Giải các phương trình:
38. Giải các phương trình:
a) (x – 3)2 + (x + 4)2 = 23 – 3x;
b) x3 + 2x2 – (x – 3)2 = (x – 1)(x2 – 2);
c) (x – 1)3 + 0,5x2 = x(x2 + 1,5);
d)
–1=
e)
=1-
f)
=
-
;
;
Bài giải:
a) (x – 3)2 + (x + 4)2 = 23 – 3x ⇔ x2 – 6x + 9 + x2 + 8x + 16 = 23 – 3x
⇔ 2x2 + 5x + 2 = 0
∆ = 25 – 16 = 9
x1 = -2, x2 =
b) x3 + 2x2 – (x – 3)2 = (x – 1)(x2 – 2)
⇔ x3 + 2x2 – x2 + 6x – 9 = x3 – x2 – 2x + 2 ⇔ 2x2 + 8x – 11 = 0
∆’ = 16 + 22 = 38
x1 =
, x2 =
c) (x – 1)3 + 0,5x2 = x(x2 + 1,5)
⇔ x3 – 3x2 + 3x – 1 + 0,5x2 = x3 + 1,5x
⇔ 2,5x2 – 1,5x + 1 = 0
⇔ 5x2 – 3x + 2 = 0; ∆ = 9 – 40 = -31 < 0
Phương trình vô nghiệm
d)
–1=
-
⇔ 2x(x – 7) – 6 = 3x – 2(x – 4)
⇔ 2x2 – 14x – 6 = 3x – 2x + 8
⇔ 2x2 – 15x – 14 = 0; ∆ = 225 + 112 = 337
x1 =
e)
, x2 =
=1-
. Điều kiện: x ≠ ±3
Phương trình được viết lại:
=1+
⇔ 14 = x2 – 9 + x + 3
⇔ x2 + x – 20 = 0, ∆ = 1 + 4 . 20 = 81
√∆ = 9
Nên x1 =
= -5; x2 =
= 4 (thỏa mãn)
Vậy phương trình có hai nghiệm x1 = -5, x2 = 4.
f)
=
. Điều kiện: x ≠ -1, x ≠ 4
Phương trình tương đương với:
2x(x – 4) = x2 – x + 8 ⇔ 2x2 – 8x – x2 + x – 8 = 0
⇔ x2 – 7x – 8 = 0
Có a – b + c = 1 – (-7) – 8 = 0 nên x1 = -1, x2 = 8
Vì x1 = -1 không thỏa mãn điều kiện của ẩn nên: phương trình có một nghiệm là x = 8.