Tải bản đầy đủ (.pdf) (153 trang)

Unique glass formation and mechanical properties of zr cu based alloys

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (4.16 MB, 153 trang )



UNIQUEGLASSFORMATIONANDMECHANICAL
PROPERTIESOFZR‐CU‐BASEDALLOYS










WUWENFEI
(M.Eng,TsingHuaUniv.)








A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
DEPARTMENT OF MATERIALS SCIENCE &
ENGINEERING
NATIONAL UNIVERSITY OF SINGAPORE
2008



 i


Acknowledgments

Firstofall,Iwouldliketothankmysupervisor,Associate ProfessorYiLi. I
wouldnotbeabletocometoSingaporeifProfessorLihadnotofferedmethe
opportunitytofurthermystudyinNUSinthesummerof2004.Heisatruly
excellentteacher,dedicated
scientist,andsupportiveperson.Ihavereceived
invaluable technical advice and constant encouragement from him, all of
which have been essential to the completion of my Ph.D. project. His open
and scholarly mind has made it possible for me to enjoy more or less
independentresearch.Withthepast4years
ofworkingwithhim,Ihavebeen
enlightenedtobemoreanalytic,logicandrational.Ifeeldeeplyindebtedto
himandwouldliketoexpressmysinceregratitudetohim.
IamgratefultoProfessorChristA.SchuhinMassachusettsInstituteof
Technology, United States, for his precious discussion
during the
collaborative work presented in Chapter 3 and his valuable suggestions for
the work presented in Chapter 5. His erudition, insights, and professional
attitude have left me with a great impression. I would also like to thank
Professor YongWei Zhang, and his student Dr. ChunYu Zhang in NUS, for

 ii
theirfruitfuldiscussion,suggestionsandalltheeffortduringthecollaborative
workpresentedinChapter4.IamgratefultoProfessorKaiYang ZenginNUS,
forvaluablediscussionsonmanyissuesofthemechanicaltesting.

I am indebted to the dedicated staff members in the Department of
MaterialsScience&Engineering
fortheirconstanthelpinvariousways,and
theNationalUniversityofSingaporeforfinancialsupport.
Tothe group membersof the Non‐EquilibriumMaterialsLab, former
seniorsDr.DongMa,Dr.ShirleyMeng,Dr.YongZhang,Dr.HuiZiKong,Dr.
HaoTan,Dr.IreneLee,DongWang,Dr.
JieZhang,Dr.XiaoLingFu,CuiYang
Wang,Dr.XiaoQiangZhang,KaiYangLim,andthepresentcolleguesDr.Hai
Yang,GraceLim,ZhengHan, XiangLi,Qiang  Guo,andDr. ZhiYuWang,I
extendmyverysincerethanks.Theexperienceofworkingtogetherwiththese
talentedguyswasawonderfulmemory
inmylife.
It is my great pleasure to acknowledge my friends in Singapore:
Professor JunMin Xue, Jian He, Hua Ma, ZhongQiao Hu, HongYu Liu,
YouSheng Zhang, Jian Zhang, Thongmee Sirikanjana and GuangXia Hu. I
haveenjoyedthegreattimethatwehavespenttogether.
Last but not least, I
am deeply indebted to my family (my parents,
youngersisterandgirlfriend)fortheirgreatloveandunderstanding.Without
theirconstantsupportIwouldnothavehadthestrengthtoreachthisstage.

August2008inSingapore,     WenFeiWU

 iii


TableofContents



Acknowledgments i

TableofContents iii

Summary v

ListofTables viii

ListofFigures ix

ListofPublication xv

1Introduction         1
1.1 Introductiontobulkmetallicglasses(BMGs) 2
1.2 FormationofBMGs 6
1.2.1 Thermodynamicsperspective 7
1.2.2 Kineticsperspective 8
1.2.3 Frequentlyusedindicatorsandrules 10
1.3 MechanicalbehaviorofBMGs 17

1.3.1 Inhomogeneousdeformation 17
1.3.2 Deformationmechanisms 24
1.3.3 BMGmatrixcomposites 27
1.4 Objectiveandoutlineofthisthesis 31

2
Bulk“intermetallicglass”byrapidquenching   33
2.1 Introduction 33
2.2 Experimentalprocedure 36
2.3 ResultsandDiscussion 37

2.3.1 Glassformation 37
2.3.2 Mechanicalproperties 45
2.4 Conclusions 52


 iv
3StatisticaleffectonstrengthofBMGs54
3.1 Introduction 54
3.2 Experimentalprocedure 58
3.3 ResultsandDiscussion 61
3.3.1 Weibullstatisticsofstrength 61
3.3.2 CorrelationsbetweenWeibullmodulus,GFAandmalleability70
3.4 Conclusions 74

4
StressgradientenhancedplasticityinamonolithicBMG    75
4.1 Introduction 75
4.2 Experimentalprocedure 77
4.3 Results 79
4.4 Discussion 83
4.4.1 FiniteElementAnalysis(FEA) 83
4.4.2 Stressgradientinearlystage 88
4.4.3 Shearbandinitiationandproliferation 91
4.4.4 CurvedShearbandpathandinteractionofshearbands 97
4.4.5 Applicationofstressgradient
strategyinabrittleBMG 98
4.4.6 Geometry‐sensitiveplasticityofBMGs 101
4.5 Conclusions 102

5

Size‐dependentʺmalleable‐to‐brittleʺtransitioninaBMG 104
5.1 Introduction 104
5.2 Experimentalprocedure 106
5.3 ResultsandDiscussion 108
5.3.1 “Malleable‐to‐brittle”transition 108
5.3.2 Sizedependenceofstrength 111
5.3.3 Fractography 115
5.4 Conclusions 119

6
Concludingremarks121
6.1 Summaryofresults 121
6.2 Futurework 124

Bibliography 125


 v


Summary


The research area of amorphous metals was replenished recently with the
discoveryofbulk‐sizedmetallicglasses(BMGs)invarioussystemsinthepast
decades. In this research field, the formation and mechanical behavior of
BMGs are the two major sub‐areas, which were the focuses of the present
work.

ThefirstsignificantfindingofthisworkisthediscoveryofbulkZr‐Cu

“intermetallicglass”,whichisanewgroupofglassformedinthevicinityof
intermetallics of the phase diagram by rapid quenching. This finding is
remarkablebecauseintheconventionalbelief,metallicglassiseitherformed
near deep‐eutectics through liquid quenching or near the centre of ph ase
diagram by solid‐state reaction. This discovery is believed to open an
otherwiseoverlookedarenaforfindinganewhostofmetallicglasses.
 Upon mechanical loading, metallic glasses generally fail
catastrophicallybyonedominantshearbandwithvery
limitedplasticstrain,
similartothoseoftypicalbrittlematerials.Inviewofthisbrittlefracture,to
addresstheflawsensitivityissueinBMGsthusbecomesessential.Thesecond

 vi
contributionofthisworkistoinvestigatesystematicallythestrengthvariation
ofBMGsbyapplyingWeibullstatistics.Theresultsshowedsurprisinglyhigh
Weibull moduli approaching the range for crystalline metals, despite their
brittleness. These high Weibull moduli of the BMGs indicate that these
materials are highlyuniform instrength,and thus
much more mechanically
reliable than expected in light of their flaw sensitivity. Such reliability is
encouragingforthepotentialuseofBMGsasanengineeringmaterial.
 Thethirdpartofthisthesisiscloselyfollowingthepreviouspart.The
high strength uniformity indicates that there is a small allowed variation

range in stress for the shear band initiation. Therefore, if a large stress
gradient could be introduced inside the sample, the propagation of shear
bandcouldberestricted,newshearbandsmightbeencouragedtobeformed,
andthustheplasticitycouldbeenhanced.Wethusproposedanewconcept‐
“stressgradientenhancedplasticity”‐toalleviatetheconcernofcatastrophic
failure of monolithic BMG using non‐orthogonal samples for illustration. It

not only suggests that, the deformation ofBMGcould be much sensitive to
thespecimengeometry;butmoreimportantly,itoffersanewwaytotoughen
themonolithic“brittle”glassy
alloyswithpracticalsignificance.
 The fourth contribution of this thesis is to identify the existence of a
ʺmalleable‐to‐brittleʺtransitioninBMGoccurredatacriticalsamplesizeunder
both as‐cast and annealed states. Contrary to the traditional view that the
sample size dependence of malleability is
attributed to free volume

 vii
differences, we proposed that this transition should be related to the
geometrical size effect, which is later proven by  the observation of such a
transition even in the annealed BMG samples. In addition, a sample size
dependenceofstrengthaccompaniedwiththistransitionwasalsoidentified.
Itissuggestedthat,to
determinethecriticalsizesforthe“malleable‐to‐brittle”
transition in BMGs is extremely important and should provide valuable
guidancefortheircomponentdesign.

 viii


ListofTables

Table 1. 1 TypicalBMG systemswiththeircritical sizesandyears in
whichtheyweredeveloped. 4

Table1.2PossibleapplicationfieldsforBMGs 5


Table2.1MechanicalpropertiesofZr
48.5Cu51.5,Zr51Cu49,Zr49.5Cu50.5,and
Zr
49Cu51 as‐cast alloys, with various volume fraction of ZrCu
martensite in the amorphous matrix, under co mpression at room
temperature 47

Table 2. 2 Mechanical properties of the samples 1‐5, which were cut
fromthedifferentpartofonesingleZr
48.5Cu51.5as‐cast2mmrod,with
variousvolumefractionsofZrCumartensitephaseintheamorphous
matrix 51

Table 3. 1 Summary of the measured mechanical properties of
orthogonal Zr
51Cu49, Zr48Cu45Al7 and (Zr48Cu45Al7)98Y2 BMG specimens
undercompressiontesting. 64

Table3.2SummaryoftheWeibullmoduliforvariousmaterials 67

Table4.1CriticalmaterialparametersusedintheFEA 86

Table5.1ThermalpropertiesoftherepresentativeZr
48Cu45Al7as‐cast
and annealed rods obtained from their DSC measurements.∆H
r
denotestheexothermicheatforstructuralrelaxation 107






 ix


ListofFigures


Figure 1. 1Schematicdiagramofglassformationbyrapidquenching
ofaliquidwithoutcrystallization.Line1correspondstocrystallization
at low cooling rate, and Line 2 corresponds to vitrification at high
coolingrate 3

Figure1.2DifferenceinGibbsfreeenergybetweentheliquidandthe
crystallinestate
forglass‐formingliquids.Thecriticalcoolingratesfor
the alloys are indicated in the plot as K/s values beneath the
compositionlabels,reproducedfrom[40] 8

Figure 1. 3Angellplotcomparingtheviscositiesofdifferenttypesof
glass‐formingliquids,reproducedfrom[43] 9

Figure 1. 4 Variation of logarithm
 of homogeneous nucleation rate I
withreducedglasstransitiontemperatureT
r.Tr=T/Tm,Trg=Tg/Tm.T,Tg,
T
m are, respectively, the actual absolute temperature, the glass
transition temperature, and the melting temperature of alloys,
reproducedfrom[55] 12


Figure 1. 5 Schematic diagram shows T
rg reaches maximum value
around the eutectic point for a typical binary eutectic alloy phase
diagram 13

Figure1.6RelationshipbetweencriticalcoolingrateR
c,criticalsizetmax,
andtheinterval of supercooledliquid region

Txfor variousBMGs,
reproducedfrom[7] 14

Figure1.7Phase‐formationmapsincludingtheglass‐andcomposite‐
formingregionsfor thetwokinds of eutecticsystem. (a)In a regular
eutecticsystem,thebestglass‐formingrangeincludestheeutectic(Eu)
composition.(b)Inanirregulareutecticsystem,theeasy
glass‐forming

 x
rangewouldbeoutsidetheeutecticcomposition.
T

isthecoolingrate
andCisthecomposition,reproducedfrom[59] 16

Figure 1. 8 Schematic deformation map for an amorphous metal
illustrating the temperature and stress regions for homogeneous and
inhomogeneousplasticflow,reproducedfrom[66] 18


Figure1.9Schematicillustrationoftypicalstrengthsandelasticlimits
for various
 materials. Metallic glasses are unique with high strength
andhighelasticlimit. 19

Figure 1. 10 SEM micrographs illustrating the “slip steps” or surface
offsetsassociatedwithshearbandsindeformedmetallicglasses.(a)a
stripof Zr
57Nb5Al10Cu15.4Ni12.6BMG underbendingtest,adaptedfrom
[74], and (b) a Zr
52.5Cu17.9Ni14.6Al10Ti5 BMG under compression test,
adaptedfrom[75] 20

Figure 1. 11Serratedflowofmetallicglasses,throughrepeatedshear
band operation in confined loading. In (a), a Pd
77.5Cu6Si16.5 specimen
with low aspect ratio under compression, adapted from [84], and (b)
Pd
40Cu30Ni10P20glassunder an load‐control instrumented indentation,
adaptedfrom[87] 22

Figure1.12Effectofthedimensionlessratioofshearandbulkmoduli
(μ/B) on the toughness of various glasses, expressed in terms of the 
fractureenergyG
c,reproducedfrom[90]. 24

Figure1.13Two‐dimensionalschematicsoftheatomisticdeformation
mechanismsproposedforamorphousmetals(a)sheartransformation
zonemodel[67](b)freevolumemodel[66],reproducedfrom[76]. 25


Figure 1. 14 (a) Microstructures of Nb reinforced
Zr
41.2Ti13.8Cu12.5Ni10Be22.5BMGmatrixcompositeand(b)itscompressive
stress‐straincurveforcylindricalspecimen,adaptedfrom[122] 29

Figure 1. 15 Backscattering SEM image (a) of cross‐section of
La
74Al14(Cu,Ni)12BMGmatrixcompositeswith50%involumefraction
of crystalline phase and representative tensile stress‐strain curves of
monolithic amorphous alloy and composite samples, adapted from
[99] 30


 xi
Figure1.16(a)SEMmicrographofneckinginZr39.6Ti33.9Nb7.6Cu6.4Be12.5
BMG matrix composites, and (b) Brittle fracture representative of all
monolithicBMGs,adaptedfrom[123] 30

Figure 2. 1 Two conventional glass forming regions. (a) A schematic
phase diagram of a binary alloy system consisted of two eutectics
separated by an intermetallic phase. Two distinct glass forming
regions (shaded area) based on Turnbull’s kinetics Trg criterion for
quenched glass (b) and thermodynamics consideration for solid‐state
reactedglass(c). 34

Figure 2. 2 The representative XRD spectrums of Zr
xCu100‐x (x=45‐56)
as‐cast 2 mm alloys. Five regions with distinct microstructures are
observed. 38


Figure 2. 3 TherepresentativeSEMmicrographsofZr
xCu100‐x(x=45‐56)
as‐cast2mmalloys. 40

Figure2.4TherepresentativeDSCcurvesofZr
xCu100‐x(xfrom48.5to
51)meltspunribbonsandas‐castbulksamples. 40

Figure 2. 5 Hypothetic free energy curves and forming region of
“intermetallic glass” under quenching. The “intermetallic glass”
formingregion(redsolidline)withtwooptimum“intermetallicglass”
formers(purplesolidcircle)werelocatedclosetobut
separatedbythe
equiatomiccompositionin thecorresponding portionofZr‐Cuphase
diagram.Thetwo“eutecticglasses”atZr
44Cu56[133]andZr55Cu45[134]
weremarkedinblackopencircleforcomparison. 42

Figure2.6Theengineeringcompressivestress‐straincurvesofZr‐Cu
amorphous matrix composites with varied volume fraction of ZrCu
martensite. A‐ Zr
48.5Cu51.5 and B‐ Zr51Cu49 alloy with fully amorphous
structure; C‐ Zr49.5Cu50.5 alloy with 40% of ZrCu martensite, and D‐
Zr
49Cu51alloywith77%ofZrCumartensiteintheamorphousmatrix. 46

Figure 2. 7 Scanned micrograph of longitudinal cross section of a
whole2mmas‐castZr
48.5Cu51.5rod.Themicrostructuralinhomogeneity
in the longitudinal direction was observed. Sample 1‐5 are

representativesofvariousmicrostructures 49

Figure 2. 8 The compressive stress‐strain curves of the samples 1‐5,
whichwerecutfromthedifferentpartofonesingleZr
48.5Cu51.5as‐cast2
mmrod. 50

 xii

Figure 3. 1 XRD patterns of representative Zr
51Cu49, Zr48Cu45Al7 and
(Zr
48Cu45Al7)98Y2as‐castrods.TheinsetshowstheircorrespondingDSC
curves, with the glass transition (T
g) and onset crystallization
temperature(T
x). 60

Figure3.2Compressivestress–straincurvesof18orthogonalZr
51Cu49
BMGspecimens,offsetfromoneanotheronthestrainaxisforclarity
ofpresentation 62

Figure 3. 3 Compressive stress–strain curves of 24 orthogonal
Zr
48Cu45Al7BMGspecimens,offsetfromoneanotheronthestrainaxis
forclarityofpresentation 63

Figure 3. 4 Compressive stress–strain curves of 47 orthogonal
(Zr

48Cu45Al7)98Y2BMGspecimens,againdisplacedonthestrainaxisfor
clarity. 63

Figure3.5(a)WeibullplotsofZr‐Cu‐basedBMGsundercompression.
TheirWeibullmoduliare:(A)112forZr
51Cu49;(B)73.4forZr48Cu45Al7;
and (C) 25.5 for (Zr
48Cu45Al7)98Y2. (b) The corresponding Weibull
strengthdistributionfunctiondescribesthefractionofthesamplesthat
failatany given compressive stress;notethelefthandskew of these
distributions 66

Figure3.6TheXRDpatternsofthreeas‐castZr‐Cu‐basedalloyswith
differentsizes.Thecriticalsizeswere
foundtobe2mm,5mmand8
mmforZr
51Cu49,Zr48Cu45Al7,and(Zr48Cu45Al7)Y2,respectively. 72

Figure 3. 7The correlation between GFA (critical size), the plastic
strainpriortofailure,andWeibullmodulusforthethreeZr‐Cu‐based
BMGs.Thedataforoxideglassisalsoplottedforcomparison 73

Figure 4. 1 BMG samples with three designed geometries (a)
orthogonal,(b)monoclinic,
and(c)transitional. 79

Figure4.2Therepresentativecompressiveload‐displacementcurveof
Zr
48Cu45Al7 BMG with the orthogonal geometry. The inset shows the
fracturedspecimenafterverylimitedplasticdeformation(1.3%). 80


Figure4.3Therepresentativecompressiveload‐displacementcurveof
Zr
48Cu45Al7BMGwiththemonoclinicgeometry.Theinsetshowsthe
specimenafterdeformation.Theenlargedareashowsslightserrations
inthestressstraincurve 81

 xiii

Figure4.4Therepresentativecompressiveload‐displacementcurveof
Zr
48Cu45Al7BMGsamplewiththetransitionalgeometry.Theenlarged
areashowsintenseserrationsinthestressstraincurve 82

Figure 4. 5 The morphology of fractured Zr48Cu45Al7 BMG specimen
withthetransitionalgeometry 83

Figure4.6Compressiveload‐displacementcurveswiththreedesigned
geometriessimulatedbyFEA. 87

Figure4.7TheMisesstressdistributionofsampleundercompression
with different geometries at a total cross‐head displacement of 0.03
mm. 90

Figure 4. 8 The quantitative
stress gradients along the sample width
directionattheposition0.5mmawayfromthebottomsurface. 90

Figure4.9showstheshearbandsevolutionintheorthogonalsample
predictedbytheFEA 91


Figure4.10showstheshearbandsevolutioninthemonoclinicsample
predictedbytheFEA 92

Figure4.11showstheshearbandsevolutioninthetransitionalsample
predictedbytheFEA 94

Figure4.12Thetypicallybrittle(Zr
48Cu45Al7)98Y2BMGwithapyramid
geometry shows good deformability after  yielding. The load‐
displacementprofilesoftheorthogonalBMGsamplewithaspectratio
of0.75and2arealsoplottedforcomparison. 99

Figure4.13Themorphologyofpyramid(Zr
48Cu45Al7)98Y2BMGsample
before (a) and after (b) compression. Multiple shear bands with
semicircular trajectories were observed in the top of the deformed
pyramidsamplesurface(b),asshownathighmagnificationin(c).The
FEAresultssuggestthatthestressgradient(d)presentinthepyramid
sample accounts for the
enhanced plasticity in this otherwise brittle
glass 100

Figure5.1PartofDSCtracesofrepresentativeZr
48Cu45Al7rodsunder
as‐cast and annealed states. The XRD patterns shown in the inset
verifiedthefullyamorphousstructureofsamplesstudied. 107


 xiv

Figure5.2R epresentativestress‐straincurvesofZr48Cu45Al7(a)as‐cast
and(b)annealedsampleswithdifferentsizesundercompression.An
evident“malleable‐to‐brittle”transitionwasobservedinbothstates 109

Figure5.3Thesamplesizedependenceof(a)strengthand(b) average
plasticstraininZr
48Cu45Al7BMG 114

Figure 5. 4 (a) Fractography observation of 1.5 mm sized Zr
48Cu45Al7
as‐cast BMG. The black arrow  in (a) shows the direction of shearing
deformation.Magnifiedviews oftheregionA, andBindicated in(a)
are shown in (b), and (c), respectively. The side view of the sample
shownin(d)suggestsapurelyshearingmodeoffracture. 116

Figure 5.
 5 (a) Fractography observation of 4 mm sized as‐cast
Zr
48Cu45Al7BMG.Theblackarrowin(a)showsthesheardirection.The
typicalmorphologiesinregionAandBof(a)areshownin(b)and(c),
respectively. The side view is shown in (d). Local  melting was
frequently observed in the fracture surface as circled in (a), the
magnifiedviews
ofcircleIandIIareshownin(e),and(f),respectively 117



 xv



ListofPublication



1. W. F. Wu
, Z. Han, and Y. Li. Size‐dependentʺmalleable‐to‐brittleʺ
transition in a bulk metallic glass. Applied Physics Letters, 2008, 93:
061908

2. W.F.Wu
,C.Y.Zhang,Y.W.Zhang,K.Y.ZengandY.Li.Stressgradient
enhanced plasticity in a monolithic bulk metallic glass. Intermetallics,
2008,16:1190

3. W.F.Wu
,Y.Li.Geometry‐sensitiveplasticityofamonolithicbulkmetallic
glass.Mater.Res.Soc.Symp.Proc.,2008,1048:Z05‐06

4. W. F. Wu
, Y. Li and C. A. Schuh. Strength, plasticity and brittleness of
bulkmetallicglassesundercompression:statisticalandgeometriceffects.
PhilosophicalMagazine,2008,88:71


5. W. F. Wu
, and Y. Li. Bulk “intermetallic glass” by rapid quenching.
(Submitted)

6. Z.Han,W. F. Wu
,Y.Li, Y. J. Wei andH. J. Gao. An instabilityindexof

shear band for plasticity in metallic glasses. Acta Materialia, 2009, 57:
1367

7. Z.Han,H.Yang,W.F.Wu
,Y.Li.Invariant critical stress for shear banding in a
bulk metallic glass. AppliedPhysicsLetters,2008,93:231912
1.Introduction
 1










Chapter1





Introduction






MetallicGlass (MG) isa metalbasedamorphoussolid.TheresearchonMG
hasrecentlybeenrevisitedowingtothediscoveryofanumberofbulksized
(i.e.≥1mm)MGsamples,whicharecalled “bulkmetallicglasses”(BMGs).
TheBMGsareofgreatinterestbothinscienceandin
engineeringduetotheir
superiorpropertiessuchashighelasticlimit,highstrength,hightoughnessas
wellashighcorrosionresistance[1].Theyareverystablebecauseofthelarge
supercooled liquid region. Their superplastic behavior at elevated
temperature makes them a good candidate for net shaping materials. They
1.Introduction
 2
havealsobeenusedasthematerialforfabricatinggolfclubhead,handphone
casing,andpenetrators[2].
Inthefirstchapter,ageneralintroductiontoBMGswillbegiven.The
development, general properties and applications of BMGs will be briefly
reviewed.Afterthis,Iwillfocus ontheformationas
wellas themechanical
behavior of BMGs, which are the major concerns of this thesis, and the
fundamental yet important knowledge such as Turnbull’s kinetic theory on
glassformationandSpaepen’sdeformationmapofamorphousalloyswillbe
reviewed in detail. Theobjectives for the current work will then be
pointed
out.Thefirstchapterwillendwithanoutlineofthethesis.



1.1 Introductiontobulkmetallicglasses(BMGs) 

Metallic glasses are metals or metal alloys with no long range atomic order
(LRO).Theyarepreparedbyrapidsolidificationofthealloyingconstituents

from liquid phase. The solidification occurs  so rapidly that the atoms are
frozenintheirliquidconfiguration(
Figure1.1)[3].
ThefirstmetallicglassAu
75Si25was reportedbyDuwez[4]in1960.He
made this discovery by chilling metallic liquidsatvery high ratesof 10
5
‐10
6

K/s. Using rapid solidification methods such as splat quenching and melt
1.Introduction
 3
spinningwithcharacteristiccoolingratesin therangeof 10
3
‐10
6
K/s,metallic
glasseswerefoundinmany binary andternaryalloysystems[3].However,
foralongtime,thecriticalsizefortheknownmetallicglasseswasinmicron
scale(usually<0.2mm),whichhaslimitedtheiruseasengineeringmaterials.

crystal
T
m
T
g
X
Y
liquid

T
log t
glass
crystal
T
m
T
g
X
Y
liquid
T
log t
glass

Figure1.1Schematicdiagramofglassformationbyrapidquenching
of a liquid without crystallization. Line 1 corresponds to
crystallization at low cooling rate, and Line 2 corresponds to
vitrificationathighcoolingrate.

In1974,Chen[5]synthesizedamorphousrods withdiameter up to 3
mm among several ternary noble metal alloy systems such as Pd‐Cu‐Siand
Pd‐Ni‐P by water quenching with cooling rates of 10
3
 K/s or less. If one
arbitrarilydefineslargerthan1mminthesmallestdimensionofthesampleas
“bulk”, these ternary glasses were the first examples of “bulk” metallic
glasses (BMGs) [1]. Till the late 1980s, Inoue and co‐workers successfully
1.Introduction
 4

preparedthe“first”BMGwithoutnoblemetalsLa55Al25Ni20[6]bycoppermold
casting, which is the beginning of a new era for BMGs. Subsequently new
BMGshavebeendiscoveredinmanyothersystemssuchasZr,Cu,Fe,Ni,Ti,
Nd,Ca,Y,Ce,andAubasedalloysystems[7‐11].Todate,thelargestcritical
sizeof
theknownBMGsis72mmforthePd40Cu30Ni10P20[12]alloyobtained
byfluxingmethod.
Table1. 1summarizesthetypicalBMGsystemswiththeir
criticalsizesandtheyearsinwhichtheywerefirstreported.

Table1.1TypicalBMGsystemswiththeircriticalsizesandyearsin
whichtheyweredeveloped.

BMGsystem Year Criticalsize(mm) Ref.
Pd‐(Cu,Ni)‐Si
(Pd,Pt)‐Ni‐P
1974 3 [5]
Pd–Ni–P 1982 10 [13]
La‐Al‐Ni 1990 3 [6]
Mg‐Cu‐Y 1991 4 [14]
Zr‐Ti‐Cu‐Ni‐Be 1993 >14 [15]
Zr‐Al‐Ni‐Cu 1993 30 [16]
Ti‐Zr‐Cu‐Ni 1995 4 [17]
Fe‐Al‐Ga‐P‐B‐C 1995 1 [18]
Pd‐Cu‐Ni‐P
 1997 72 [12]
Nd‐Al‐(Fe,Co) 1997 15 [19]
Ti‐Ni‐Cu‐Sn 1998 6 [20]
Ni‐Nb‐(Cr,Mo)‐P‐B 1999 1 [21]
Cu‐(Zr,Hf)‐Ti 2001 4 [22]

Fe‐Cr‐Mo‐C‐B‐P 2002 3 [23]
Co‐Fe‐Ta‐B 2003 2 [24]
Ni‐
Ti‐Cu‐Zr‐Al 2004 5 [25]
Cu‐Zr‐Al‐Y 2004 10 [26]
Cu‐Zr 2004 2 [27‐29]
Fe‐Co‐Cr‐Mo‐C‐B‐Y 2005 16 [30]
Ca‐Mg‐Ni 2005 13 [9]
Au‐Ag‐Pd‐Cu‐Si 2005 5 [10]
Mg‐Cu‐Ag‐Gd 2005 25 [31]


1.Introduction
 5
Recently,thecriticaldiameterDcforglassformation(i.e.,themaximum
diameterofarodthatcanbecastfullyglassy)hasexceeded1cmforawider
varietyofalloysystemssuchasthosebasedonFe[32],Co[33],Ni[34]orCu
[35], resulting in significantly increased engineering importance for bulk
metallic
glasses(BMGs).
Table 1. 2 summarizes fields of application in which the bulk
amorphous alloys have expected uses. Considering the recent significant
extension of application fields, it is expected that the importance of bulk
amorphous alloys as basic science and engineering materials will increase
steadilyinthe21
st
century.


Table1.2PossibleapplicationfieldsforBMGs


Properties Applicationfield
Highstrength Machinerystructuralmaterials
Highhardness Cuttingmaterials
Highfracturetoughness Diematerials
Highimpactfractureenergy Toolmaterials
Highfatiguestrength Bondingmaterials
Highelasticenergy Sportinggoodsmaterials
Highcorrosionresistance Corrosionresistancematerials
Highwearresistance Writingappliancematerials
Highreflectionratio Opticalprecisionmaterials
Highhydrogenstorage Hydrogenstoragematerials
Good
softmagnetism Softmagneticmaterials
Highfrequencypermeability Highmagnetostrictivematerials
Efficientelectrode Electrodematerials
Highviscousflowability Compositematerials
Highacousticattenuation Acousticabsorptionmaterials
Self‐sharpeningproperty Penetrator
Highwearresistanceand
manufacturability
Medicaldevicesmaterials

1.Introduction
 6
ThecommercializationofBMGproductshasalreadysucceeded[2]in
the following areas: (1) tungsten‐loaded composite BMGs [36] for defense
applicationssuchasarmorandsubmunitioncomponents;(2)thinnerforming
technologies [37] for electronic casings such as mobile phones, handhelds
(PDAs), and cameras; (3) medical devices such as reconstructive supports,


surgical blades, fracture fixations, and spinal implants; and (4) fine jewelry
suchaswatchcasings,fountainpens,andfingerrings.



1.2 FormationofBMGs

Understandingglassformation,particularlyinmulti‐componentsystems,isa
complex task involving multiple intertwined issues. Both qualitative and
quantitativemethodsweredevelopedduringthepastdecadestoanalyzeand
predictglass‐formingability(GFA,expressedintermsofcriticalcoolingrate)
andglass‐formingrange(GFR,expressingthe range
ofcomposition),andto
searchfornewglass‐formers.Typicalconsiderationsinvolvethermodynamic
drivingforceforcrystallizationandkineticconstraintstopreventnucleation
and/orgrowthofthecompetingcrystallinephases.



1.Introduction
 7
1.2.1 Thermodynamicsperspective

Toavoidthecrystallization,fromthermodynamicsconsideration,itrequiresa
lowdrivingforceforcrystallizationinthesupercooledliquidtoformaglass.
Thedrivingforceforcrystallizationisthefree‐energydifferencebetweenthe
liquidstateG
landcrystallinestate Gs(∆Gl‐s=Gl‐Gs),whichcanbecalculated
by integrating the specific heat capacity  difference

()
ls
p
CT

∆ according to the
Equation1.1,
00
()
() ()
ls
TT
p
ls
ls f f p
TT
CT
GT H ST CTdTT dT
T




∆=∆−∆−∆ +
∫∫
(1.1)
Where
f
H∆ and
f

S∆ aretheenthalpyandentropyoffusion,respectively,at
thetemperatureT
0,thetemperatureatwhichthecrystalandtheliquidarein
equilibrium.
Based on the thermodynamic data, Busch et al. [38, 39] had
systematicallystudiedthethermodynamicfunctionsofthetypicalbulkglass‐
forming undercooled liquid.
Figure 1. 2 shows the calculated Gibbs free
energy of the supercooled liquid with respect to the crystal,∆G(T), as a
function of supercooling a selection of glass forming systems. The
temperaturesarenormalizedtothealloymeltingtemperatures.Qualitatively,
the GFA, indicated by a low critical cooling rate, scales  inversely with
 the
drivingforceforcrystallization,∆G[40].
1.Introduction
 8
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0
1
2
3
4



G (kJ/g atom)
T/T
m
Supercooled
liquid

Zr
62
Ni
38
(10
4
K/s)
Cu
47
Ti
34
Zr
11
Ni
8
(250 K/s)
Mg
65
Cu
25
Y
10
(50 K/s)
Zr
46.75
Ti
8.25
Cu
7.5
Ni

10
Be
27.5
(10 K/s)
Zr
41.2
Ti
13.8
Cu
12.5
Ni
10
Be
22.5
(1 K/s)
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0
1
2
3
4



G (kJ/g atom)
T/T
m
Supercooled
liquid
Zr

62
Ni
38
(10
4
K/s)
Cu
47
Ti
34
Zr
11
Ni
8
(250 K/s)
Mg
65
Cu
25
Y
10
(50 K/s)
Zr
46.75
Ti
8.25
Cu
7.5
Ni
10

Be
27.5
(10 K/s)
Zr
41.2
Ti
13.8
Cu
12.5
Ni
10
Be
22.5
(1 K/s)

Figure1.2DifferenceinGibbsfreeenergybetweentheliquidandthe
crystallinestateforglass ‐formingliquids.Thecriticalcoolingratesfor
the alloys are indicated in the plot as K/s values beneath the
compositionlabels,reproducedfrom[40].


1.2.2 Kineticsperspective

To better characterize the GFA of BMG systems, one needs to study the
crystallization kinetics in these alloys. From the perspective of kinetics, the
key parameter‐viscosity has a significant influence on the GFA of an alloy
system.Avarietyoftechniqueshavebeenappliedtomeasureviscosityfrom
the
equilibriumliquiddowntothedeeplyundercooledliquidnearTg[41,42].
1.Introduction

 9
Since the undercooled liquid alloys are relatively stable with respect to
crystallization on laboratory time scales, viscosity can be measured in bulk
glass‐formingsystemsinmuchwidertemperatureandtimescalesthanbefore.
Figure 1. 3 shows a “fragility plot” in the form proposed by Angell [43] in
which the viscosities of different glass‐forming liquids are compared in an
Arrhenius plot for which the inverse temperature axis is normalized with
respect to glass‐transition temperature T
g. On this normalized scale, the
meltingpointisat~0.6.Allthecurvesmeetat10
12
Pas,correspondingtothe
viscosityatT
g.
0.2 0.4 0.6 0.8 1.0
10
-5
10
-3
10
-1
10
1
10
3
10
5
10
7
10

9
10
11

Viscosity (Pa s)
T
g
/T
SiO
2
Pure metal
O-terphenyl
BMG-forming
alloys
0.2 0.4 0.6 0.8 1.0
10
-5
10
-3
10
-1
10
1
10
3
10
5
10
7
10

9
10
11

Viscosity (Pa s)
T
g
/T
SiO
2
Pure metal
O-terphenyl
BMG-forming
alloys

Figure1.3Angellplotcomparingtheviscositiesofdifferenttypesof
glass‐formingliquids,reproducedfrom
[43].

×