Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (120.65 KB, 2 trang )
Bài 9. Căt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một
tam giác vuông cân có cạnh huyền bằng a√2.
Bài 9. Căt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân có cạnh huyền bằng
a√2.
a) Tính diện tích xuang quanh, diện tích đáy và thể tích của khối nón twong ứng.
b) Cho một dây cung BC và đường tròn đáy hình nón sao cho mặt phẳng (SBC) tạo với mặt phẳng chứa
đáy hình nón một góc 60. Tính diện tích hình vuông và mặt phẳng đáy.
Hướng dẫn giải:
a) Cạnh huyền chính bằng đường kính đáy do vậy bán kính đáy r =
đwòng sinh l = a.
Vậy Sxq = πrl =
( đơn vị diện tích)
Sđáy =
=
( đơn vị diện tích);
Vnón =
( đơn vị thể tích)
b) Gọi tâm đáy là O và trung điểm cạnh BC là I.
= 600.
Theo giả thiết,