-diphenyl-4,5-dihydro-[1,2,4]ưtriazin-3-yl)-guanidin



ppm
part of million - Nồng độ một phần triệu g/lít (mg/l)
Q
hp

Nhiệt hấp phụ
R
p

Điện trở phân cực (Ω)
RS(Rdd)
Điện trở dung dịch
S
Diện tích (cm
2
)
SEM
Phương pháp kính hiển vi điện tử quét
t
Thời gian (phút, ngày)
T
Nhiệt độ
UV
Utraviolet - Tia tử ngoại hay tia cực tím
v
Tốc độ ăn mòn
V
Thể tích (l)
XPS,
ESCA

Phổ huỳnh quang tia X
W
Cặn nước
W(C)
Dịch chiết chè trong nước
WDS
Phôt tán sắc bước sóng tia X
WL
Weight lost - tổn hao khối lượng
W(T)
Dịch chiết thuốc lá trong nước
η
Quá thế
β
Hằng số tafel


DANH MỤC BẢNG

Tên bảng Trang
Bảng 2.1:
Danh mục các sản phẩm chiết mẫu thực vật
37
Bảng 2.2:
Các mẫu kim loại nghiên cứu
50
Bảng 3.1:
Tỷ lệ khối lượng cao chiết so với khối lượng mẫu thực vật khô
55


Bảng 3.2:
Các đặc trưng quá trình ăn mòn thép CT38 trong môi trường HCl
1M có mặt các cao chiết ở các nồng độ khác nhau
58
Bảng 3.3:
Các đặc trưng quá trình ăn mòn thép so sánh trong môi trường HCl
1M có mặt các cao chiết ở các nồng độ khác nhau
61
Bảng 3.4:
Các đặc trưng quá trình ăn mòn thép CT38 trong môi trường HCl
0,01M có mặt cao chiết W(C) ở các nồng độ khác nhau
64
Bảng 3.5:
Các đặc trưng quá trình ăn mòn thép CT38 trong môi trường HCl
0,01M có mặt W(C) và W(T)ở các nồng độ khác nhau theo thời
gian
68
Bảng 3.6:
Các đặc trưng quá trình ăn mòn thép CT38 trong môi trường
HCl 0,01M có mặt các chất ức chế khác nhau theo thời gian
(Phương pháp tổn hao khối lượng)
70
Bảng 3.7:
Các đặc trưng quá trình ăn mòn thép CT38 trong môi trường
HCl 0,01M có mặt các chất ức chế khác nhau theo thời gian
(Phương pháp điện hóa)
73
Bảng 3.8:
Hàm lượng các phân đoạn tách cao chiết W(C)
81

Bảng 3.9:
Các đặc trưng quá trình ăn mòn thép CT38 trong môi trường HCl
có mặt các cặn phân đoạn tách từ cao chiết W(C) nồng độ khác
nhau
85
Bảng 3.10:
Các đặc trưng quá trình ăn mòn thép CT38 trong môi trường HCl
HCl có mặt cặn W tách từ cao chiết chè W(C) nồng độ khác nhau
ở 25
o
C
88
Bảng 3.11:
Các đặc trưng quá trình ăn mòn thép CT38 trong môi trường HCl
0,01M có mặt cặn W nồng độ 1g/l theo thời gian ở 25
o
C
90
Bảng 3.12:
Kết quả phân tích EDS bề mặt thép CT38 ngâm trong dung dịch HCl
1M có và không có mặt cặn W 5g/l sau 1 giờ ở 25
o
C
91
Bảng 3.13:
Các thông số quá trình thử nghiệm ăn mòn thép CT38 trong môi
trường HCl 1M có mặt caffein nồng độ khác nhau ở 25
o
C theo
phương pháp tổn hao khối lượng

94
Bảng 3.14
Các đặc trưng quá trình ăn mòn thép CT38 trong môi trường HCl
1M có mặt caffein nồng độ khác nhau ở 25
o
C theo
96

phương pháp điện hóa

Bảng 3.15:
Các đặc trưng quá trình ăn mòn thép CT38 trong môi trường HCl
1M có mặt caffein nồng độ khác nhau ở 25
o
C theo phương pháp
tổng trở
98
Bảng 3.16:
Kết quả phân tích EDS bề mặt thép CT38 ngâm trong dung dịch
HCl 1M có và không có mặt caffein 3g/l sau 1 giờ ở 25
o
C
100
Bảng 3.17:
Các đặc trưng quá trình ăn mòn thép CT38 trong môi trường HCl
1M có mặt caffein nồng độ 3g/l ở nhiệt độ khác nhau
102

Bảng 3.18:
Các đặc trưng quá trình ăn mòn thép CT38 trong môi trường

HCl 1M có mặt caffein nồng độ 3g/l theo thời gian (phương pháp
điện hóa)
94
Bảng 3.19:

Phương trình hấp phụ đẳng nhiệt Langmuir và các thông số nhiệt
động quá trình hấp phụ W(C) và W lên thép CT38 trong dung
dịch HCl










110
DANH MỤC HÌNH

Tên hình Trang
Hình 1.1:
Sơ đồ ăn mòn điện hoá của kim loại đặt trong dung dịch chất điện
li
6
Hình 1.2:
Mô hình quá trình hấp phụ
13
Hình 1.3:

Liên kết giữa polysaccarit với Fe
23
Hình 1.4:
Thành phần hóa học chính của dầu Fennel
23
Hình 1.5:
Cấu trúc phân tử LSA
24
Hình 1.6:
Cấu trúc hóa học Andrographolid - thành phần chính của dịch chiết
lá Kalmegh
25
Hình 1.7:
Cấu trúc hóa học NTG
27
Hình 1.8:
Cấu trúc hóa học của Penicillin V Kali.
28
Hình 1.9:
Cơ chế hấp phụ của Penicillin với bề mặt thép
28
Hình 1.10:
Cành, lá, hoa và quả chè.
31
Hình 1.11:
Các dẫn xuất catechin thường có trong lá chè xanh
29
Hình 1.12:
Cafein(Cofein)
29

Hình 1.13:
Cây và hoa thuốc lá.
34

Hình 2.1:
Sơ đồ tách cao chiết chè trong nước
38
Hình 2.2:
Cấu tạo của kính hiển vi điện tử quét SEM
43
Hình 2.3:
Đường phân cực E-I
46
Hình 2.4:
Đường cong phân cực (E-logi)của kim loại Me trong môi trường
axit
46
Hình 2.5:
Áp dụng đường phân cực tuyến tính dòng thế
47
Hình 2.6:
Điện trở phân cực tính từ thực nghiệm
47
Hình 2.7:
Biểu diễn hình học các phần tử phức
48
Hình 2.8:
Mạch tương đương trong phổ tổng trở
49
Hình 2.9:

Tổng trở trên mặt phẳng phức- Giản đồ Nyquist
49
Hình 2.10:
Cấu tạo điện cực làm việc
50
Hình 2.11:
Mẫu thử nghiệm ăn mòn theo phương pháp tổn hao khối lượng và
quan sát bề mặt vi mô
51
Hình 2.12:
Ngâm mẫu thử nghiệm ăn mòn theo phương pháp tổn hao khối
lượng và quan sát bề mặt vi mô
52
Hình 2.13:
Hệ thống thiết bị: Máy Potentio – galvanostat CPA-HH3
53
Hình 3.1:
Đường cong phân cực dạng log của thép CT38 ngâm 60 phút
trong môi trường HCl 1M có mặt các cao chiết ở các nồng độ
khác nhau tại nhiệt độ phòng
56
Hình 3.2:
Hiệu quả ức chế ăn mòn thép CT38 trong dung dịch HCl 1M của
các cao chiết với nồng độ khác nhau
58
Hình 3.3:
Đường cong phân cực dạng log của thép so sánh ngâm 60 phút
trong môi trường HCl 1M có mặt các caoh chiết ở các nồng độ
khác nhau tại nhiệt độ phòng
60

Hình 3.4:
Hiệu quả ức chế ăn mòn thép so sánh trong dung dịch HCl 1M của
các cao chiết ở nồng độ khác nhau.
61
Hình 3.5:
Đường cong phân cực dạng log của thép CT38 trong dung dịch HCl
1M có mặt W(C) ở các nồng độ khác nhau
63
Hình 3.6:
Đường cong phân cực dạng log của thép CT38 trong dung dịch HCl
0,01M có mặt W(C) ở các nồng độ khác nhau
63
Hình 3.7:
Hiệu quả ức chế ăn mòn thép CT38 trong môi trường axit HCl nồng
độ khác nhau theo nồng độ cao chiết
64
Hình 3.8:
Đường cong phân cực dạng log của thép CT38 trong dung dịch
HCl 0.01M có mặt cao chiết khác nhau theo thời gian ngâm mẫu
khác nhau tại 25
o
C
68
Hình 3.9:
Sự thay đổi tốc độ ăn mòn của thép CT38 trong dung dịch HCl
0,01M có mặt cao chiết khác nhau theo thời gian
69

Hình 3.10:
Tốc độ ăn mòn thép CT38 theo thời gian trong môi trường HCl

0,01M có mặt các chất ức chế theo phương pháp tổn hao khối
lượng
71
Hình 3.11:
Đường cong phân cực dạng logcủa thép CT38 trong dung dịch
HCl 0,01M không và có mặt các chất ức chế theo thời gian ngâm
tại nhiệt độ phòng
72
Hình 3.12:
Đường biểu diễn tốc độ ăn mòn củathép CT38 trong dung dịch HCl
0,01M theo thời gian (Phương pháp điện hóa)
74
Hình 3.13:
Phổ tổng trở Nyquist của điện cựcthép CT38 trong môi trường HCl
0,01M có và không có chất ức chế theo thời gian ngâm
75
Hình 3.14:
Ảnh SEM mẫu thép CT38 trong dung dịch HCl 0,01M có các chất
ức chế khác nhau sau 3 ngày ngâm ở nhiệt độ phòng
78
Hình 3.15:
Ảnh SEM mẫu thép CT38 trong dung dịch HCl 0,01M có các chất
ức chế khác nhau sau 6 ngày ngâm ở nhiệt độ
79

phòng

Hình 3.16:
Ảnh SEM mẫu thép CT38 trong dung dịch HCl 0,01M có các chất
ức chế khác nhau sau 10 ngày ngâm ở nhiệt độ phòng

80
Hình 3.17:
Ảnh chụp phổ cộng hưởng từ hạt nhân
13
C -
1
H cặn D
82
Hình 3.18:
Sắc ký lớp mỏng các cặn EA,B và W so với chất chuẩn
83
Hình 3.19:
Đường cong phân cực dạng log của thép CT38 trong dung dịch
HCl có mặt các cặn chiết phân đoạn của cao chè nước ở nồng
độ khác nhau
84
Hình 3.20:
Tốc độ ăn mòn thép CT38 ngâm 60 phút tại 25
o
C trong các dung
dịch HCl có mặt các chất ức chế khác nhau
86
Hình 3.21:
Đường cong phân cực dạng log của thép CT38 trong dung dịch HCl
0,01M có mặt cặn W ở các nồng độ khác nhau
87
Hình 3.22:
Đường cong phân cực dạng log của thép CT38 trong dung dịch HCl
1M có mặt cặn W ở các nồng độ khác nhau
88

Hình 3.23:
Đường cong phân cực dạng log của thép CT38 trong dung dịch
HCl 0.01M có mặt cặn nước ở các thời gian ngâm mẫu khác nhau.
89
Hình 3.24:
Sự thay đổi điện trở phân cực thép CT38 trong dung dịch HCl
0,01M có mặt W(C) và W 1g/l theo thời gian ngâm mẫu ở 25
o
C
90
Hình 3.25:
Ảnh chụp bề mặt thép CT38 ngâm trong dung dịch HCl 1M (a,b) có
mặt cặn W 5g/l (c,d) sau 1giờ ngâm ở 25
o
C
91
Hình 3.26:
Ảnh chụp phổ cộng hưởng từ hạt nhân
13
C -
1
H của caffein tách
trực tiếp từ chè xanh
93

Hình 3.27:
Đường cong phân cực dạng log của thép CT38 trong dung dịch HCl
1M có mặt caffein ở các nồng độ khác nhau
95
Hình 3.28:

Phổ tổng trở (a) và mạch tương đương (b)thép CT38 ngâm 60
phút trong dung dịch HCl 1M có mặt cafffein nồng độ khác nhau
ở 25
o
C
97
Hình 3.29:
Ảnh chụp bề mặt thép CT38 ngâm trong dung dịch HCl 1M (a,b) có
mặt caffein 3g/l (c,d) sau 1giờ ngâm ở 25
o
C
99
Hình 3.30:
Đường cong phân cực dạng log của thép CT38 trong dung dịch
HCl 1M không và có mặt caffeine 3g/l ở các nhiệt độ khác nhau
100
Hình 3.31:
Đường cong phân cực dạng log của thép CT38 trong dung
102
dịch HCl 1M có mặt caffein 3g/l ở các thời gian ngâm mẫu khác
nhau
Hình 3.32:
Tốc độ ăn mòn thép CT38 trong dung dịch HCl 1M 103
có mặt caffein 3g/l ở 25
o
C theo thời gian thử nghiệm

Hình 3.33:
Phổ tổng trở của thép CT38 trong dung dịch HCl 1M (a) có mặt
caffein 3g/l (b) ở các thời gian ngâm mẫu khác nhau

103
Hình 3.34:
Mô hình tương tác giữa chất bị hấp phụ với bề mặt kim loại
108
Hình 3.35:
Đường hấp phụ đẳng nhiệt Langmuir của các chất ức chế khác
nhau lên thép CT38 trong dung dịch HCl ở 25
o
C
109
Hình 3.36:
Phương trình Arrhenius cho quá trinh ăn mòn của thép CT38
ngâm 60 phút trong dung dịch HCl 1M có và không có caffein 3g/l

113


1

MỞ ĐẦU
Kim loại với nhiều ưu điểm nổi trội như: khả năng dẫn nhiệt, dẫn điện tốt;
độ bền cơ học cao, độ co ít, độ kháng kéo cao; độ bền nhiệt cao; dễ dàng chế tạo
ra các thiết bị, máy móc v.v nên đã được ứng dụng trong hầu hết các ngành công
nghiệp chế tạo các thiết bị, các cấu kiện, máy móc cũng như trong đời sống hàng
ngày như đồ dùng nhà bếp, một số phương tiện sinh hoạt, nguyên liệu xây dựng
nhà ở hay các công trình dân dụng, … Kim loại được ứng dụng rộng rãi nhất chính
là thép.
Vấn đề đặt ra cho các nhà sản xuất và người sử dụng vật liệu là: trong môi
trường làm việc khác nhau, kim loại (thép) luôn bị ăn mòn dần một cách tự nhiên.
Sự ăn mòn làm biến đổi một lượng lớn các kim loại (thép) thành sản phẩm ăn mòn,

làm suy giảm các tính chất đặc trưng của kim loại, có thể dẫn đến nhiều hậu quả
nặng nề đối với quá trình sản xuất và an toàn lao động, gây ra tổn thất lớn đối với
nền kinh tế quốc gia. Ngoài ra, một chi phí nữa dùng cho việc nghiên cứu tìm ra các
vật liệu mới hạn chế ăn mòn hay các phương pháp bảo vệ vật liệu chống ăn mòn.
Tổng chi phí này khá lớn ở các nền kinh tế phát triển và đang phát triển. Theo số
liệu thống kê năm 2011 của Sastri [22], tổng chi phí cho vấn đề nghiên cứu và xử
lý ăn mòn kim loại ở Mỹ năm 1975 là 82 tỉ Đôla, năm 1995 đã lên 296 tỉ Đôla và
năm 2010 là 549 tỉ Đôla. Vì vậy việc nghiên cứu về ăn mòn và bảo vệ kim loại là
một vấn đề rất có ý nghĩa về khoa học và thực tiễn.
Có nhiều phương pháp bảo vệ kim loại (và thép) khỏi ăn mòn đã được thực
hiện. Trong đó, sử dụng chất ức chế là một trong những phương pháp bảo vệ truyền
thống khá hiệu quả, có thể kéo dài tuổi thọ của các công trình lên 2- 5 lần và có tính
kinh tế cao. Nhiều loại chất ức chế đã được sử dụng rộng rãi như muối nitrit, muối
cromat, muối photphat, các amin hữu cơ,… Tuy nhiên, sự ảnh hưởng của chất ức
chế đến người lao động và môi trường đã ít được quan tâm trong một thời gian dài,
thực tế đã sử dụng những hóa chất rất độc hại như nitrit, cromat,…. Hiện nay, vấn
đề này đã trở thành một trong những tiêu chí hàng đầu khi lựa chọn một chất đưa
vào sử dụng, nhiều chất ức chế truyền thống đã bị hạn chế, thậm chí cấm sử dụng
do ảnh hưởng độc hại của chúng với con người và môi trường.

2

Một xu hướng nghiên cứu mới đối với các nhà nghiên cứu ăn mòn ở Việt
Nam cũng như trên thế giới, đó là tìm kiếm các chất ức chế thân thiện môi trường.
Trong khoảng vài chục năm trở lại đây, trên thế giới đã công bố nhiều kết quả
nghiên cứu về các chất ức chế xanh khác nhau, nhiều nhất là lấy từ cây trồng. Dịch
chiết cây trồng có thành phần hữu cơ đa dạng, có khả năng hấp phụ lên bề mặt kim
loại hạn chế ăn mòn mà lại dễ kiếm, dễ chế biến, giá thành không cao; những chất
có nguồn gốc cây trồng có thể tổng hợp được dễ mà không độc hai cũng được
nghiên cứu. Ngoài ra còn một số nghiên cứu sử dụng nhựa cây, mật mía, mật ong,

dầu thực vật,… thuốc và các hợp chất của các nguyên tố đất hiếm. Tuy nhiên,
khuynh hướng này vẫn đang dừng ở giai đoạn nghiên cứu, tìm kiếm, chọn lọc,
hướng đi đến áp dụng còn chưa rõ. Ở nước ta, với phân loại thực vật đa dạng,
hướng nghiên cứu này còn khá mới mẻ, mới bắt đầu trong vài năm gần đây.
Chính vì vậy, việc nghiên cứu các chất ức chế ăn mòn xanh thân thiện với
môi trường từ các cây trồng nhiệt đới là một hướng đi quan trọng và phù hợp với
nước ta. Do đó chúng tôi chọn đề tài “Nghiên cứu tính chất điện hóa và khả năng
ức chế ăn mòn thép cacbon thấp trong môi trường axit của một số hợp chất có
nguồn gốc tự nhiên”.
Mục đích : Tìm kiếm, nghiên cứu đặc trưng điện hóa và khả năng bảo vệ
thép cacbon thấp khỏi sự ăn mòn trong môi trường axit của các chất ức chế xanh,
có nguồn gốc tự nhiên, thân thiện với môi trường nhằm thay thế một số chất ức chế
truyền thống độc hại, gây ô nhiễm môi trường.
Nội dung nghiên cứu tập trung vào các điểm sau:
- Tách, chiết lấy dịch chiết (cao chiết) một số cây trồng phổ biến ở địa
phương (Thái Nguyên) như từ cây chè và thuốc lá.
- Khảo sát khả năng ức chế ăn mòn thép trong môi trường axit của các sản
phẩm chiết thu được. Lựa chọn sản phẩm chiết ổn định, có hiệu quả ức chế ăn mòn
tốt thực hiện các nghiên cứu sâu hơn.
- Xác định thành phần hóa học của sản phẩm chiết được, tách phân đoạn
hoặc tách lấy tinh chất phục vụ nghiên cứu hiệu quả ức chế ăn mòn.

3

- Bước đầu giải thích cơ chế ức chế ăn mòn của các chất ức chế thử
nghiệm và tính toán các thông số nhiệt động học của quá trình.
Điểm mới của luận án:
- Đây là luận án đầu tiên ở Việt Nam tiến hành nghiên cứu về khả năng
ức chế ăn mòn kim loại của một số chất ức chế xanh thân thiện môi trường.
- Chiết, tách được một số chất ức chế ăn mòn có hiệu quả khá cao từ các

cây trồng phổ biến tại địa phương: Cao chiết thuốc lá trong nước, cao chiết chè trong
nước, cặn nước của cao chiết chè trong nước, caffein trong chè. Kết quả cho thấy hiệu
quả ức chế của các chất khảo sát là có thể so sánh với chất ức chế hóa học truyền thống
như urotropin. Đây là cơ sở cho việc tiến tới ứng dụng các chất ức chế xanh trong bảo
vệ chống ăn mòn kim loại.
- Chứng tỏ quá trình ức chế ăn mòn thép của các dịch chiết cây trồng theo
cơ chế hấp phụ vật lý đơn lớp. Quá trình hấp phụ này tuân theo quy luật hấp phụ đẳng
nhiệt Langmuir có hiệu chỉnh hệ số tuyến tính.
- Tính toán các thông số nhiệt động học quá trình ăn mòn và quá trình hấp
phụ của chất ức chế. Chứng minh được quá trình hấp phụ là quá trình tự diễn biến
(∆G<0), tỏa nhiệt (∆H>0), năng lượng hoạt hóa quá trình ăn mòn tăng khi dung dịch
có mặt chất ức chế.
Ý nghĩa khoa học và thực tiễn của luận án
Luận án đã khảo sát bằng thực nghiệm một cách hệ thống về khả năng ức
chế chống ăn mòn đối với thép cacbon thấp trong môi trường axit của các cao chiết
chè, thuốc lá, một số sản phẩm tách từ chè Thái Nguyên. Số liệu thực nghiệm đã
chứng minh có thể hạn chế ăn mòn thép cacbon thấp trong môi trường axit bằng
cao chiết chè, thuốc lá cũng như một số sản phẩm tách được từ chè. Kết quả chỉ rõ
các thông số thực nghiệm về điều kiện bảo vệ ức chế ăn mòn như nồng độ, thời
gian, nhiệt độ cũng như phương pháp tiến hành thực nghiệm và tính toán kết quả.
Luận án cũng tính toán được các thông số nhiệt động học quá trình hấp phụ, quá
trình ăn mòn và ức chế ăn mòn. Có thể thấy đây là các số liệu mới có giá trị, đóng

4

góp cả về mặt thực tiễn và lý thuyết cho chuyên ngành nghiên cứu hấp phụ, xử lý
bề mặt và bảo vệ kim loại.
Hơn nữa, kết quả luận án còn góp phần định hình một hướng nghiên cứu
mới, phù hợp với xu thế chung trên thế giới cũng như các điều kiện của Việt Nam:
Tìm kiếm, thử nghiệm các chất ức chế xanh thân thiện môi trường. Luận án còn

đóng góp vào việc khẳng định khả năng tự điều chế các chất ức chế ăn mòn, đáp
ứng được yêu cầu nghiên cứu và hướng tới việc ứng dụng trong nước.
Cấu trúc luận án
Phần mở đầu: giới thiệu lý do chọn đề tài, mục đích, ý nghĩa khoa học của luận án.
Chương 1: Tổng quan
1) Tổng quan về ăn mòn kim loại, các phương pháp bảo vệ chống ăn
mòn kim loại.
2) Chi tiết về ức chế ăn mòn kim loại và ức chế xanh.
Chương 2: Thực nghiệm và phương pháp nghiên cứu 1)
Hóa chất, dụng cụ, thiết bị.
2) Điều chế và khảo sát thành phần hóa học các chất ức chế ăn mòn kim loại.
3) Phương pháp nghiên cứu ăn mòn kim loại.
Chương 3: Kết quả và thảo luận.
1) Khảo sát khả năng ức chế ăn mòn thép cacbon bằng các sản phẩm chiết
từ các mẫu thực vật.
2) Ức chế ăn mòn thép CT38 trong môi trường axit bằng các cặn phân đoạn
tách từ cao chiết chè trong nước.
3) Đề xuất ban đầu cơ chế ức chế ăn mòn thép CT38 trong môi trường axit
của các chất ức chế nghiên cứu.
Phần kết luận trình bày các kết quả chính của luận án.


5


CHƯƠNG 1: TỔNG QUAN
1. 1. TỔNG QUAN VỀ ĂN MÒN KIM LOẠI
1.1.1 Định nghĩa ăn mòn kim loại
Có nhiều cách định nghĩa ăn mòn kim loại [1-5,21-23]:
Sự ăn mòn kim loại là quá trình làm giảm chất lượng và tính chất của kim loại do

sự tương tác của chúng với môi trường xâm thực gây ra.
Hoặc, Ăn mòn kim loại là một phản ứng không thuận nghịch xảy ra trên bề
mặt giới hạn giữa vật liệu kim loại và môi trường xâm thực được gắn liền với sự
mất mát hoặc tạo ra trên bề mặt kim loại một thành phần nào đó do môi trường
cung cấp.
Nếu xem hiện tượng ăn mòn kim loại xảy ra theo cơ chế điện hoá thì sự ăn
mòn kim loại có thể định nghĩa như sau: Ăn mòn kim loại là một quá trình xảy ra
phản ứng ôxy hoá khử trên mặt giới hạn tiếp xúc giữa kim loại và môi trường chất
điện li, nó gắn liền với sự chuyển kim loại thành ion kim loại đồng thời kèm theo
sự khử một thành phần của môi trường và sinh ra một dòng điện.
1.1.2 Phân loại ăn mòn
Có nhiều cách phân loại ăn mòn kim loại[1-5,21-23]:
a) Phân loại theo bản chất quá trình.
Theo bản chất quá trình, ăn mòn thường chia hai loại:
Ăn mòn hoá học:Ăn mòn hoá học là sự phá huỷ kim loại hoặc hợp kim do kim loại
phản ứng với các chất khí (O
2
; Cl
2
…) và hơi nước ở nhiệt độ cao.
To
2 Fe + 3Cl
2
2FeCl
3

(x+2y)Fe + (x+3y)/2 O
2
xFeO.yFe
2

O
3

Fe
3
O
4
+ 4H
2



3Fe + 4H
2
O
(h)

Bản chất của ăn mòn hoá học là quá trình ôxy hoá khử, trong đó các electron
của kim loại được chuyển trực tiếp đến các chất ôxy hóa trong môi trường.

T
o

T
o


6

Ăn mòn điện hoá: Ăn mòn điện hoá là quá trình phá huỷ kim loại tự diễn biến

khi kim loại tiếp xúc với dung dịch điện li làm phát sinh dòng điện giữa vùng anot
và vùng catot.
Bản chất của ăn mòn điện hoá là một quá trình ôxy hoá khử xảy ra trên bề
mặt giới hạn hai pha kim loại/dung dịch điện li. Khi đó kim loại bị hoà tan ở vùng
anot kèm theo phản ứng giải phóng H
2
hoặc tiêu thụ O
2
ở vùng catot, đồng thời sinh
ra dòng điện tạo thành một pin điện khép kín (Hình 1.1).

Hình 1.1: Sơ đồ ăn mòn điện hoá của kim loại đặt trong dung dịch chất điện li [3]
Để xảy ra ăn mòn điện hóa, ba yếu tố cần thiết là: Dung dịch điện ly, anot và
catot.
* Anot : Anot là khu vực mà tại đó kim loại bị ăn mòn hay kim loại bị hòa tan (quá trình
ôxy hoá):
M → M
n+
+ ne
Tại anot, kim loại chuyển thành ion tách khỏi bề mặt kim loại đi vào dung
dịch và để lại electron trên bề mặt kim loại. Do đó, bề mặt kim loại dư điện tích âm
hơn. Các electron ở vùng anot được chuyển dần đến vùng catot.
*Catot: Catot là nơi xảy ra sự tiêu thụ electron (qúa trình khử) bởi các tác nhân ôxy
hóa:
Ox + ne sản phẩm

7

Nếu quá trình catot hay trong dung dịch điện ly xuất hiện các ion có khả năng
tạo kết tủa với cation kim loại bị hòa tan thì sẽ xảy ra kết tủa sản phẩm ăn mòn trên

bề mặt kim loại.
Ví dụ: Fe
3+
+ PO
4
3-
→ FePO
4

b) Phân loại theo đặc trưng phá hủy bề mặt:
Ăn mòn đều
Ví dụ: sự ăn mòn thép cacbon trong khí quyển, sự ăn mòn kẽm trong môi trường
axit là các quá trình ăn mòn đều.
Trong ăn mòn đều, tác nhân ăn mòn tấn công với tốc độ như nhau trên toàn
bề mặt kim loại, độ dày kim loại giảm thống nhất. Điều kiện cần đạt được ăn mòn
đều là:
- Kim loại và dung dịch trong cùng một môi trường.
- Phản ứng giữa kim loại và tác nhân ăn mòn tạo sản phẩm tan vào dung
dịch.
Sự ăn mòn đều có thể bị thay đổi khi bề mặt kim loại chuyển từ thụ động
sang hoạt động do một ảnh hưởng cơ học, thay đổi tốc độ dòng chảy hay một thay
đổi hóa học trong môi trường.
Ăn mòn cục bộ
Ăn mòn cục bộ bao gồm các dạng ăn mòn không đều như ăn mòn điểm, ăn
mòn lỗ, ăn mòn vết, ăn mòn hố, ăn mòn ven tinh thể, ăn mòn dưới lớp phủ,…. Các
dạng ăn mòn này xảy ra khi màng thụ động hay lớp bảo vệ bị phá hủy ở một vài
khu vực dẫn tới sự tạo thành các vùng anot nhỏ. Cường độ ăn mòn có thể quan sát
được tại các khu vực này vì phần còn lại của bề mặt bị ăn mòn ở tốc độ thấp hơn
nhiều. Tuy nhiên, do màng ôxit bị phá hủy, vùng anot nhỏ hơn so với vùng catot
khá lớn làm tăng tỷ lệ diện tích catot/anot, tỷ lệ này xác định mức độ ăn mòn cục

bộ và ăn mòn pitting. Ăn mòn cục bộ cũng xảy ra khi vật liệu được bảo vệ bằng lớp
phủ mà lớp phủ có một vài khiếm khuyết, các khiếm khuyết sẽ là nơi xảy ra ăn mòn

8

cục bộ. Ăn mòn cục bộ cũng xảy ra dưới lớp kết tủa giữa hai pha kế tiếp nhau. Khu
vực nhỏ này có môi trường rất khác so với toàn khối vật liệu gây ra ăn mòn khe
Một số yếu tố quan trọng gây ăn mòn cục bộ:
- Sục khí khác nhau: dạng sục khí khác nhau làm nồng độ ôxy không đồng
nhất trong pin ăn mòn, tạo ra các khu vực có nồng độ ôxy cao hơn hay thấp hơn.
Ôxy chuyển vào dung dịch nhờ khuếch tán và đối lưu. Vùng giàu ôxy hơn sẽ thành
catot và vùng ít ôxy hơn chuyển thành anot và gây ra ăn mòn.
- Giá trị pH trên các vùng khác nhau.
- Tăng tỉ lệ diện tích khu vực catôt/anôt
- Tính chất và ảnh hưởng của sản phẩm ăn mòn, tạp chất ô nhiễm trong
dung dịch.
- Thế áp dụng.
- Nhiệt độ.
- Thành phần khối dung dịch.
- Thành phần và vi cấu trúc của hợp kim.
- Thành phần, cấu trúc màng ôxit.
- Dạng hình học của vật liệu.
1.1.3. Khái quát về thép
Thép là hợp kim của sắt (Fe) với cacbon (C) từ 0,02 đến 2,06% theo trọng lượng
và một số nguyên tố hoá học khác (Mn, Cr, Ni…) [3,6,7].
Số lượng khác nhau của các nguyên tố và tỷ lệ của chúng trong thép nhằm
mục đích kiểm soát các mục tiêu chất lượng như: độ cứng, độ đàn hồi, tính dễ uốn
và sức bền kéo đứt. Hàm lượng các nguyên tố khác nhau tạo ra loại thép khác nhau.
a) Sự ăn mòn thép cabon
Thép cacbon là thép có hai thành phần chính là sắt và cacbon, hàm lượng các

nguyên tố khác có mặt không đáng kể. Thép cacbon được chia thành thép mềm
(thép cacbon thấp, %m
C
≤0,29%), thép cacbon trung bình (%m
C
≤0,59%), thép

9

cacbon cao (%m
C
≤0,99%), thép cacbon đặc biệt (%m
C
= 1÷ 2%). Đây là loại vật
liệu được dùng phổ biến trong xây dựng.
Trong không khí ẩm, ở nhiệt độ thường (trên bề mặt thép có màng nước) quá trình ăn
mòn xảy ra theo cơ chế điện hoá:
Phản ứng anot:
Fe + HOH → FeOH
+
+ H
+
+2e
FeOH
+
+ HOH → FeOOH + 2H
+
+2e
Phản ứng này khống chế sự ăn mòn thép trong khí quyển.
Phản ứng catot:

FeOOH + e → Fe
3
O
4
+ H
2
O + OH
-

Tiếp theo: Fe
3
O
4
+
1
O
2
+
3
H
2
O → 3FeOOH
4 2
Trong không khí, FeOH
+
và OH
-
tác dụng với ôxy và nước tạo thành hydrôxit, ôxit
sắt (II) và ôxit sắt (III) và chúng tạo thành lớp rỉ sắt. Theo thời gian rỉ sắt phát triển
thành các lớp xốp và làm giảm tốc độ ăn mòn thép. Nếu trong không khí có tạp

chất, ví dụ: Cl
-
ở vùng ven biển, sự hấp thụ Cl
-
của các lớp rỉ làm thay đổi hình thái
lớp rỉ, đôi khi làm tăng tốc độ ăn mòn thép.
Trong môi trường axit, tốc độ ăn mòn thép phụ thuộc vào phản ứng catôt và thép
bị ăn mòn đáng kể nếu không được bảo vệ b) Sự ăn mòn thép hợp kim thấp
Thép hợp kim thấp gồm sắt và một lượng nhỏ khoảng dưới 2% các nguyên tố hợp
kim Cu, Ni, Cr, P: có độ bền chống ăn mòn cao đối với môi trường ăn mòn khí
quyển.
Trên bề mặt của thép hợp kim thấp tạo ra lớp ôxit Fe
3
O
4
có cấu trúc sít chặt ngăn
cản sự tác động của môi trường làm giảm quá trình rỉ hoá tiếp theo. Lớp bảo vệ này
bền trong môi trường khí quyển hay khi thay đổi thời tiết. Thép này được gọi là
“thép thời tiết” và được dùng rộng rãi trong công nghiệp.

10

Khi có mặt ion Cl
-
trong các vùng khí hậu biển và ven biển hoặc khi nhúng vào
nước, lớp ôxit này không bền vững. Trong điều kiện khí hậu biển thường sử dụng
thép hợp kim hoá chứa các nguyên tố Ni, Cr, hoặc Mo.
Thép hợp kim thấp nhạy cảm với hiện tượng ăn mòn nứt khi tiếp xúc với các môi
truờng chứa các ion NO
3

-
, OH
-
, và NH
3
lỏng.
1.2. CÁC PHƯƠNG PHÁP BẢO VỆ CHỐNG ĂN MÒN KIM LOẠI
Nghiên cứu các biện pháp chống ăn mòn kim loại nhằm mục đích nâng cao
tuổi thọ các cấu kiện, các công trình và thiết bị có ý nghĩa khoa học và đặc biệt đem
lại hiệu quả kinh tế đáng kể. Các biện pháp đã và đang áp dụng hiện nay [15,21]
gồm:
1.2.1. Thiết kế hợp lý
Để hạn chế ăn mòn, trong quá trình thiết kế và lắp ráp cần tuân thủ các quy tắc
sau:
- Tránh tạo nên các vùng có tính chất khác nhau, kể cả các vùng có tính chất khác
nhau cục bộ về nhiệt độ, áp xuất, tiếp xúc với các dung dịch có nồng độ khác nhau.
Tránh tạo nên các khe, các rãnh đọng nước.
- Có những phần thiết kế bắt buộc phải dùng các vật liệu dễ bị ăn mòn trong điều
kiện vận hành, khi thiết kế phải lưu ý biện pháp thay thế hoặc sửa chữa
- Nhà chế tạo phải tuân thủ nghiêm ngặt, không được tùy tiện thay đổi phương án
thiết kế nếu chưa có đầy đủ yếu tố về phương diện ăn mòn.
1.2.2 Lựa chọn vật liệu thích hợp
Hiện nay có rất nhiều loại vật liệu với các tính chất khác nhau trong các môi
trường làm việc khác nhau. Tùy theo môi trường làm việc sẽ có sự lụa chọn loại
vật liệu tối ưu nhất. Có thể kể ra các vật liệu chính hiện nay là: Thép cacbon; Thép
hợp kim thấp; Thép không gỉ; đồng và các hợp kim đồng; titan và hợp kim titan;
niken và hợp kim niken;
1.2.3. Xử lý môi trường

11


Có hai hướng xử lý môi trường thông dụng;
- Loại trừ cấu tử gây ăn mòn có trong môi trường như H
+
, O
2
, hơi nước, NO
x
,…
bằng các phương pháp vật lý hoặc hóa học.
- Sử dụng chất ức chế ăn mòn: đưa thêm một chất từ bên ngoài vào hệ mà có tác
dụng làm giảm quá trình ăn mòn.
1.2.4. Tạo lớp phủ bảo vệ
Biện pháp này nhằm ngăn cách kim loại tiếp xúc với môi trường ăn mòn bằng
các lớp phủ. Các lớp phủ thường dùng là lớp phủ kim loại, ví dụ kẽm trên nền thép;
lớp phủ vô cơ: lớp muối photphat các kim loại Mn, Fe, Zn,… lên trên nền thép; lớp
phủ phi kim loại như sơn, vecni, tráng men, polyme,…
1.2.5. Phương pháp điện hóa
Nguyên tắc: dịch chuyển thế về phía âm nằm trong miền thế loại trừ ăn mòn
bằng phân cực bởi dòng ngoài hoặc tự phân cực của sự khép kín pin ăn mòn (anot
hy sinh), hoặc có thể tạo lớp thụ động trên mặt kim loại bằng sự phân cực anot.
1.3. SỬ DỤNG CÁC CHẤT ỨC CHẾ BẢO VỆ CHỐNG ĂN MÒN KIM LOẠI
1.3.1. Giới thiệu về chất ức chế chống ăn mòn kim loại
Chất ức chế chống ăn mòn là các chất khi thêm một lượng nhỏ vào môi trường
làm việc của kim loại, nó sẽ có tác dụng làm giảm đáng kể tốc độ ăn mòn kim loại
[21,22].
Từ rất sớm, việc bảo vệ sắt bằng bitum và hắc ín đã được thực hiện bởi người
Roman cổ đại. Việc sử dụng chất ức chế ăn mòn để bảo vệ kim loại có thể đã được
bắt đầu vào nửa cuối thế kỷ 19. Marangonivaf Stefanelli đã dùng chất chiết xuất từ
keo, galatin, cám gạo để ức chế ăn mòn sắt trong axit, đây là kết quả của hàng thập

kỷ nghiên cứu. Thành quả đầu tiên này đưa Baldwin đến xem xét việc dùng mật
mía và dầu thực vật cho tẩy các tấm thép trong axit [22].
Nói chung, bất kỳ quá trình làm chậm ăn mòn nào cũng có thể xem xét là ức
chế ăn mòn. Chất ức chế ăn mòn thêm vào hệ có thể ở dạng lỏng hoặc dạng hơi
hoặc cả hai.

12

Chất ức chế ăn mòn được sử dụng rộng rãi để bảo vệ bên trong đường ống,
bình chứa thép cacbon, cũng như cho các vật liệu khác như thép hợp kim, lớp phủ
Các ngành công nghiệp sử dụng ức chế chống ăn mòn kim loại nhiều là: công
nghiệp khai thác khí và dầu, tinh chế dầu, sản xuất hoá chất, công nghiệp nặng, xử
lý nước, giao thông vận tải, vỏ tầu, cầu đường Chất ức chế tạo thành một lớp bảo
vệ in situ bằng cách phản ứng với dung dịch hay với bề mặt ăn mòn. Sự ức chế ăn
mòn là thuận nghịch và một hàm lượng tối thiểu của hợp chất ức chế phải có mặt
để duy trì màng chất ức chế bảo vệ bề mặt. Để duy trì nồng độ tối thiểu chất ức
chế cần có sự lưu thông tốt và không có vùng ứ đọng nào trong hệ. Đôi khi người
ta sử dụng hỗn hợp hai hay nhiều chất ức chế để tăng hiệu quả bảo vệ. Một số yếu
tố như giá cả, lượng, độ an toàn với môi trường, quan trọng nhất là hiệu quả và khả
năng dễ ứng dụng cần xem xét khi lựa chọn một chất ức chế [22,81-84].
1.3.2. Cơ chế hoạt động của chất ức chế ăn mòn kim loại
Tùy theo bản chất quá trình gây ức chế ăn mòn kim loại mà cơ chế hoạt động của
chất ức chế thường được chia hai loại [3,22,23]:
Tác động hấp phụ của chất ức chế trên bề mặt kim loại.
Hấp phụ là quá trình tích lũy chất bị hấp phụ trên bề mặt chất hấp phụ. Tùy
theo bản chất liên kết giữa chất bị hấp phụ (CBHP) và chất hấp phụ (CHP) mà
người ta chia ra hấp phụ vật lý và hấp phụ hóa học. Hấp phụ vật lý là quá trình hấp
phụ mà bản chất liên kết giữa CHB và CBHP là lực vật lý, chủ yếu mang bản chất
tĩnh điện giữa hai điện cực trái dấu hút nhau, lực liên kết yếu, mang tính thuận
nghịch và giảm khi nhiệt độ tăng; năng lượng tự do quá trình hấp phụ thường nhỏ

( ∆G
o
≤ 20kJ/mol); sự hấp phụ có thể là đơn lớp hoặc đa lớp. Hấp phụ hóa học
là quá trình hấp phụ mà giữa CHP và CBHP có xu hướng hình thành liên kết hóa
học, do đó không có tính thuận nghịch, thường tăng khi nhiệt độ tăng, năng lượng
tự do quá trình hấp phụ thường lớn, ( ∆G
o
≥ 40kJ/mol); sự hấp phụ thường là
đơn lớp [8].
Trong ức chế ăn mòn, lượng chất ức chế hấp phụ lên bề mặt kim loại thường
không lớn do lượng chất ức chế chỉ sử dụng với lượng nhỏ. Do đó, khi hấp phụ lên

×