Tải bản đầy đủ (.pdf) (18 trang)

High resolution x ray diffraction study of phase and domain structures and thermally induced phase transformations in PZN (4 5 9)%PT 11

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (102.34 KB, 18 trang )

179

Chapter 10
Conclusions

Based on the results presented in the previous chapters, the following conclusions
can be drawn concerning the phase and domain structures in unpoled (annealed) PZN-
(4.5-9)%PT single crystals.
(a) The surface layer of carefully-polished PZN-PT single crystals is covered with a
deformed layer and is not suitable for typical XRD study. A fracture technique
has been devised which exposes the relatively strain-free crystal bulk for the
XRD study.
(b) The present work shows that the observed HR-XRD (002) RSMs of PZN-xPT
single crystals, 0.045 ≤ x ≤ 0.09, can be understood from the micro- and
nanotwin structures of both R and T phases in the material.
(c) For PZN-xPT of lower PT contents (i.e. x ≤ 0.07) at room temperature, the
{100}
R
diffractions manifest as an extremely broad peak at 2
θ
= 44.50-44.65°
Bragg’s position, being the convoluted peak of the four degenerated R
microtwins. In addition to the extremely broad convoluted R peak, nanotwin
diffractions arising from {100}-type and {110}-type R nanotwins have also been
180

detected in selected samples, suggesting that the R phase exist in a mixture of
micro and nanotwins in PZN-(4.5-8)%PT single crystals at room condition.
(d) In addition to the R diffractions, T micro- and nanotwin domains could also be
detected in PZN-(6-8)%PT single crystals at room condition. Our HR-XRD
RSM results indicate that the T phase in these crystal compositions is likely to be


a metastable phase stabilized by the cooling-cum-transformation stresses in the
crystal. This is manifested by the disappearing of the (100)
T
diffractions on the
fracture surface, a result attributed to the stress relaxation effect in the surface
layer of the fractured crystal. Such stress relaxation effects are expected to be
more pronounced for the R+T domains with their {110}
R
//{110}
T
interface lying
at about 45° to the (100)
pc
diffraction planes.
(e) For PZN-9%PT, the dominant phase at room condition is the T phase of both
micro- and nanotwin domains, although a small amount of the R phase may also
be present.
(f) Strong evidence of T nanotwins, manifested by their streaked diffractions, has
been detected in PZN-(4.5-8)%PT in the vicinity of T
R-T
phase transformation,
suggesting that it presence being promoted by the transformation stress possibly
as a means to relax the transformation stresses in the crystal.
181

(g) A revised phase diagram for the PZN-PT system has been constructed. Two new
evident features of this revised phase diagram are: (a) the expanded (R+T) two-
phase MPB region, and (b) a (T+C) two-phase region at high temperature before
the crystal transforms completely into the single C phase.
(h) The expanded (R+T) MPB region can be further divided into two regions. In the

lower PT region, 0.06 ≤ x ≤ 0.08, the T phase is metastable stabilized by the
residual stress in the crystal. In the high PT region, 0.09 ≤ x ≤ 0.10, both the
(R+T) phase are thermodynamically stable phases at room temperature.
(i) The ease with which perovskite crystals may form micro- and nanotwins may
play an important role in the reported superior piezoelectricity of PZN-PT and
PMN-PT single crystals, especially near their MPBs.
(j) This present work does not support the existence of M phases in PZN-PT single
crystals considering the transformations from M to C, R to M
C
, and M
B
to T are
not allowed in perovskite structure as according to Landau theory. In addition,
experimental analysis involving polarization and structural characteristics
suggests that the out-of-plane diffractions pertained to coherent diffraction
phenomenon associated with micro/nanotwin of R and T.


182

Chapter 11
Recommendations for Future Work

The present work has shown that micro- and nanotwin domains in both the R
and T phases serve to relax the transformation stresses leading to an expanded MPB
across 0.06 ≤ x ≤ 0.10 in PZN-xPT single crystals. This expanded (R+T) MPB region
can be further divided into two different regions. In the low PT region (i.e., 0.06 ≤ x ≤
≈ 0.08), the room temperature T phase is metastable stabilized by the residual stresses
in the material. In the high PT region (i.e., 0.09 ≤ x ≤ 0.10), both the R and T are
thermodynamically stable phases. The presence of (R+T) micro- and nanotwin

domains is believed to play a role in the superior piezoelectricity of relaxor
ferroelectric single crystals. In order to provide a better understanding of the structural-
property relationship in relaxor ferroelectric single crystals, the following topics are
recommended for future studies:

(a) The fine (002) XRD spectra obtained from SSLS provide circumstantial evidence
for the presence of R micro- and nanotwin domains in the PZN-PT single crystals.
Despite so, the ultra fine nanotwin structure in R, are difficult to resolve with
high-synchrotron x-ray as available in SSLS. Higher energy x-ray of improved
183

resolution is required to resolve these fine nanotwin diffractions and to decipher
the detailed configurations of the R* domains, which are expected to shed light
on how the “engineered domain state” would give rise to enhanced properties of
the material. In addition, higher energy x-ray with larger penetration depth
provides the advantage to detect the (001)
T
domains in PZN(6-8)%PT crystals,
which are shadowed by the R domains upon fracturing.
(b) To investigate the effects of temperature and E-field on the R and T micro- and
nanotwin domains in relaxor single crystal and how this may affect the structure-
property-relation of the crystal.
(c) To investigate how the R and T micro- and nanotwin domains are affected by
different crystal cuts, e.g. (011) cut, etc., and this may affect the structure-
property-relation of different crystal cuts.
(d) Combined state-of-the-art experimental analysis and computational modeling
(e.g., first-principle calculations and three-dimensional numerical models for the
nano-domain structure of relaxor materials) are of extreme value to provide
fundamental insight into the hierarchy of domain structures and its role in the
superior piezoelectricity of relaxor ferroelectric single crystals. It is

recommended that such an approach be pursued in future work.

184

References

1. Park, S E. and T. R. Shrout. Ultrahigh strain and piezoelectric behavior in
relaxor based ferroelectric single crystals, J. Appl. Phys., 82, p. 1804-1811. 1997.
2. Jiang, Q., W. Cao and L. E. Cross. Electric fatigue behavior in lead zirconate
titanate ceramics, J. Am. Ceram. Soc., 77, p. 211-215. 1994.
3. Hill, M. D., G. S. White, C. S. Hwang and I. K. Lloyd. Cyclic damage in lead
zirconate titanate, J. Am. Ceram. Soc., 79, p. 1915-1920. 1996.
4. Weitzing, H., G. A. Schneider, J. Steffens, M. Hammer and M. J. Hoffmann.
Cyclic Fatigue due to electric loading in ferroelectric ceramics, J. Eur. Ceram.
Soc., 19, p. 1333-1337. 1999.
5. Nuffer, J., D. C. Lupascu and J. Rodel. Damage evolution in ferroelectric PZT
induced by bipolar electric cycling, Acta mater., 48, p. 3783-3794. 2000.
6. Jona, F. and G. Shirane. Ferroelectric crystals. p. 108-254, Dover Publication.
1993.
7. Lines, M. E. and A. M. Glass. Principles and applications of ferroelectrics and
related materials. p. 241-285, Oxford University Press, USA. 1977.
8. Damjanovic, D. Piezoelectric properties of perovskite ferroelectrics: unsolved
problems and future research, Amm. Chim. Sci. Mat., 26, p. 99-106. 2001.
9. Yamashita Y. Piezoelectric materials in the 21
st
century. Proc. 12
th
IEEE
International Symposium on Application of Ferroelectrics, July 2000, Honolulu,
Hawaii, p. 139-144.

10. Kuwata, J., K. Uchino and S. Nomura. Phase transitions in the Pb(Zn
1/3
Nb
2/3
)O
3
-
PbTiO
3
system, Ferroelectrics, 37, p. 579-582. 1981.

185

11. Choi S. W., T. R. Shrout, S. J. Jang and A. S. Bhalla. Dielectric and pyroelectric
properties in the Pb(Mg
1/3
Nb
2/3
)O
3
-PbTiO
3
systems, Ferroelectrics, 100, p. 29-38.
1989.
12. Kuwata, J., K. Uchino and S. Nomura. Dielectric and piezoelectric properties of
0.91Pb(Zn
1/3
Nb
2/3
)O

3
-0.09PbTiO
3
single crystals, Jpn. J. Appl. Phys., Part 1, 21,
p. 1298-1302. 1982.
13. Liu, S F., S E. Park, T. R. Shrout and L.E. Cross. Electric field dependence of
piezoelectric properties for rhombohedral 0.955Pb(Zn
1/3
Nb
2/3
)O
3
-0.045PbTiO
3

single crystals, J. Appl. Phys., 85, p. 2810-2814. 1999.
14. Paik, D S., S E. Park, S. Wada, S F. Liu and T. R. Shrout. E-field induced
phase transition in <001>-Oriented rhombohedral 0.92Pb(Zn
1/3
Nb
2/3
)O
3
-
0.08PbTiO
3
crystals. J. Appl. Phys., 85, p.1080-1083. 1999.
15. Wada, S., S E. Park, L. E. Cross and T. R. Shrout. Engineered domain
configuration in rhombohedral PZN-PT single crystals and their ferroelectric
related properties, Ferroelectrics, 221, p.147-155. 1999.

16. Durbin, M. K., E. W. Jacobs and J. C. Hicks, In situ x-ray diffraction study of an
electric field induced phase transition in the single crystal relaxor ferroelectric,
92%Pb(Zn
1/3
Nb
2/3
)O
3
-8%PbTiO
3
, Appl. Phys. Lett., 74, p. 2848-2850. 1999.
17. Ren, W., S F. Liu and B. K. Mukherjee. Piezoelectric properties and phase
transitions of <001>-oriented Pb(Zn
1/3
Nb
2/3
)O
3
-PbTiO
3
single crystals, Appl.
Phys. Lett., 80, p. 3174-3176. 2002.
18. Noheda, B., D. E. Cox, G. Shirane, J. A. Gonzalo, L. E. Cross and S E. Park. A
monoclinic ferroelectric phase in the Pb(Zr
1-x
Ti
x
)O
3
solid solution, Appl. Phys.

Lett., 74, p. 2059-2061. 1999.
186

19. Noheda, B., J. A. Gonzalo, L. E. Cross, R. Guo, S E. Park, D. E. Cox and G.
Shirane. Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite:
the structure of PbZr
0.52
Ti
0.48
O
3
, Phys. Rev. B, 61, p. 8687-8695. 2000.
20. Guo, R., L. E. Cross, S E. Park, B. Noheda, D. E. Cox and G. Shirane. Origin of
the high piezoelectric response in PbZr
1-x
Ti
x
O
3
, Phys. Rev. Lett., 84, p. 5423-5426.
2000.
21. Fujishiro, K., R. Vlokh, Y. Uesu, Y. Yamada, J M. Kiat, B. Dkhil and Y.
Yamashita. Optical observation of heterophase and domain structures in relaxor
ferroelectrics Pb(Zn
1/3
Nb
2/3
)O
3
-9% PbTiO

3
, Jpn. J. Appl. Phys., 37, p. 5246-5248.
1998.
22. Uesu, Y., Y. Yamada, K. Fujishiro, H. Tazawa, S. Enokido, J M. Kiat and B.
Dkhil. Structural and optical studies of development of the long-range order in
ferroelectric relaxor Pb(Zn
1/3
Nb
2/3
)O
3
-9% PbTiO
3
, Ferroelectrics, 217, p. 319-
325. 1998.
23. Fu, H. and R. E. Cohen. Polarization rotation mechanism for ultrahigh
electromechanical response in single-crystal piezoelectrics, Nature, 403, p. 281-
283. 2000.
24. Bellaiche, L., A. Garcia and D. Vanderbilt. Electric-field induced polarization
paths in Pb(Zr
1-x
Ti
x
)O
3
alloys, Phys. Rev. B, 64, p. 060103. 2001.
25. Vanderbilt, D. and M. H. Cohen. Monoclinic and triclinic phases in higher-order
Devonshire theory, Phys. Rev. B, 63, p. 094108. 2001.
26. Cox, D.E., B. Noheda and G. Shirane. Universal phase diagram for high-
piezoelectric perovskite systems, Appl. Phys. Lett., 79, p. 400-402. 2001.

27. La-Orauttapong, D., B. Noheda, Z G. Ye, P. M. Gehring, J. Toulouse, D. E. Cox
and G. Shirane. Phase diagram of the relaxor ferroelectric (1-x)Pb(Zn
1/3
Nb
2/3
)O
3
-
xPbTiO
3
, Phys. Rev. B, 65, p. 144101. 2002.
187

28. Lu, Y., D Y. Jeong, Z Y. Cheng, T. Shrout and Q. M. Zhang. Phase stabilities of
“morphotropic” phases in Pb(Zn
1/3
Nb
2/3
)O
3
-PbTiO
3
single crystals, Appl. Phys.
Lett., 80, p. 1918-1920. 2002.
29. Renault, A E., H. Dammak, G. Calvarin, P. Gaucher and M. P. Thi. Electric-
field-induced orthorhombic phase in Pb(Zn
1/3
Nb
2/3
)

0.955
Ti
0.045
]O
3
single crystals, J.
Appl. Phys., 97, p. 044105. 2005.
30. Kiat, J.M., Y. Uese, B. Dkhil, M. Matsuda, C. Malibert and G.Calvarin,
Monoclinic structure of unpoled morphotropic high piezoelectric PMN-PT and
PZN-PT”, Phys. Rev. B, 65, p. 064106. 2002.
31. Noheda, B., Z. Zhong, D. E. Cox, G. Shirane, S-E. Park and P. Rehrig, Electric-
field-induced phase transitions in rhombohedral Pb(Zn
1/3
Nb
2/3
)
1-x
Ti
x
O
3
, Phys. Rev.
B, 65, p. 224101. 2002.
32. Noheda, B., D. E. Cox, G. Shirane, S E. Park, L. E. Cross and Z. Zhong.
Polarization rotation via a monoclinic phase in the piezoelectric
92%Pb(Zn
1/3
Nb
2/3
)O

3
-8%PbTiO
3
, Phys. Rev. Lett., 86, p. 3891-3894. 2001.
33. Kumar, A. and D. Pandey. Structure and the location of the morphotropic phase
Boundary Region in (1-x)[Pb(Mg
1/3
Nb
2/3
)O
3
]-xPbTiO
3
, J. Phys.: Condens.
Matter, 13, p. L931-L936. 2001.
34. Ye, Z G., B. Noheda, M. Dong, D. Cox, G. Shirane. Monoclinic phase in the
relaxor-Based piezoelectric/ferroelectric Pb(Mg
1/3
Nb
2/3
)O
3
-PbTiO
3
system, Phys.
Rev. B, 64, p. 184114. 2001.
35. Noheda, B., D. E. Cox, G. Shirane, J. Gao and Z G. Ye. Phase diagram of the
ferroelectric relaxor (1-x)Pb(Mg
1/3
Nb

2/3
)O
3
-xPbTiO
3
, Phys. Rev. B, 66, p. 054104.
2002.
36. Bai, F., N. Wang, J. Li, D. Viehland, P. M. Gehring, G. Xu and G. Shirane. X-ray
and neutron diffraction investigations of the structural phase transformation
188

sequence under electric field in 0.7Pb(Mg
1/3
Nb
2/3
)O
3
-0.3PbTiO
3
crystal, J. Appl.
Phys., 96, p. 1620-1627. 2004.
37. Tu, C S., L W. Hung, R. R. Chien and V. H. Schmidt. Temperature- and
electric-field-dependent polarization rotations in (211)-cut
Pb(Mg
1/3
Nb
2/3
)
0.69
Ti

0.31
O
3
(PMNT31%) single crystal, J. Appl. Phys., 96, p. 4411-
4415. 2004.
38. Cao, H., F. Bai, J. Li, D. Viehland, G. Xu, H. Hiraka and G. Shirane. Structural
phase transformation and phase boundary/stability studies of field-cooled
Pb(Mg
1/3
Nb
2/3
O
3
)-32%PbTiO
3
crystals, J. Appl. Phys., 97, p. 094101. 2005.
39. Cao, H., F. Bai, N. Wang, J. Li, D. Viehland, G. Xu and G. Shirane. Intermediate
ferroelectric orthorhombic and monoclinic M
B
phases in [110] electric-field-
cooled Pb(Mg
1/3
Nb
2/3
O
3
)-30%PbTiO
3
crystals, Phys. Rev. B, 72, p. 064104. 2005.
40. Cao, H., J. Li and D. Viehland. Structural origin of the relaxor-to-normal

ferroelectric transition in Pb(Mg
1/3
Nb
2/3
O
3
)-xPbTiO
3
, J. Appl. Phys., 100, p.
034110. 2006.
41. Kisi, E. H., R. O. Piltz, J. S. Forrester and C. J. Howard. The giant piezoelectric
effect: electric field induced monoclinic phase or piezoelectric distortion of the
rhombohedral parent? J. Phys.: Condens. Matter, 15, p. 3631-3640. 2003.
42. Forrester, J. S., R. O. Piltz, E. H. Kisi, and G. J. McIntyre. Temperature-induced
phase transitions in the giant-piezoelectric-effect material PZN-4.5%PT, J. Phys.:
Condens. Matter, 13, p. L825-L833. 2001.
43. Viehland, D. Symmetry-adaptive ferroelectric mesostates in oriented
Pb(BI
1/3
BII
2/3
)O
3
-PbTiO
3
crystals, J. Appl. Phys., 88, p. 4794-4806. 2000.
44. Jin, Y. M., Y. U. Wang, A. G. Khachaturyan, J. F. Li and D. Viehland. Adaptive
ferroelectric states in systems with low domain wall energy: tetragonal
microdomains, J. Appl. Phys., 94, p. 3629-3640. 2003.
189


45. Jin, Y. M., Y. U. Wang, A. G. Khachaturyan, J. F. Li, and D. Viehland. Conformal
miniaturization of domains with low domain-wall energy: monoclinic
ferroelectric states near the morphotropic phase boundaries, Phys. Rev. Lett., 91,
p. 197601. 2003.
46. Wang, Y. U. Three intrinsic relationships of lattice parameters between
intermediate monoclinic M
C
and tetragonal phases in ferroelectric
Pb[(Mg
1/3
Nb
2/3
)
1-x
Ti
x
]O
3
and Pb[(Zn
1/3
Nb
2/3
)
1-x
Ti
x
]O
3
near morphotropic phase

boundaries, Phys. Rev. B, 73, p. 014113. 2006.
47. Wang, Y. U. Diffraction theory of nanotwin superlattices with low symmetry
phase, Phys. Rev. B, 74, p. 104109. 2006.
48. Wang, Y. U. Diffraction theory of nanotwin superlattices with low symmetry
phase: application to rhombohedral nanotwins and monoclinic M
A
and M
B

phases, Phys. Rev. B, 76, p. 024108. 2007.
49. Bdikin, I. K., V. V. Shvartsman and A. L. Kholkin. Nanoscale domains and local
piezoelectric hysteresis in Pb(Zn
1/3
Nb
2/3
)O
3
-4.5%PbTiO
3
, Appl. Phys. Lett., 83, p.
4232-4234. 2003
50. Bai, F., J. Li and D. Viehland. Domain hierachy in annealed (001)-oriented
Pb(Mg
1/3
Nb
2/3
)O
3
-x%PbTiO
3

single crystals, Appl. Phys. Lett., 85, p. 2313-2315.
2004.
51. Wang, H., J. Zhu, N. Lu, A. A. Bokov, Z. G. Ye and X. W. Zhang, Hierarchical
micro-/nanoscale domain structure in M
C
phase of (1-x)Pb(Mg
1/3
Nb
2/3
)O
3
-
xPbTiO
3
single crystal,

Appl. Phys. Lett., 89, p. 042908. 2006.
52. Bhattacharyya, S., J. R. Jinschek, H. Cao, Y. U. Wang, J. Li and D. Viehland.
Direct high-resolution transmission electron microscopy observation of
tetragonal nanotwins within the monoclinic M
C
phase of Pb(Mg
1/3
Nb
2/3
)O
3
-
0.35PbTiO
3

crystals, Appl. Phys. Lett., 92, p. 142904. 2008.
190

53. Jiang, F. and S. Kojima. Raman scattering of 0.91Pb(Zn
1/3
Nb
2/3
)O
3
-0.09PbTiO
3

relaxor ferroelectric single crystals, Jpn. J. Appl. Phys., 38, p. 5128-5132. 1999.
54. Tu, C S., F C, Chao, C H. Yeh, C L. Tsai and V. H. Schmidt. Hypersonic and
dielectric anomalies of (Pb(Zn
1/3
Nb
2/3
)O
3
)
0.905
(PbTiO
3
)
0.095
single crystal, Phys.
Rev. B. 60, p. 6348-6351. 1999.
55. Dobal, P. S., R. S. Katiyar and C S. Tu. Study of ordered nano-regions in
Pb(Zn

1/3
Nb
2/3
)
0.915
Ti
0.085
O
3
single crystal using Raman spectroscopy, J. Raman
Spectrosc., 34, p. 152-156. 2003.
56. Ohwada, K., K. Hirota, P. W. Rehrig, Y. Fujii, and G. Shirane. Neutron diffraction
study of field-cooling effects on the relaxor ferroelectric
Pb[(Zn
1/3
Nb
2/3
)
0.92
Ti
0.08
]O
3
, Phys. Rev. B, 67, p. 094111. 2003.
57. Xu, G., Z. Zhong, Y. Bing, Z G. Ye, C. Stock and G. Shirane. Ground state of the
relaxor ferroelectric Pb(Zn
1/3
Nb
2/3
)O

3
, Phys. Rev. B, 67, p.104102. 2003.
58. Xu, G., Z. Zhong, Y. Bing, Z G. Ye, C. Stock and G. Shirane. Anomalous phase
in the relaxor ferroelectric Pb(Zn
1/3
Nb
2/3
)O
3
, Phys. Rev. B, 70, p. 064107. 2004.
59. Xu, G., H. Hiraka, K. Ohwada and G. Shirane. Dual structures in (1-
x)Pb(Zn
1/3
Nb
2/3
)O
3
-xPbTiO
3
ferroelectric relaxors, Appl. Phys. Lett., 84, p. 3975-
3977. 2004.
60. Kisi, E. H. and J. S. Forrester. Crystal structure of the relaxor ferroelectric PZN:
demise of the ‘X-phase’, J. Phys.: Condens. Matter, 17, p. L381-L384. 2005.
61. Kisi, E. H., J. S. Forrester, C.J. Howard and R. M. Ibberson. Search for the X-
phase in poled PZN-PT using very high-resolution single-crystal neutron
diffraction, J. Phys.: Condens. Matter, 19, p. 232201. 2007.
62. Forrester, J. S., E. H. Kisi, K.S. Knight and C.J. Howard, Rhombohedral to cubic
phase transition in the relaxor ferroelectric PZN, J. Phys.: Condens. Matter, 18, p.
L233-L240. 2006.
191


63. Lim, L.C., F. J. Kumar and A. Amin. Trapped metastable phases in
Pb(Zn
1/3
Nb
2/3
)O
3
-(8-9)%PbTiO
3
single-crystals wafers, J. Appl. Phys., 93, p.
3671-3673. 2003.
64. Rajan, K.K. and L.C. Lim. Particle size dependent X-ray linewidth of
rhombohedral phase in Pb(Zn
1/3
Nb
2/3
)O
3
-(6-7)%PbTiO
3
, Appl. Phys. Lett., 83, p.
5277-5279. 2003.
65. Bertram, R., G. Reck and R. Uecker, Growth and correlation between
composition and structure of (1-x)Pb(Zn
1/3
Nb
2/3
)O
3

-xPbTiO
3
crystals near the
morphotropic phase boundary, J. Crys. Growth, 253, p. 212-220. 2003.
66. Uesu, Y., M. Matsuda, Y. Yamada, K. Fujishiro, D. E. Cox, B. Noheda and G.
Shirane. Symmetry of high-piezoelectric Pb-based complex perovskites at the
morphotropic phase boundary: I. neutron diffraction study on Pb(Zn
1/3
Nb
2/3
)O
3
-
9%PbTiO
3
, J. Phys. Soc. Jpn., 71, p. 960-965. 2002.
67. Ye, Z G., M. Dong and L. Zhang. Domain structures and phase transitions of the
relaxor-based piezo-/ferroelectric (1-x)Pb(Zn
1/3
Nb
2/3
)O
3
-xPbTiO
3
single crystals,
Ferroelectrics, 229, p. 223-232. 1999.
68. Belegundu, U., X. H. Du, L. E. Cross and K. Uchino. In situ observation of
domains in 0.9Pb(Zn
1/3

Nb
2/3
)O
3
-0.1PbTiO
3
single crystals, Ferroelectrics, 221, p.
67-71.1999.
69. Durbin, M. K., J. C. Hicks, S E. Park and T. R. Shrout. X-ray diffraction and
phenomenological studies of the engineered monoclinic crystal domains in single
crystal relaxor ferroelectric, J. Appl. Phys., 87, p. 8159-8164. 2000.
70. Yin, J. and W. Cao. Domain configurations in domain engineered
0.955Pb(Zn
1/3
Nb
2/3
)O
3
-0.045PbTiO
3
single crystals. J. Appl. Phys., 87, p. 7438-
7441. 2000.
192

71. Gupta, S., R. S. Katiyar, R. Guo and A. S. Bhalla. Polarized Raman spectroscopy
study of phase transitions in 0.915Pb(Zn
1/3
Nb
2/3
)O

3
-0.085PbTiO
3
relaxor
ferroelectric single crystals, Ferroelectrics Lett., 27, p. 39-48. 2000.
72. Chen, W. and Z G. Ye. Top-cooling-solution-growth and characterization of
piezoelectric 0.955Pb(Zn
1/3
Nb
2/3
)O
3
-0.045PbTiO
3
[PZNT] single crystals, J.
Mater. Sci., 36, p. 4393-4399. 2001.
73. Ohwada, K., K. Hirota, P. W. Rehrig, P. M. Gehring, B. Noheda, Y. Fujii, S E.
Park and G. Shirane. Neutron diffraction study of the irreversible R-M
A
-M
C

phase transition in single crystal Pb[(Zn
1/3
Nb
2/3
)
1-x
PbTi
x

]O
3
, J. Phys. Soc. Jpn.,
70, p. 2778-2783. 2001.
74. Lee, J K., J. Y. Yi, K S. Hong, S E. Park and J. Millan. Domain configuration
and crystal structure of Pb(Zn
1/3
Nb
2/3
)O
3
-5%PbTiO
3
crystals as a function of the
electric-field direction, J. Appl. Phys., 91, p. 4474-4478. 2002.
75. Iwata, M., T. Araki, M. Maeda, I. Suzuki, H. Ohwa, N. Yasuda, H. Orihara and Y.
Ishibashi. Domain observation Pb(Zn
1/3
Nb
2/3
)O
3
-PbTiO
3
mixed crystals, Jpn. J.
Appl. Phys., 41, p. 7003-7006. 2002.
76. Hosono, Y., K. Harada, T. Kobayashi, K. Itsumi, M. Izumi, Y. Yamashita and N.
Ichinose. Temperature dependence dielectric and piezoelectric properties of
0.93Pb(Zn
1/3

Nb
2/3
)O
3
-0.07PbTiO
3
piezoelectric single crystals, Jpn. J. Appl.
Phys., 41, p. 3808-3811. 2002.
77. Hosono, Y., K. Harada, T. Kobayashi, K. Itsumi, M. Izumi, Y. Yamashita and N.
Ichinose. Dielectric and piezoelectric properties 0.93Pb(Zn
1/3
Nb
2/3
)O
3
-
0.07PbTiO
3
piezoelectric single crystals for medical array transducers, Jpn. J.
Appl. Phys., 41, p. 7084-7088. 2002.
193

78. Renault, A E., H. Dammak, G. Calvarin, M. P. Thi and P. Gaucher. Domain
structures in monoclinic Pb[(Zn
1/3
Nb
2/3
)]
0.91
Ti

0.09
]O
3
poled single crystals, Jpn. J.
Appl. Phys., 41, p. 3846-3850. 2002.
79. Lima-Silva, J. J., I. Guedes, J. M. Filho, A. P. Ayala, M. H. Lente, J. A. Eiras and
D. Garcia. Phase diagram of relaxor (1-x)Pb(Zn
1/3
Nb
2/3
)O
3
-xPbTiO
3
investigated
by dielectric and Raman spectroscopies, Solid State Comm., 131, p. 111-114.
2004.
80. Piltz, R. O. Domain structure of 001-poled PZN-4.5%PT using neutron
diffraction, Ferroelectrics, 339, p. 47-51. 2006.
81. Forrester, J. S., E. H. Kisi and K. S. Knight. Phase transitions in PZN-4.5%PT in
the range 4.2-450 K, Physica B, 385-386, p. 160-162. 2006.
82. Singh, G., I. Bhaumik, A. K. Karnal and V. S. Tiwari. Domain structure and
birefringence studies on a 0.91Pb(Zn
1/3
Nb
2/3
)O
3
-0.09PbTiO
3

single crystal, Cryst.
Res. Technol., 42, p. 378-383. 2007.
83. Kisi, E. H. and J. S. Forrester. The phase transition sequence in the relaxor
ferroelectric PZN-8%PT, J. Phys.: Condens. Matter, 20, p. 165208. 2008.
84. Lim, L. C. and K. K. Rajan. High-homogeneity high-performance flux grown
Pb(Zn
1/3
Nb
2/3
)O
3
-(6-7)%PbTiO
3
single crystals, J. Cryst. Growth, 271, p. 435-
444. 2004.
85. Chien, R. R., V. H. Schmidt, C S. Tu, L W. Hung and H. Luo. Field-induced
polarization rotation in (001)-cut Pb(Mg
1/3
Nb
2/3
)
0.76
Ti
0.24
O
3,
Phys. Rev. B, 69, p.
172101. 2004.
86. Kitano, Y., Y. Mori, A. Ishitani and T. Masaki. Structural changes by mechanical
and thermal stresses of 2.5-mol%-Y

2
O
3
-stabilized tetragonal ZrO
2
polycrystals, J.
Am. Ceram. Soc., 71, p. C-382-C-383. 1988.
194

87. Seth, V. K., G.J. Gatins and W. A. Schulze. Comparison of surface and bulk room
temperature domain structure of barium titanate ceramics using X-ray diffraction,
Ferroelectrics, 87, p. 243-253. 1988.
88. Chen, J H., B H. Hwang, T C. Hsu and H Y. Lu. Domain switching of barium
titanate ceramics induced by surface grinding, Mater. Chem. Phys., 91, p. 67-72.
2005.
89. Davis, M., D. Damjanovic and N. Setter. Electric-field-, temperature-, and stress-
induced phase transitions in relaxor ferroelectric single crystals, Phys. Rev. B, 73,
p. 014115. 2006.
90. Rajan, K. K., M. Shanthi, W. S. Chang, J. Jin and L. C. Lim. Dielectric and
piezoelectric properties of [001] and [011]-poled relaxor ferroelectric PZN-PT
and PMN-PT single crystals, Sensors and Actuators A, 133, p. 110-116. 2007.
91. Shanthi, M., S. M. Chia and L. C. Lim. Overpoling resistance of [011]-poled
Pb(Mg
1/3
Nb
2/3
)O
3
-PbTiO
3

single crystals, Appl. Phys. Lett., 87, p. 202902. 2005.
92. Nye, J. F. Physical properties of crystals: their representation by tensors and
matrices. p. 20-24, 78-81, Oxford University Press, USA. 1957.
93. Cao, H., J. Li, D. Viehland and G. Xu. Fragile phase stability in (1-
x)Pb(Mg
1/3
Nb
2/3
O
3
)-xPbTiO
3
crystals: a comparison of [001] and [110] field-
cooled phase diagrams, Phys. Rev. B, 73, p. 184110. 2006.
94. Sergienko, I. A. and Y. M. Gufan. Phenomenological theory of phase transitions
in highly piezoelectric perovskites, Phys. Rev. B, 65, p. 144104. 2002.
95. Vugmeister, B. E. and H. Rabitz. Dynamics of interacting clusters and dielectric
responses in relaxor ferroelectrics, Phys. Rev. B, 57, p. 7581-7585. 1998.
96. Blinc, R., V. V. Laguta, B. Zalar and J. Banys. Polar nanoclusters in relaxors, J.
Mater. Sci., 41, p. 27-30. 2006.
195

97. Bao, P., F. Yan, Y. Dai, J. Zhu, Y. Wang and H. Luo. Dielectric relaxation in
91%Pb(Zn
1/3
Nb
2/3
)O
3
-9%PbTiO

3
single crystal at low temperature, Appl. Phys.
Lett., 84, p. 5317-5319. 2004.
98. Noheda, B. Structure and high-piezoelectricity in lead oxide solid solutions. Curr.
Opin. Solis State Mater. Sci., 6, p. 27-34. 2002.
99. Cao, H., J. Li and D. Viehland. Electric-field-induced orthorhombic to
monoclinic M
B
phase transition in [111] electric field cooled Pb(Mg
1/3
Nb
2/3
O
3
)-
30%PbTiO
3
crystals, J. Appl. Phys., 100, p. 084102. 2006.
100. Liu, S F., S E. Park, L. E. Cross and T. R. Shrout. Temperature dependence of
electrostriction in rhombohedral Pb(Zn
1/3
Nb
2/3
)O
3
-PbTiO
3
single crystals, J. Appl.
Phys., 92, p. 461-467. 2002.
101. Shen, M., J. Han and W. Cao. Electric-field-induced dielectric anomalies in C-

oriented 0.955Pb(Zn
1/3
Nb
2/3
)O
3
-0.045PbTiO
3
single crystals, Appl. Phys. Lett.,
83, p. 731-733. 2003.
102. Ren, W., S F. Liu and B. K. Mukherjee. Dielectric properties and phase
transitions of <001>-oriented Pb(Zn
1/3
Nb
2/3
)O
3
-PbTiO
3
single crystal. Proc. 13
th

IEEE International Symposium on the Application of Ferroelectrics, May 2002,
Nara, Japan, p. 423-426.
103. Lim, L. C., K. K. Rajan and J. Jin. Characterization of flux-grown PZN-PT single
crystals for high-performance piezo devices, IEEE Trans. Ultrason. Ferroelectr.
Freq. Contr., 54, p. 2474-2478. 2007.
104. Rajan, K. K., M. J. Zhang and L. C. Lim. Optimum compositions for
Pb(Zn
1/3

Nb
2/3
)O
3
-PbTiO
3
single crystal for high-performance applications, Jpn. J.
Appl. Phys., Part 1, 44, p. 264-266. 2005.
105. Liu, T. and T. S. Lynch. Domain engineered relaxor ferroelectric single crystals,
Continuum Mech. Thermodyn., 18, p. 119-135. 2006.
196

106. Yin, J. and W. Cao. Effective macroscopic symmetries and materials properties
of multidomain 0.955Pb(Zn
1/3
Nb
2/3
)O
3
-0.045PbTiO
3
single crystal, J. Appl. Phys.,
92, p. 444-448. 2002.
107. Lee, J K., J. Y. Yi, K. S. Hong and S E. Park. Polarization switching in
Pb(Zn
1/3
Nb
2/3
)O
3

-5%PbTiO
3
crystal, Jpn. J. Appl. Phys., Part 1, 40, p. 6506. 2001.


×