Tải bản đầy đủ (.pdf) (314 trang)

Advanced automotive technologies

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.56 MB, 314 trang )

Advanced Automotive Technology: Visions
of a Super-Efficient Family Car
September 1995
OTA-ETI-638
GPO stock #052-003-01440-8


Foreword
his report presents the results of the Office of Technology Assessment’s
analysis of the prospects for developing automobiles that offer significant
improvements in fuel economy and reduced emissions over the longer term
(out to the year 2015). The congressional request for this study—from the
House Committees on Commerce and on Science, and the Senate Committees on
Energy and Natural Resources and on Governmental Affairs-asked OTA to examine the potential for dramatic increases in light-duty vehicle fuel economy through
the use of “breakthrough” technologies, and to assess the federal role in advancing
the development and commercialization of these technologies.
The report examines the likely costs and performance of a range of technologies
and vehicle types, and the U.S. and foreign research and development programs for
these technologies and vehicles (to allow completion of this study before OTA
closed its doors, issues such as infrastructure development and market development---critical to the successful commercialization of advanced vehicles-were not
covered). In particular, the report presents a baseline forecast of vehicle progress in
a business-as-usual environment, and then projects the costs and performance of
“advanced conventional” vehicles that retain conventional drivetrains (internal
combustion engine plus transmission); electric vehicles: hybrid vehicles that combine electric drivetrains with an engine or other power source; and fuel cell vehicles. OTA has focused on mass-market vehicles, particularly on the mid-size family
car with performance comparable to those available to consumers today. Based on
our analysis, OTA is quite optimistic that very high levels of fuel economy-up to
three times current averages —are technically achievable by 2015; attaining these
levels at a commercially viable price will be a more difficult challenge, however.
This report is the last in a series on light-duty vehicles that OTA has produced
over the past five years. Previous topics include alternative fuels (Replacing Gasoline: Alternative Fuels for Light-Duty Vehicles); near-term prospects for improving
fuel economy (Improving Automobile Fuel Economy: New Standards, New


Approaches); and vehicle retirement programs (Retiring Old Cars; Programs To
Save Gasoline and Improve Air Quality). OTA also has recently published a more
general report on reducing oil use in transportation (Saving Energy in U.S. Trans-

T

portation).

OTA is grateful to members of its Advisory Panel, participants in workshops on
vehicle safety and technology, other outside reviewers, and the many individuals
and companies that offered information and advice and hosted OTA staff on their
information-gathering trips. Special thanks are due to K.G. Duleep, who provided
the bulk of the technical and cost analysis of technologies and advanced vehicles.

ROGER C. HERDMAN
Director
iii


Advisory Panel
Don Kash

Kennerly H. Digges

Mary Ann Keller

Chairperson
Professor of Public Policy
George Mason University


Assistant Director
National Crash Analysis Office
Center
George Washington University

Managing Director
Furman, Selz, Inc.

Steve Barnett
Principal
Global Business Network

Christopher Flavin
Vice President for Research
Worldwatch Institute

Ron Blum

Gunnar Larsson
Vice President of Research
Volkswagen AG

Marianne

Mintz

Director
General Motors
NAO R&D Center


Transportation Systems
Engineer
Environmental & Economic
Analysis Section
Argonne National Laboratories

Dave Greene

Robert Mull
Director
Partnership for a New
Generation of Vehicles
Ford Motor Co.

Malcolm R. Currie

Senior Research Staff
Center for Transportation
Analysis
Oak Ridge National
Laboratory

Chairman
M-B Resources, Inc.

Maurice Isaac

Senior Auto Analyst
International Union United
Auto Workers


Christopher Green

Tom Cackette
Chief Deputy Executive
Officer
California Air Resources
Board

John DeCicco
Senior Research Associate
American Council for an
Energy-Efficient Economy

iv

Nobukichi
Manager
Automotive Technical
Programs
GE Automotive

Nakamura

Project General Manager
Toyota Motors

Peter T. Peterson
Director, Marketing Strategies
and Product Applications

U.S. Steel


Daniel Roos

Owen J. Viergutz

Director
Center for Technology, Policy

Executive Engineer
New Generation Vehicles
Chrysler Corp.

and Industrial Development
Massachusetts Institute of
Technology
Rhett Ross
Sales Manager/Engineer
Energy Partners

Dan Santini
Section M a n a g e r

Margaret

Walls

Fellow, Energy and Natural
Resources Division

Resources for the Future

Claude C. Gravatt
Science Advisor
National Institutes of
Standards and Technology
U.S. Department of Commerce
Barry McNutt
Policy Analyst
Office of Energy Efficiency
and Alternative Fuels Policy
U.S. Department of Energy

Environmental & Economic
Analysis
Argonne National Laboratories
Note: OTA appreciates and is grateful for the valuable assistance and thoughtful critiques provided by the advisory panel members. The
panel does not, however, necessarily approve, disapprove, or endorse this report. OTA assumes full responsibility for the report and the accuracy of its contents.


Project Staff
Peter D. Blair
Assistant Director
Industry, Commerce, and
International Security
Division

PRINCIPAL STAFF
Steven Plotkin
Project Director


Gregory Eyring

Emilia L. Govan

Assistant Project Director

Program Director
Energy, Transportation, and
Infrastructure Program

Eric Gille

CONTRACTORS
Carol Clark
Editor

Energy and Environmental
Analysis, Inc.
K.G. Duleep

D.E. Gushee
D.E. Gushee, Inc.

Michael Wang
Consultant

vi

Research Assistant


/ADMINISTRATIVE

STAFF

Marsha Fenn
Office Administrator

Tina Aikens
Administrative Secretary

Gay Jackson
PC Specialist
Lillian Chapman
Division Administrator


Reviewers
John Alic
Office of Technology
Assessment
Wolfgang Berg
Mercedes Benz
William Boehly
National Highway Traffic
Safety Administration
Mark Delucchi
Institute for Transportation
Studies
University of California, Davis


Michael Gage
CALSTART

Philip Patterson
U.S. Department of Energy

John Gully
Advanced Research Projects
Agency

H. Pero
European Commission

Elizabeth Gunn
Office of Technology
Assessment
S. Yousef Hashimi
Office of Technology
Assessment
A. Hayasaka
Toyota

M. Salmon
General Motors Corp.
Ray Smith
Lawrence Livermore National
Laboratory
Rao Valisetty
ALCOA


Daniel A. Kirsch
Stanford University

Robert Williams
Center for Energy and
Environmental Studies
Princeton University

Michael Epstein
U.S. Council for Automotive
Research

Paul Komor
Office of Technology
Assessment

Robert White
U.S. General Accounting
Office

Barry Felrice
National Highway Traffic
Safety Administration

Adrian Lund
Insurance Institute for
Highway Safety

Ronald York

General Motors Corp.

Kenneth Freeman
Office of Technology
Assessment

Joan Ogden
Center for Energy and
Environmental Studies
Princeton University

Kevin Dopart
Office of Technology
Assessment

Karl-Heinz
BMW

Ziwica

Kathleen Fulton
Office of Technology
Assessment
vii


w

orkshop Participants


Nabih Bedewi

Charming Ewing

Brian O’Neill

National Crash Analysis Office
Center
George Washington University

Snell Memorial Foundation

Insurance Institute for
Highway Safety

Thomas Hartman

Kennerly Digges

Automotive Technology
ALCOA

National Crash Analysis Office
Center
George Washington University
Leonard Evans
General Motors

NAO, R&D


Center
Automotive Safety and Health
Research

Vlll

John Melvin
General Motors NAO, R&D
Center
Automotive Safety and Health
Research

Patrick M. Miller
MGA Research Corp.

George Parker
National Highway Traffic
Safety Administration
U.S. Department of
Transportation

Priya Prasad
Department of Advanced
Vehicle Systems Engineering
Ford Motor Co.


Tom Asmus
Chrysler Corp.


Siegfried Friedmann
BMW AG

Jeff Bentley
Arthur D. Little, Inc.

Thomas Klaiber
Daimler Benz AG

Christopher E. Borroni-Bird
Chrysler Corp.

James F. Miller
Argonne National Laboratory

Rolf Buchheim
Volkswagen AG

Timothy Moore
Rock Mountain Institute

Andrew F. Burke
University of California at
Davis
Institute of Transportation
Studies

Larry Oswald
General Motors


Alan Cocconi
AC Propulsion, Inc.

Charles Risch
Partnership for a New
Generation of Vehicles
Ford Motor Co.

Kenneth Dircks
Ballard Power Systems
Robert Fleming
Ballard Power Systems

Harold Polz
Mercedes Benz

Ray Smith
Lawrence Livermore National
Laboratory
Al Sobey
Independent Consultant
Ro Sullivan
U.S. Department of Energy
Raymond A. Sutula
U.S. Department of Energy
David Swan
University of CA at Davis
Institute of Transportation
Studies
Swathy Swathirajan

General Motors
Donald Vissers
Argonne National Laboratory

Marc Ross
University of Michigan

Ronald E. York
General Motors


Chapter 1
Executive Summary
4
OTA’S APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
OTA’S METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
DEALING WITH UNCERTAINTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OVERVIEW OF
RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Technical Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Commercialization Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
DETAILED RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Business as Usual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Advanced Conventional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electric Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Hybrid-Electric Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Fuel Cell Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
PERFORMANCE AND COST OF OTHER TYPES OF LIGHT-DUTY VEHICLES . . . . . . . . 17
LIFECYCLE COSTS--WILL THEY OFFSET HIGHER PURCHASE PRICES?.............. 17

EMISSIONS PERFORMANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
SAFETY OF LIGHTWEIGHT VEHICLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
A NOTE ABOUT COSTS AND PRICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
CONCLUSIONS ABOUT TECHNOLOGY COST AND PERFORMANCE...... . . . . . . . . . . 23
THE FEDERAL ROLE IN ADVANCED AUTO R&D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Partnership for a New Generation of Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
U.S.
COMPETITIVE
POSITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Leapfrog Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Advanced Conventional Technology= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
U.S. R&D
PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Key Budgetary Changes in FY 1996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
R&D Areas Likely to Require Increased Support in the Future . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Future Role of Federal R&D Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Conclusions ABOUT R&D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Boxl-1:
Box1-2:
Box1-3:
Box1-4:
Box1-5:

Reducing Tractive Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..............34
Spark Ignition and Diesel Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Battery Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Nonbattery Energy Storage: Ultracapacitors and Flywheels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Series and Parallel Hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Table l-1

Table l-2:
Table l-3:
Table l-4:
Table l-5:

..
What Happens to a Mid-Size Car in 2005? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

What Happens to a Mid-Size Car in 2015? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Annual Fuel Costs for Alternative Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
PNGV-Related FY 1995 Appropriations by Technical Area and Agency . . . . . . . . . . . 44
PNGV Budgetary Changes in FY 1996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xi


Chapter 2
Introduction and Context

46
....
FORCES FOR INNOVATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
CONGRESSIONAL CONCERNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48. . .
...
NATURE OF THE TECHNOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
..
DEALING WITH UNCERTAINTY
50
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
STRUCTURE OF THE REPORT
Box2-1:
Box2-2:
Box2-3:
Box2-4:

Counterpoint Forces Against Rapid Technological Change . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 2
Energy Security, Economic Concerns, and Light-Duty Vehicle Fuel Use. . . . . . . . . . . . 53
.
Greenhouse Emissions and Light-Duty Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
56
Air Quality Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


Chapter3
Technologies for Advanced Vehicles Performance and Cost Expectations

WEIGHT REDUCTION WITH ADVANCED MATERIALS AND BETTER DESIGN . . . . . . 60
Vehicle Design Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61. . .
...
Materials Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
62
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
..
Manufacturability and Cost
63
Manufacturing costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...
Life Cycle Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
...
Manufacturability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
....
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
....
.....
Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
....
Recyclability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
69
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Future Scenarios of Materials Use in Light Duty Vehicles

...
2005--Advanced Conventional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
70
2005-Optimistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...
2015-Advanced Conventional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
72
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
2015--Optimistic
73
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
74
...
AERODYNAMIC
REDUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Drag Reduction Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Effect of Advanced Aerodynamics on Vehicle Prices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..76
77

...
ROLLING RESISTANCE REDUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
.....
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Potential for Rolling Resistance Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
79
..
Price Effects of Reduced Rolling Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
IMPROVEMENTS TO SPARK IGNITION ENGINES
80
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
81
Increasing Thermodynamic Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Spark timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81. . .

...
Faster Combustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
81
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
Increased compression ratios
82
Reducing Mechanical Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xii



Rolling contacts and lighter valvetrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Fewer-rings.............:...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................82
Lighter pistons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Improved oil pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Lubricants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Reducing Pumping Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Intake manifold design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Multiple valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Lean-burn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Variable valve timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Total effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
DISC and Two-Stroke Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86


...
Two-stroke engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Summary of Engine Technology Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88. .
....
Lean-No X Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Price Effects of Engine Improvements and Advanced Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . 8. 9
DIESEL ENGINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
.....
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
.....
Performance of New Diesel Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....91
Prospects for the Diesel in the United States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
..
Variable geometry turbocharging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

.
The four-valve head/central injector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9. 4
Improved fuel infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
..
Optimized exhaust gas recirculation (EGR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 9. 4
Direct Injection Diesel Price Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
...
ELECTRIC DRIVETRAIN TECHNOLOGIES.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
..
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
.....
Battery Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
....
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
....
Battery Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
...
Lead acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
....
Alkaline Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
...
High-temperature batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
..
Lithium-Ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
...
...
Solid electrolyte batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
..
Bringing an Advanced Battery to Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Hybrid Batteries and High Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fuel Cell Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Aluminum-Air and Zinc-Air Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PEM Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Methanol Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

105
105
105
106
111

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
...
Ultracapacitors and Flywheels
Electric Motors
. . . . . . . -. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
....
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
118
.
.
OTHER ENGINE AND FUEL TECHNOLOGIES
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

‘Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
.....
....
Gas Turbine Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
123
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
....
StirlingEngines
124
Waste Heat Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
..
IMPROVEMENTS TO AUTOMATIC TRANSMISSIONS
..
Torque converter improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
xiii


Greater number of gears ... ... ... ..................0"""""""""""""""""""""""""""""" 126
Electronic transmission control (ETC) . ........................”””””””””””””””” 128
129
Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
130
..
Box3-1: Box Fuel Cell Use in Urban Buses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Box3-2: Arguments in Favor of an Inexpensive PEM Fuel Cell
Table 3-1: Lightweight Materials: Relative Component Costs and Weight Savings.”””- ..... 133

Table 3-2: Mechanical properties of Some Alternative Automotive
...
Structural Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
135
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
Weight
Distribution
in
tie
Ford
Taurus
(circa
1990)
Table 3-3:
Table 3-4: Manufacturer’s Projection of Potential Improvements in Light-Truck CD........ 136
Table 3-5: Summary of Long-Term Fuel Efficiency Benefits
...
from Advanced Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
138
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
Table 3-6: Estimated RPEs for DISC Engines
Table 3-7: Retail Price Effects for Friction Reduction Components
...
in Four-Valve Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
Table 3-8: Fuel Consumption/Economy Benefits of Diesel Engines
..
Relative to Gasoline Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140
Table 3-9: Fuel Economy Comparison at Equal Performance: Gasoline vs. Diesel...........141
Table 3-10: U.S. Advanced Battery Consortium Battery Development Goals............”””” ..142
143
Table 3-11: Battery Technology ... ... ... ... ... .*. ... ..*. *"""""""""""""""""""""""""""""""""""""""""""""""" 144
Table 3-12: Current State-of-the-Art for Batteries ... ... ... ... ... ... ... ... . .*$"""""""""""""""""""""""" 145
Table 3-13: Subjective Rating of Different Motors for EV Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 3-1:

Figure 3-2:
Figure 3-3:
Figure3-4:
Figure 3-5:

Examples of Highly Aerodynamic Cars . .............................."""""""""""""""""" 146
Design Features of Toyota AXV-V ... .. ........................."""""""""""""""""""""""" 147
.
Development of Diesel Market Share in Germany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148
Lithium Battery Technology: Lithium-polymer Electrolyte Battery .......... = 149
..
Efficiency of Induction Motor and Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Chapter 4
Advanced Vehicles - Technical Potential and Costs

152
....
OTA’s Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Types of Vehicles Examined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
154
.....
Vehicle Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
..
Technologies Introduced Individually or in Combination
156
..
Uncertainty in Technology Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.57
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
ENERGY USE AND REDUCTION IN LIGHT-DUTY VEHICLES
159
.....
BASELINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161
...
ADVANCED
CONVENTIONAL VEHICLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
....
ELECTRIC VEHICLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171
....
Emission Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
....
HYBRID VEHICLES
176
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
....
Series Hybrids
182
Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
183
Other Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
185
Parallel Hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xiv


Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
FUEL CELL VEHICLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
CONCLUSIONS ABOUT PERFORMANCE AND PURCHASE PRICE . . . . . . . . . . . . . . . . . . . . . . . 190
LIFECYCLE
COSTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Battery Replacement Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Differences in Maintenance Costs and Longevity Between EV and ICE Drivetrains 193
Trade-In Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Energy Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

.....
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

...
SAFETY OF LIGHTWEIGHT VEHICLES.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
The Role of Weight in Accident prevention and Crashworthiness . . . . . . . . . . . . . . . . . ...... 197
...
What Accident Statistics Tell Us . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199
200
Design Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Additional Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201
....


Box4-1: Four Weight Reduction Scenarios for a Mid-Size Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Box4-2: Calculating the Fuel Economy Effects of Converting a Taurus to a

.
Series Hybrid With Flexible Engine Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
Table 4-1: Forecast of Advanced Technology Penetration in the Base Case

(Percentage of new vehicle fleet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205
..
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table


.
4-2: Forecast of Vehicle Characteristics: Baseline Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
..
4-3: 2015 Best-in-Class Mid-size Car Baseline Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
4-4: Hypothetical Mid-size Car with Advanced Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208
.
..
4-5: Conventional Vehicle Potential Best-in-Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
.
4-6: Specifications of Some Advanced Electric Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210
..
4-7: 2005 Electric Vehicle Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211
4-8: Computation of Incremental Costs and RPE for 2005 Mid-Size EM.. . . . . . . . . . . . . . . 212
4-9: 2015 Electric Vehicle Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213
..
4-10: Sensitivity of Mid-size 2005 EV Attributes to Input Assumptions ................214
4-11: Energy Use for a Current (1995) Mid-size Car Converted to a

Table 4-12:
Table 4-13:
Table
Table
Table
Table

4-14:
4-15:
4-16:
4-17:


..
Hybrid Electric Vehicle (kWh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215
216
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

Series Hybrid Vehicle Efficiency
Comparison Between OTA and SIMPLEV Model Calculations
...
of Hybrid Fuel Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217
Potential Parallel Hybrid Configurations for 1995 Mid-size Vehicle . . . . . . . . . . . . . . 218
..
Incremental Prices for Series Hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219
Characteristics of a PEM Fuel Cell Intermediate-Size Vehicle in 2015..........220
Fuel Consumption and Annual Fuel Costs of Advanced Mid-size Vehicles . . . . . 221

..
Figure 4-1: Losses Within the Overall Energy Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222
...
Figure 4-2: Battery Weight vs. EV Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
....
Figure 4-3: Hybrid Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224

Chapter 5
Advanced Automotive R&D Programs: An International Comparison
AUTOMOTIVE R&D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Collaborative R&D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
xv


SCOPE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
......
THE FEDERAL ROLE IN ADVANCED VEHICLE R&D:
A HISTORICAL PERSPECTIVE-- 197O-1995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
...
Reduced Oil Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

.....
Air Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228
.....
Perspectives on the Federal Role . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229
...
Partnership for a New Generation of Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230
..
OVERVIEW OF MAJOR ADVANCED AUTOMOTIVE R&D PROGRAMS ................231
United States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231
.....
Major Automotive R&D Programs in Federal Agencies . . . . . . . . . . . . . . . . . . . . . . . . . .232
.
Department of Commerce(DOC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
...
Department of Defense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232
...
Department of Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234
...
Department of Interior (DOI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
...
Department of Transportation(DOT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238
..
Environmental Protection Agency (EPA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239
.
National Aeronautics and Space Administration (NASA). . . . . . . . . . ........ 239
National Science Foundation (NSF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240
..
..
Collaborative Private-Sector R&D Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
United States Council for Automotive Research (USCAR)................240

Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241
....
European Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
.....
France . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243
.....
Government-Funded Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
...
Industry R&D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
....
Germany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
.....
Government-Funded Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
...
Industry R&D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
....
Sweden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 246
.....
Government-Funded R&D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
...
Industry R&D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
....
.....
Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247
Government-Funded R&D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247
...
Industry R&D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
....
ANALYSIS OF ADVANCED AUTOMOTIVE R&D PROGRAMS
. . . . . . . . . . . . . . . . . . . . . . . . . . . .249

.
U.S. Competitive Status in Advanced Automotive Technologies . . . . . . . . . . . . . . . . . . . . . . ..249
‘Leapfrog’’ Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
....
“Advanced Conventional” Technology= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250
..
U.S. R&D Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
.....
Key Budgetary Changes in FY 1996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
...
R&D Areas Likely to Require Increased Support . . . . . . . . . . . . . . . . . . . . . . . . . .252
.
Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252
....
Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253
...
Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
....
Life Cycle Materials Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255
..
..
Future Role of Federal R&D Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
.....
..
Box5-1: DOE’s Electric and Hybrid Vehicle Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
261
.
Box5-2: The Partnership for a New Generation of Vehicles(PNGV)
Box5-3: Federal Spending on Advanced Auto R&D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262
..
xvi



Table 5-1: Key Legislation Affecting Automotive Research and Development.................263
Table 5-2: PNGV-Related FY 1995 Appropriations by Technical Area
and Agency ($ millions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Table 5-3: Regional R&D Consortia Supported by the Advanced Research
Projects Agency (ARPA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Table 5-4: Government-Funded Advanced Automotive R&D in Japan . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Table 5-5: PNGV Budgetary Changes in FY 1996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Figure 5-1: DOE Electric and Hybrid Vehicle Program Budget History, FY 1976-95.......269

Appendix A
Method for Evaluating Vehicle Performance
ENERGY CONSUMPTION IN CONVENTIONAL AUTOMOBILES . . . . . . . . . . . . . . . . . . . . . . . . . .
PERFORMANCE, EMISSIONS, AND FUEL ECONOMY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ELECTRIC VEHICLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HYBRID VEHICLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Series Hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

270
273
275
280
280

Table A-la: Energy Consumption as a Percent of Total Energy Requirements
Table
Table
Table
Table
Table


A-lb:
A-2:
A-3:
A-4:
A-5:

for a Mid-size Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285
...
Energy Consumption for a Mid-size Car Consumption in kWh/mile. . . . . . . . . . . . 286
.
Specifications of Some Advanced Electric Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287
Engine and Accessory Weights (lbs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
...
..
Equations for Deriving HEV Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289
Energy Use for a Current (1995) Mid-size Car Converted
to an HEV (kWh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290
...

Figure
Figure
Figure
Figure
Figure

A-1:
A-2:
A-3:
A-4:
A-5:


Energy Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
....
.
Energy Flows, AVCAR ’93, EPA Composite Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
293
..
Vehicle Performance vs. Fuel Economy
...
Fuel Economy vs. Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Battery Weight vs. EV Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295
...
Appendix B
Methodology: Technology Price Estimates


METHODOLOGY TO DERIVE RPE FROM COSTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Table B-1: Costing Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Table B-2: Methodology to Convert Variable and Fixed Cost to RPE . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

xvii


Chapter 1
Executive Summary
The automobile has come to symbolize the essence of a modern industrial society. Perhaps
more than any other single icon, it is associated with a desire for independence and freedom of
movement; it is an expression of economic status and personal style. Automobile production is
also critically important to the major industrial economies of the world. In the United States, for
instance, about 5 percent of all workers are employed directly (including fuel production and
distribution) by the auto industry.1 Technological change in the auto industry can potentially
influence not only the kinds of cars that are driven, but also the health of the economy.
The automobile is also associated with many of the ills of a modern industrial society.
Automotive emissions of hydrocarbons and nitrogen oxides are responsible for as much as 50
percent of ozone in urban areas; despite improvements in air quality forced by government
regulations, 50 million Americans still live in counties with unsafe ozone levels.3 Automobiles are
also responsible for 37 percent of U.S. oil consumption,4 in an era when U.S. dependence on
imported oil is more than 50 percents and still increasing. A concern related to automotive
gasoline consumption is the emission of greenhouse gases, principally carbon dioxide, which may
be linked to global climate change. The automobile fleet, which accounts for 15 percent of the
U.S. annual total, is one of this country’s single largest emitters of carbon dioxide. 6
Recent technological improvements to engines and vehicle designs have begun to address these
problems, at least at the level of the individual vehicle. Driven by government regulation and the
gasoline price increases of the 1970s, new car fuel economy has doubled between 1972 and
today, 7 and individual vehicle emissions have been reduced substantially.8 Several trends have
undercut a portion of these gains, however, with the result that the negative impacts of

automobiles are expected to continue.
An important trend has been a 40 percent drop in the real price of gasoline since its peak in
1981.9 This decline has reduced the attractiveness of fuel-efficient automobiles for consumers and
1 American Automobile Manufacturers Association, Facts and Figures 94 (Detroit, MI: 1994), p. 70. The number of workers employed by the
industry is somewhat controversial because there are several alternative interpretations about which workers are in this category, and some of the data
for specific sectors does not separate out automotive and nonautomotive workers, e.g. workers in petroleum refining. The value here includes motor
vehicle and equipment manufacturing (which inadvertently includes workers making heavy trucks), road construction and maintenance workers,
petroleum
refining and distribution, auto sales and servicing taxicab employees, car leasing, and auto parking.
2
Here and afterwards automotive refers to automobiles and light trucks primarily used for passenger travel—vans, sport-utility vehicles, and
pickup trucks. These vehicles use half of all the oil consumed by the U.S. transportation sector.
3u.s. Environmental Protection Agency, Office of Air Quality Planning and Standards, National Air Quality and Emissions Trends Report,
1993, EPA-450/R-94-026 (Research Triangle Park, NC: October 1994).
(Washington,
DC:
4 U.S. Department of Energy, Energy Information Administration, Annual Energy Outlook, 1995, DOE/EIA-0383(95)
January 1995), tables A7 and Al 1.
5 For example, imports were 54 percent of total supply in August, 1994. U.S. Department of Energy, Energy Information Administration, Monthly
Energy Review, DOE/EIA-0035(94/09)(Washington, DC: September 1994).
6Energy Information Administration, see footnote 4, table A18.
7S.C.
. . Davis, Transportation Energy Data Book: Edition 14, ORNL-6798 (Oak Ridge, TN: Oak Ridge National Laboratory May 1994), table

3.35 and earlier editions.
8 The federal Tier 1 emissions standards represent emission reductions of about 97, 96, and 89 percent, respectively, from uncontrolled levels of
hydrocarbons, carbon monoxide, and nitrogen oxides. Actual on-road reductions are not this high, however.
9 Davis, see footnote 7, table 2.16.

1



encouraged more driving; vehicle-miles traveled (VMT) have been increasing at 3 percent per
year. l0 Expanding personal income11 has meant that more new vehicles (especially less fuel
efficient light trucks and vans) are being added to the fleet; there were approximately 15.1 million
new light-duty vehicles purchased in 1994.12 With more drivers and expected increases in
individual travel demand, automotive oil consumption and carbon dioxide emissions are expected
to increase by 18 percent from 1993 to 2010,13 when U.S. oil imports are expected to reach 64
percent. 14 Although highway vehicle emissions have been dropping and air quality improving, 15
the rates of improvement have been slowed greatly by the increase in travel. Similar trends in
automobile purchasing and use are occurring in other industrialized countries, even with motor
fuel prices far higher than those in the United States, and the problems will be compounded as
developing countries such as China continue to industrialize and expand their use of automobiles.
With these trends as background, it is clear that a major advance in automotive technology that
could dramatically reduce gasoline consumption and emissions would have great national and
international benefits. Such benefits would include not only the direct cost savings from reduced
oil imports (each 10 percent drop in oil imports would save about $10 billion in 2010 16 ), but also
indirect savings such as:
health benefits of reducing urban ozone concentrations, now
per year;17

estimated to cost $0.5

billion to $4 billion

an “insurance policy” against sudden oil price shocks or political blackmail, the risk of which is
estimated to cost $6 billion to $9 billion per year; l8
reduced military costs of maintaining energy security, which according to some estimates costs the
United States approximately $0.5 billion to $50 billion per year; 19
potential savings from reduced oil prices resulting from decreased oil demand, conceivably tens of

billions of dollars per year to the U.S. economy, and more to other oil-consuming economies; and

10

Ibid, table 3.2.
More precisely, higher personal income for the income segments who are most likely to purchase new automobiles. Average personal income

11

has not risen.
Automotive News, "1995 Market Data Book," May 24, 1995, p. 20.
For light-duty vehicles. Energy Information Administration, see footnote 4, table A7.
Ibid, table Al.
For example, highway vehicle emissions of volatile organic compounds dropped by 45 percent and carbon monoxide by 32 percent between
1980 and 1993. During the same period nitrogen oxide highway vehicle emissions dropped by 15 percent. Ozone air quality standards attainment
has fluctuated with weather, but has clearly been improving over the past 10 years, and carbon monoxide attainment has improved dramatically, with a
several-fold drop in the number of people living in nonattainment areas. Council on Environmental Quality, Environmental Quality: The TwentyFourth Annual Report of the Council on Environmental Quality (Washington, DC: 1995) pp. 435,447.
At $24/bbl crude, ignoring the higher prices of product imports, total imports of 12.22 million barrels per day. Energy Information
12
13

14

15

16

Administration
These


see footnote 4, table Al 1.
.
estimates
of the cost of the short-term health effects only. The value of the risk of long-term chronic effects cannot be estimated. U.S.
Congress, Office of Technology Assessment, Catching Our Breath: Next Steps for Reducing Urban Ozone, OTA-O-412 (Washington, DC: U.S.
Government Printing Office, July 1989).
June
Congressional
Research Service, Environment and Natural Resources Policy Division, “The External Coats of Oil Used in Transportation,”
3, 1992.
Ibid
17

18

19

2


. increased leverage on the climate change problem, whose potential costs are huge but incalculable .20

Furthermore, if U.S.-developed advanced automotive technology were to penetrate not only
the U.S. market but also the markets of other developed and developing countries, the benefits to
the environment and the U.S. economy would multiply.
Many observers predict that the economic and environmental problems associated with
continued high levels of world oil consumption will necessitate a transition to more
environmentally benign, renewable fuels within the next 100 years. Such fuels might be, for
example, electricity and hydrogen generated from renewable resources. These observers consider
advanced automotive technology an important catalyst for this transition. In their view, internal

combustion engines and their gasoline infrastructure would be transformed incrementally into
more environmentally benign forms, such as fuel cells powered by hydrogen. In one such
evolution, vehicles powered by gasoline-fueled internal combustion engines (ICES) would give
way to hybrid electric vehicles (perhaps with multiple-fuel capability), in which the ICE would
eventually be replaced by an advanced battery or fuel cell. Many analysts believe that the fuel cell,
which combines hydrogen and oxygen to produce energy without combustion or its associated
waste products, is potentially the most important energy technology of the 21st century-not only
for vehicles, but also for electric power production in a wide range of stationary and mobile
applications. 21
Even advocates of such a technological transformation, however, would acknowledge that
gasoline will be a very difficult fuel to displace because of its combination of abundance, low
price, high energy content, and its long familiarity to engine designers. A major obstacle to any
such transformation is that the full social costs of gasoline use are not included in its price (the
true social cost includes the pollution damage and energy security cost discussed above, which
some have estimated to be as high as several dollars a gallon22 ); nor are potential future social
benefits of new technologies (e.g., reduced global climate change impact) valued in the
marketplace so as to offset their higher costs. As a result, consumer demand is not providing an
incentive for automakers to adopt technologies that could capture these social benefits. Rather,
what incentives exist are coming from government, at both the state and federal levels.

There are now two key government drivers of vehicle innovation in the United States. One is
California’s Low Emission Vehicle (LEV) Program, one of whose provisions requires 2 percent of
the vehicles produced by automakers with a significant share of the California market to be zero
emission vehicles (ZEVs) by 1998, with the percentage rising to 10 percent by 2003.23 This
requirement has stimulated the three U.S. domestic automakers to form the U.S. Advanced
Battery Consortium, a substantial cooperative research effort with other organizations to help
produce batteries that would enable production of a commercially successful electric vehicle (the
20 One of the potential impacts of global warming is an increase in the frequency of severe storms, each of which can cause many billions of dollars
~d N. M powrsurge:


@ide t. the

W.W. Norton& Co., 1994).
22u.s. ~ng= ~ke of T~hnolo~

Printing Ofke, July 1994).
23~~ W* ~t t. ~~t 40,()()0 zEVs

Coming

Energy

~eng Saving Energy in
produced in

Revofufion, Worldwatch

US. Transporfdon,

OTA-ETI-589

1998 ~d 200,000 ~odu~ in 2003.

3

Environmental

Al~ S*6 (New Yok NY:

(Washington DC: U.S. Government



only near-term ZEV likely, according to current rules). Simultaneously, numerous electric vehicle
(EV) development and commercialization efforts have begun, which are independent of, or only
loosely affiliated with the existing auto industry.
The second is the newly created Partnership for a New Generation of Vehicles (PNGV), a
research and development (R&D) program jointly sponsored by the federal government and the
three domestic manufacturers. One of the program’s three goals is the development of a
manufacturable prototype vehicle within 10 years that achieves as much as a threefold increase in
fuel efficiency while maintaining the affordability, safety, performance, and comfort available in
today’s cars.

OTA’S APPROACH
In this report, the Office of Technology Assessment (OTA) evaluates the performance and cost
of a range of advanced vehicle technologies that are likely to be available during the next 10 to 20
years. Consistent with PNGV’s goal of improving fuel economy while maintaining performance
and other characteristics, a central emphasis of OTA’s analysis is the potential to improve fuel
economy. With the exception of nitrogen oxide (NOx) catalysts for lean 24 and more efficient
operation of piston engines, technologies whose primary function is to reduce tailpipe emissions
are not a central focus of this study.
OTA’s analysis of advanced vehicles is predicated on two critical vehicle requirements that
strongly affect the study’s conclusions and distinguish it from most other studies. The first
requirement is that the advanced vehicles must have acceleration, hill-climbing, and other
performance capability equivalent to conventional 1995 gasoline vehicles (the actual criteria used
are 60 and 50 kW/ton peak power for, respectively, conventional and electric drivetrains, and 30
kW/ton continuous power for all drivetrain types) .25 This requirement is imposed first of all to
enable a comparison of advanced and conventional technologies on an “apples to apples” basis,
and also because advanced vehicles will have to compete head-to-head with extremely capable
conventional vehicles in the marketplace. It is worth noting, however, that the exact power
criteria used by OTA are not the only ones possible, that market preferences can change, and that

the estimated advanced vehicle costs are quite sensitive to small changes in these criteria.26
The second OTA requirement is that the advanced vehicle be a mass-market vehicle produced
in volumes of hundreds of thousands each year (as with PNGV, the actual target vehicle is a midsize sedan similar to the Ford Taurus/Chrysler Concorde/Chevrolet Lumina). This requirement is
imposed because advanced vehicles cannot have a major impact on national goals, such as
24

Current emission control systems require piston engines to operate stoichiometrically, that is, with just enough air to combust the fuel. Lean

operation uses excess air, which promotes more efficient combustion but prevents the reduction catalyst for NO control from working-thus the need
for a lean catalyst.
Electric motors can match the acceleration performance of somewhat more powerful gasoline engines, at least at lower speeds, which explains
the reduced peak power requ irement for electric drivetrains. The performance requirements roughly correspond to a O to 60 mph acceleration time of
11 seconds and the ability to operate at 60 mph up a 6 percent slop-but the requirements should not be viewed narrowly as applying only to these
precise conditions. Instead, they are placeholders for a variety of tasks that require high peak power or high continuous power, such as highway
passing capability when the vehicle is heavily loaded or trailer towing.
For example, electric vehicles that were used strictly as urban vehicles might not need 30 kW/ton continuous power.
x

25

2

6

4


reducing oil imports, unless they are able to penetrate the most popular market segments. Note
that there are vehicles available in today’s marketplace that attain more than 50 mpg fuel


economy—but they are sold in such small quantities that they play essentially no role in the
gasoline consumption of the fleet.
In examining hybrid vehicles, 27 OTA also focused its examination on vehicles that were not tied
to the power grid-that could generate all of their needed electrical energy onboard using the
power source as generator. This choice was made to provide maximum flexibility to the driver
and minimum market risk to the automaker; that is, to make the hybrid resemble as closely as
possible a conventional vehicle in operation. Some proposed alternative hybrids would operate
more like electric vehicles (EVs) much of the time, recharging a large battery from the grid, with
the engine providing a long-range cruise capability only. Hybrids of this sort might be able to
achieve higher fuel economy values than the “autonomous” hybrids evaluated in this report, but
they are less flexible in their performance capabilities.

Admittedly, these requirements establish an extremely high hurdle for new technologies to
negotiate. Some critics of this approach may even say that OTA has predetermined its conclusions
by deliberately setting criteria that new technologies cannot meet. Indeed, new technologies
historically have not penetrated the automotive market by jumping full blown into the most
demanding applications. Rather, technologies are typically introduced incrementally into niche
vehicles in limited production. Only after the bugs are worked out and cost-effectiveness is proven
do technologies move into mass-market vehicles. Similarly, the most likely mechanism for electric
and hybrid vehicles to penetrate the market, at least initially, is in niches such as commuter
vehicles or specialized urban fleets, which may have limited performance or range requirements.
OTA’s concern in this study is less with the process by which advanced technologies may enter
the market, however, than with the questions of how soon and to what extent these technologies
could significantly affect national goals. It may well be, for example, that attractive, affordable,
fin-to-drive electric commuter cars will be developed during the next five years that will attract a
loyal following and sustain a small EV production industry. OTA’s assumption, though, is that the
powerful and versatile gasoline vehicles that constitute the majority of the U.S. market will only
be displaced by advanced vehicles that have comparable power and versatility.

OTA’S METHODS

OTA’s projections of advanced vehicle performance used approximate vehicle models based on
well-known equations of vehicle energy use.28 These models are “lumped parameter”
models—that is, they use estimates of engine and motor characteristics and other variables that
are averages over a driving cycle. Ideally, a performance analysis of complex vehicles such as
hybrids should be based on detailed engine and motor maps that are capable of capturing the

5


second-by-second interactions of all of the components. Such models have been developed by the
auto manufacturers and others. Nevertheless, OTA believes that the approximate performance
calculations give results that are adequate for our purposes. In addition, the detailed models
require a level of data on technology performance that is unavailable for all but the very near-term
technologies. Further details about OTA’s methodology are given in appendix A.
OTA’s cost estimates for advanced vehicles are based on standard industry methods that
compute supplier costs to vehicle manufacturers and then apply markups to account for additional
costs incurred by the manufacturer (handling, vehicle integration, warranty costs, and inventory
costs), and dealer (e.g., shipping, dealer inventory costs, and dealer overhead). The cost estimates
are based on assumptions about manufacturing volume, rates of return, and spending schedule
(e.g., fixed cost spending over five years, 15 percent rate of return to vehicle manufacturers,
24,000 units per year for EVs 500,000 units per year for engines and transmissions).

DEALING WITH UNCERTAINTY
Forecasting the future cost and performance of emerging technologies is an extremely
imprecise undertaking. This is particularly true in the advanced vehicle area, where the political
and economic stakes are so high. For example, smaller companies seeking investment capital and
concerned with satisfying existing investors have very strong incentives to portray their results as
optimistically as feasible, and few companies are willing to discuss R&D problems and failures.
Even Department of Energy research managers must sometimes act as advocates for their
technologies to ensure their continued finding in a highly competitive research environment. The

existence of government mandates for electric vehicles further complicates this problem: small
companies, hoping that the mandate will create markets for their products, are strongly motivated
to portray progress in the best possible light; the automakers affected by the mandates have, in
contrast, an understandable stake in emphasizing the difficulties in achieving the mandates’
requirements.
Another problem is that much of the research data are kept strictly confidential. Industry
agreements with government laboratories have made even government test results largely offlimits to outside evaluators. For example, results of battery testing conducted by the national
laboratories are now considered proprietary.
At the core of the problem, several of the key technologies are far from commercialization and
their costs and performance are unknown. Furthermore, the research and development goals for
some critical technologies require very large cost reductions and performance improvements that
involve a great variety of separate technical advances. Consequently, cost and performance
estimates are, implicitly or explicitly, based on a variety of assumptions about the outcome of
several R&D initiatives. It is hardly surprising that such estimates vary greatly from source to
source. In one case, for example, OTA has been assured by one reviewer that confidential data on
batteries implies that our cost assumptions about near-term batteries are much too pessimistic;
other reviewers with extensive access to test data and economic projections have told us that our
cost projections for the same batteries are too optimistic.

6


Considering this wide range of claims, OTA developed its own “best guess” of technology
performance and cost from test data in the open literature and opinions gathered from extensive
interviews with experts from industry and the research community. Such an approach was
necessary to reach any conclusions about the prospects for advanced automotive technologies.
We also have attempted to define the assumptions behind our estimates, to make clearer
comparison with others’ estimates. Finally, we have cited relevant claims from various sources, to
give the reader a sense of the range of uncertainty.
Where our estimates are seen as pessimistic (example: cost targets will be extremely difficult

to meet), they are likely to be more valuable as signposts of where attention must be
directed if technologies are to be successfully commercialized, than as predictions that the
technologies in question are unlikely to be successful. And, where they are seen as optimistic,

for the longer term (example: significant improvements will occur in internal
combustion engines), they are best taken as signs of a strong potential rather than as a

especially

definitive statement that these technologies are sure things.

OVERVIEW OF RESULTS
OTA’s general conclusions about advanced vehicle technologies are quite optimistic about the
potential for excellent vehicle performance. They are considerably more cautious, however, about
the speed with which technologies can be made commercially available and then introduced
widely into the market, as well as about the likelihood that costs can be sufficiently reduced that
no financial or regulatory incentives would be needed for market success.

Technical

Potential

OTA concludes that the available broad menu of existing and emerging technologies
offers a strong technical potential to substantially improve fuel economy. By 2005, assuming

cost targets can be met, it will likely be possible to begin to introduce mass-market vehicles29 into
the new vehicle fleet that can achieve fuel economy from 50 percent to 100 percent better than
today’s vehicles.For example, some intermediate-size cars could be capable of achieving from 39
to 61 mpg (an increase from the current level of about 28 mpg), depending on their design and
choice of drivetrain and other technologies. Within another decade, still higher levels of fuel

economy may be possible-intermediate-sized cars capable of achieving 60 to 70 mpg or higher.
Much of this improvement (to about 40 mpg by 2005, and to over 50 mpg by 2015) should
be achievable without a radical shift in vehicle drivetrains; however, we believe that such

radical shifts-for example, to hybrid-electric drivetrains--can yield significant added efficiency
benefits (though at higher costs).


Conventional vehicles are least efficient in city driving, and it is in this type of driving that
advanced vehicles make the largest gains.30 Some analysts believe that the actual mix of driving is
changing away from the mix assumed in the standard Environmental Protection Agency (EPA)
test of vehicle fuel economy, toward a higher percentage of urban, stop-and-go driving. 31 If this
type of change in driving patterns is actually occurring—OTA has had no opportunity to examine
this issue-the fuel economy increases stated above--based on the standard driving cycle
used in EPA fuel economy testing—might understate the on-road improvements made by
the advanced technologies.

Commercialization

Potential

The commercial prospects for advanced technology vehicles will depend ultimately on their
manufacturing cost and retail price, their operating and maintenance costs, and consumer
attributes such as acceleration performance and range. According to OTA’s projections,
advanced vehicles are likely to cost substantially more than their conventional
counterparts, and the savings resulting from their lower fuel consumption will not offset
their higher purchase prices.Furthermore, although some analysts have claimed that operating

and maintenance costs for advanced vehicles will be much lower than for conventional vehicles,
evidence for such claims is weak.

These conclusions obviously raise valid concerns about the commercialization potential of
advanced vehicles, especially given current consumer disinterest in fuel economy. Several factors,
however, could improve commercialization prospects. First, ongoing research efforts to reduce
manufacturing costs and to identify least-cost design alternatives for advanced vehicles might
reduce vehicle prices below projected levels. Second, the prices of advanced vehicles could be
reduced by limiting vehicle capabilities such as hill climbing ability or acceleration, or range (for
EVs).32 Third, consumer valuations of key characteristics of advanced vehicles, especially their
improved efficiency and reduced emissions, could change (possibly as a result of another oil
crisis); many consumers have shown by their current market behavior that they will pay substantial
price increments for other “nonessential” vehicle characteristics that they value, such as fourwheel drive.33 Fourth, government could boost commercialization prospects through economic
incentives or regulations (e.g., gasoline taxes, feebates, and fuel economy standards).

For example, the 2015 median-case series hybrid is 161 percent more efficient than a 1995 mid-size vehicle on the city cycle, but only 96
percent more efficient than the 1995 vehicle on the highway cycle.
J D. Maples,
University of Tennessee Transportation Center, Knoxville, “The Light-Duty Vehicle MPG Gap: Its Size Today and Potential
.
30

31

Impacts in the Future,” draft, May 28, 1993.
Manufacturers have been reluctant to consider such limited capability vehicles, because they do not believe that large numbers of consumers
32

will purchase them. There is an ongoing controversy about the willingness of auto purchasers to accept limitations on range, acceleration performance,
and other vehicle attributes in exchange for features such as zero emissions.
Although many purchasers of four-wheel drive vehicles require this capability, many four-wheel drive vehicles are never taken off the road and
33


are rarely driven in the type of weather conditions where this capability may be essential.

8


Timing
Many in the automobile industry believe it is unlikely that rapid technological shifts will occur,
as demonstrated by recent Delphi studies projecting an automobile fleet in 2003 that looks very
much like today’s.34 In contrast, advocates of advanced vehicle technologies have tended to
predict that such technologies can be introduced to the fleet in very short order. Indeed, the
California ZEV initiatives assume that 10 percent of the state’s new vehicle fleet can be EVs by
2003; the PNGV hopes to have at least a manufacturable prototype vehicle capable of achieving
triple today’s fuel economy by 2004; and several small manufacturers have exhibited prototype
vehicles that they claim can be introduced at competitive prices as soon as sufficient financial
support (or orders for vehicles) is obtained.
Predicting when a technology is ready for commercialization is particularly difficult because the
act of commercialization is simultaneously a technical and a marketing decision—it hinges largely
on a company’s reading of the marketplace and on its willingness to accept risk, as well as on the
actual state of the technology. Nevertheless, OTA believes it is more realistic to be fairly
conservative about when many of the advanced technologies will enter the marketplace.
Also, the history of market introductions of other technologies strongly implies that technologies

will penetrate the mass market part of the vehicle fleet only after they have been thoroughly tested
in smaller market segments—a process that can take from three to five years after initial
introduction for incremental technologies, and more for technologies that require major design
changes.
For example, even if the PNGV were fully successful—and OTA believes that its goals are
extremely challenging-developing a manufacturable prototype by 2004 would likely yield an
actual marketable vehicle no earlier than 2010. Furthermore, as noted, the first vehicles are likely
to be small volume specialty vehicles, with entry into the true mass-market segments starting from

three to five or more years later, depending on the market success of the new models. Finally,
unless the first vehicles were overwhelmingly successful, the transformation of the new car and
light truck fleets would take at least a decade. In other words, absent a crisis that would force a
risky acceleration of schedules, it might be 2020 or 2025 before advanced vehicles had
thoroughly permeated the new vehicle fleet— and it would be another 10 to 15 years before
they had thoroughly permeated the entire fleet. Thus, major impacts of advanced technologies
on national goals are decades away, at best.

DETAILED RESULTS
OTA’s results focus specifically on a range of technology combinations in mid-sized
automobiles, the heart of the light-duty fleet, including vehicles representing a continuation of
current trends (business as usual); vehicles representing major improvements in conventional
powertrains (advanced conventional); battery-powered EVs; hybrid vehicles that combine more

34 Office for the Study of Automotive Transportation, Delphi VII Forecast and Analysis of the North American Automotive Industry, Volumes 2
(Technology) and 3 (Materials) (Ann Arbor, MI: University of Michigan Transportation Research Center, February 1994).
9


than one power source; and fuel cell vehicles. Two time periods were examined-2005 and 2015.
The results of this analysis appear in tables 1-1 and 1-2.

Business as Usual
Assuming that gasoline prices rise very gradually in real dollars, to $1.50 a gallon 35 in 2015,
OTA believes that new mid-size autos will gradually become more fuel efficient-reaching about
30 mpg by 2005 and 33 mpg in 201536 ---despite becoming safer, roomier, more powerful, and
cleaner 37 in this time period. The new car fleet as a whole would improve in fuel economy by
about 25 percent during this period.
Because both the cost effectiveness of fuel economy technologies and customer preference for
efficient vehicles will vary with gasoline prices, other gasoline price assumptions will generate

different future fleet fuel economies. If gasoline prices were to reach $3 a gallon by 2015, OTA
projects that new car fleet fuel economy would increase by 42 percent over 1995, to 39 mpg. In
contrast, were gasoline prices to stagnate or decline in real dollars—as they have during the past
decade or so---fuel economy improvements would be far less.
Furthermore, fleet fuel economy will depend on a host of additional factors (some of which are
influenced by fuel prices) such as government safety and emissions regulations, consumer
preferences for high performance, relative sales of autos versus light trucks (when considering the
light-duty fleet as a whole), and so forth. OTA’s estimate presumes no additional changes in
regulations beyond what is already scheduled, gradually weakening demand for higher
performance levels,38 and no major shifts in other factors. Obviously, another set of assumptions
would shift the fuel economy estimates.

Advanced

Conventional

Auto manufacturers can achieve large fuel economy gains without shifting to exotic
technologies such as fuel cells or hybrid-electric drivetrains. Instead, they could retain the
conventional ICE powertrain by using a range of the technologies to reduce tractive forces (see
box l-l) combined with advanced ICE technology (see box 1-2) and improved transmissions. If
OTA’s projections for technology prove to be correct, a mid-size auto could achieve 39 to 42
mpg by 2005 and 53 to 63 mpg by 2015 using these technologies, at a net price increase to
the buyer of $400 to $1,600 in 2005 and $1,500 to $5,200 in 2015.

To achieve 53 mpg, the vehicle would combine a 2 liter/4 cylinder direct injection stratified
charge (DISC) engine (with lean NOX catalyst); optimized aluminum body, with the entire vehicle

35

In 1994 dollars.

Source: Department of Energy fuel economy model based on the cost-effectiveness of alternative technologies.
It is expected that these vehicles will achieve California LEV emission standards or better by 2015.
It is assumed that the steady increases in horsepower/weight and top speed and decreases in 0 to 60 mph acceleration time typical of the past

36
3

t

38

decade will gradually slow down and cease.

10


×