Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (62.45 KB, 1 trang )
Vẽ tam giác PQR
Đố : Vẽ tam giác PQR có PQ = PR =5cm, QR = 6cm. Lấy điểm M trên đường thẳng QR sao cho PM =
4,5cm. Có mấy điểm M như vậy ?
Điểm M có nằm trên cạnh QR hay không ? Tại sao ?
Hướng dẫn:
Kẻ đường cao AH của ∆PQR
=> H là trung điểm của QR
=> HR =
QR = 3cm
+ ∆PHR vuông tại H
nên PH2 = PR2 – HR2 (định lý pytago)
PH2 = 25- 9 = 16=> PH = 4cm
Đường vuông góc PH = 4cm là đường ngắn nhất trong các đường kẻ P đến đường thẳng QR. Vậy chắc
chắn có một đường xiên PM = 4,5cm (vì PM = 4,5cm > 4cm) kẻ từ P đến đường thẳng QR.
∆PHM vuông góc tại H nên HM2 = PM2 – PH2 (định lý pytago)
=> HM2 = 20,25 – 16 = 4, 25
=> HM = 2,1cm
Vậy trên đường thẳng QR có hai điểm M như vậy thỏa mãn điều kiện HM = 2,1cm
Vì HM < HR => M nằm giữa H và R hay hai điểm này nằm trên cạnh QR, và nằm khác phía đối với điểm
H