Luận văn tốt nghiệp
Trong lĩnh vực công nghệ máy tính cũng như công nghệ thông tin có những bước
phát triển nhảy vọt, nó đã hỗ trợ vào mọi lĩnh vực trong cuộc sống xã hội, sản phẩm của
công nghệ thông tin biến đổi hàng ngày, hàng giờ. Trong lĩnh vực tốn học, các sản phẩm
của công nghệ thông tin cũng hỗ trợ đắc lực cho việc học tập và nghiên cứu.
Đề tài tôi thực hiện là: “THIẾT KẾ HỆ THỐNG KIỂM TRA CÁC QUAN HỆ
HÌNH HỌC TRONG KHÔNG GIAN 2D VÀ 3D“. Đề tài sử dụng ngôn ngữ lập trình
Visual C++ để thể hiện. Về góc độ học tập, nghiên cứu tôi thấy đề tài có thể giúp hiểu rõ
thêm về kiến thức cơ bản của phần đồ họa máy tính và cho vấn đề kiểm tra thực hiện một
số bài tốn hình học thêm phong phú hơn, tạo thêm phần hấp dẫn trong môn học này.
Trong thời gian thực hiện đề tài tôi đã thực hiện được những yêu cầu của đề tài.
Việc thực hiện đề tài còn mang ý nghĩa đánh giá lại quá trình học tập, nghiên cứu
của tôi. Nên về mặt tinh thần tôi đã cố gắng tìm hiểu, nghiên cứu, và chuẩn bị khá chu
đáo cho việc thực hiện. Nhưng sự tiếp thu cũng có những giới hạn nhất định, bởi trong
lĩnh vực máy tính cũng như cơ sở tốn học rộng lớn, không gian diễn dịch có thể vô hạn,
sự thực hiện một ý tưởng nào đó có thể trong tốn học thực hiện được, nhưng việc thể
hiện thuật tốn bằng máy tính thì có những vấn đề khó thể thực hiện, vì vậy đề tài chắc
chắn còn nhiều thiếu sót nhất định.
Mong quý Thầy cô, Anh chị và các bạn thông cảm, đóng góp ý kiến giúp đỡ. Tôi
thành thật cảm ơn …!
SINH VIÊN THỰC HIỆN
LÊ QUỐC THÁI
PHẦN I: GIỚI THIỆU
PHẦN I: GIỚI THIỆU
I. SƠ LƯỢC VỀ HỆ THỐNG KIỂM TRA CÁC QUAN HỆ HÌNH HỌC
Để cho người đọc tham khảo đề tài “THIẾT KẾ HỆ THỐNG KIỂM TRA CÁC
QUAN HỆ HÌNH HỌC“ dễ dàng hình dung được, tôi xin giới thiệu sơ lược về đề tài.
Nhiệm vụ thực hiện của đề tài:
Thiết kế hệ thống kiểm tra các quan hệ hình học trong:
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 1
Luận văn tốt nghiệp
Không gian hai chiều (2D)
Không gian ba chiều (3D)
Với ngôn ngữ thể hiện trên môi trường Visual C++.
Đề tài áp dụng các kiến thức về cơ sở tốn học và không gian vector trong đồ họa máy
tính, để xây dựng những thuật tốn kiểm tra các quan hệ hình học.
Để dễ dàng hơn tôi xin trình bày một ví dụ điển hình như sau:
Ví dụ: cho đường thẳng a qua hai điểm A và B và đường thẳng b qua hai điểm C và
D trong không gian 2D hay 3D thì hai đường thẳng này cũng có những sự tương quan
với nhau, như trùng nhau, cắt nhau với một góc nào đó, chéo nhau (trong không gian
3D), hay song song… Sau khi đưa vào những điều kiện giả thiết ban đầu (Input), thì
chương trình thực hiện và đưa ra kết quả kiểm tra (output) của giả thiết trên là hai đường
thẳng a và b đã tương quan như thế nào với nhau? Cắt nhau một góc bao nhiêu độ, song
song, hay trùng nhau...
Đó là về mặt thuật tốn chương trình kiểm tra, đây chỉ mới là một tác vụ thực hiện của
vấn đề này. Với bài tốn như trên nếu chỉ đưa ra được những kết luận với những dòng
thông điệp thì chúng ta thấy rằng đề tài trở nên quá đơn giản không phong phú và hấp
dẫn qua ý kiến của người đọc hoặc tham khảo. Một tác vụ cùng đồng thời với bài tốn trên
mà nhiệm vụ của đề tài yêu cầu thực hiện là khi đưa vào giả thiết bài tốn chẳng hạn hai
điểm A và B với những tọa độ xác định nào đó, qua hai điểm này sẽ thực hiện vẽ lên
một đoạn thẳng qua hai điểm A và B. Từ đó thấy vấn đề một cách trực quan hơn, hay vẽ
ra góc giữa hai đường thẳng, chính với những thể hiện này đề tài trở nên hấp dẫn phong
phú hơn, tất nhiên vấn đề này không ít những khó khăn cho người thực hiện đề tài.
Trong phần nội dung tôi sẽ trình bày chi tiết hơn về đề tài “THIẾT KẾ HỆ THỐNG
KIỂM TRA CÁC QUAN HỆ HÌNH HỌC TRONG 2D VÀ 3D“.
II. GIỚI THIỆU SƠ LƯỢC NGÔN NGỮ THỂ HIỆN ĐỀ TÀI
II. 1. SƠ LƯỢC NGÔN NGỮ
Ở phần I giới thiệu sơ lược về “THIẾT KẾ HỆ THỐNG KIỂM TRA CÁC QUAN
HỆ HÌNH HỌC“, tôi đã trình bày một ví dụ về yêu cầu nhiệm vụ để thực hiện một tác vụ
kiểm tra vấn đề nào đó của đề tài này. Để thực hiện những vấn đề đó tôi nghiên cứu và
thực hiện trên môi trường ngôn ngữ Visual C++.
Visual C++ là một phần mềm lập trình hướng đối tượng được phát triển trên cơ sở là
ngôn ngữ lập trình C và C++. Ở đây tôi thể hiện đề tài trên ngôn ngữ Visual C++ bởi lẽ
hiện nay ngôn ngữ này được xem là một trong các ngôn ngữ hỗ trợ (support user) mạnh
và phổ biến nhất. Cùng mục đích sâu xa hơn nữa là để cho những đề tài sau này có thể
trên cùng ngôn ngữ xây dựng ý tưởng của đề tài “THIẾT KẾ HỆ THỐNG KIỂM TRA
CÁC QUAN HỆ HÌNH HỌC“ ngày thêm một đầy đủ, phong phú, hấp dẫn và ứng dụng
mang tính thiết thực hơn. Tôi đầu tiên nghiên cứu tìm hiểu tổng quát về ngôn ngữ như
Visual C++, thực hiện những chương trình điển hình trên ngôn ngữ lập trình hướng đối
tượng. Và phần tìm hiểu chính là phần thực hiện yêu cầu của đề tài, cụ thể là về phương
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 2
Luận văn tốt nghiệp
diện tính tốn trong những thuật tốn và thể hiện trực quan bằng đồ hoạ máy tính trên ngôn
ngữ Visual C++.
Trong Visual C++ phần đồ họa được thể hiện trong lớp CDC (Class Device
Context) với nhiều hàm thành viên hỗ trợ cho việc vẽ điểm, đường, đa giác, tô màu….
Đặc biệt hơn trong ngôn ngữ Visual C++ có sự hỗ trợ cho việc vẽ các đối tượng hình học
bằng chuột. Nhưng ngôn ngữ chỉ thực hiện được với các đối tượng hình học 2D, đối
tượng hình học 3D thì chưa có, cần phải tự thiết kế.
Trong quá trình nghiên cứu, tôi nhận thấy trong ngôn ngữ Visual C++ có bộ thư viện
OPENGL là một thư viện API hỗ trợ cho việc thực hiện các chương trình đồ họa, trên cả
2D và 3D rất mạnh, chính vì thế ở phần kiểm tra các quan hệ hình học phần 3D tôi thực
hiện trên OPENGL. Từ đây tôi chuyển hướng sang nghiên cứu OPENGL để thực hiện
cho phần 3D. Để hiểu và thực hiện được trên nó cũng khó khăn không kém như ta bắt
đầu nghiên cứu và làm quen với ngôn ngữ mới như Visual C++. Sau khi nghiên cứu và
hiểu được những yếâu tố cơ bản của OPENGL tôi có nhận xét rằng OPENGL là một ứng
dụng để thực hiện các chương trình đồ họa máy tính hấp dẫn và đẹp mắt. Khi đã cài
được thì cách sử dụng có phần dễ dàng hơn, chỉ cần tìm hiểu một số các hàm trong thư
viện các hàm thành viên của OPENGL là đáp ứng được yêu cầu. Còn mọi việc thực hiện
cài đặt theo lý thuyết đồ họa máy tính như các phép biến hình, thiết lập chế độ màn
hình, khởi tạo đồ họa, setviewport, tạo các Pallette màu, thiết lập độ sâu hình ảnh, độ
phản chiếu hình ảnh, độ tương phản … tất cả do OPENGL hỗ trợ hầu hết.
OpenGL được định nghĩa là “giao diện phần mềm cho phần cứng đồ họa ”. Thực
chất, OpenGL là một thư viện các hàm đồ họa, được xem là tiêu chuẩn thiết kế công
nghiệp cho đồ họa ba chiều.
Với giao diện lập trình mạnh mẽ, OpenGL cho phép tạo các ứng dụng 3-D phức tạp
với độä tinh vi, chính xác cao, mà người thiết kế không phải đánh vật với các núi công
thức tốn học và các mã nguồn phức tạp. Và do OpenGL là tiêu chuẩn công nghiệp, các
ứng dụng tạo từ nó dùng được trên các phần cứng và hệ điều hành khác nhau.
Nhận xét về OPENGL tôi thấy rằng OPENGL là thư viện đồ họa trên WINDOWS
bởi vì ta có thể thấy rằng OPENGL không những thực hiện trên ngôn ngữ Visual C++ mà
còn có thể cho phép thực hiện trên cả Visual Basis , Borland C++
II. 2. GIỚI THIỆU CÁC HÀM CỦA NGÔN NGỮ ĐƯỢC SỬ DỤNG
a. Các hàm của lớp CDC (Class Device Context)
Trong CDC có rất nhiều hàm thành viên phục vụ cho quá trình kết xuất các hình ảnh ra
các thiết bị. Trong phần thực hiện đề tài, tôi xin đưa ra các hàm được sử dụng trong đề tài
Vẽ điểm:
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 3
Luận văn tốt nghiệp
SetPixel ( int x , int y , int color );
Hàm này thuộc lớp CClientDC trong phần màu sử dụng macro RGB(red,green,blue)
Ví du:ï Để vẽ một điểm , ta thực hiện như sau:
CClientDC dc( this );
dc.SetPixel (100,100,GRB(0,0,0);
Để thể hiện tọa độ một điểm trong hệ trục tọa độ hai chiều, Visual C++ dùng lớp CPoint,
đối tượng thuộc lớp này được thể hiện bởi hai thành phần x và y. Ví dụ ta khai báo điểm
point như sau:
CPoint point
point.x=100;
point.y=100;
Vẽ đường thẳng:
Line (int x1, int y1, int x2, int y2);
Hàm này thuộc lớp CClientDC
Ví dụ: Để vẽ đường thẳng ta thực hiện các bước sau đây
CClientDC dc(this);
dc.Line(x1,y1,x2,y2);
Ngồi ra trong việc vẽ đường thẳng còn có thể sử dụng hai hàm sau:
MoveTo(int x, int y);
Hàm này dùng để di chuyển con trỏ đến tọa độ x,y trong màn hình.
LineTo(int x, int y);
Hàm này dùng để vẽ đường thẳng từ điểm hiện hành đến điểm x, y.
Cả hai hàm này đều thuộc lớp CClientDC, việc sử dụng như sau:
CClientDC dc(this);
dc.MoveTo(x,y);
dc.LineTo(newx, newy);
Vẽ hình chữ nhật:
Rectangle(int x1,int y1,int x2,int y2);
Hàm này thuộc lớp CclientDC. Dùng để vẽ hình chữ nhật có tọa độ trên góc trên trái là
(x1,y1) và tọa độ góc dưới phải là (x2,y2). Cú pháp vẽ hình chữ nhật như sau:
CClientDC dc(this);
dc.Rectangle(x1, y1, x2, y2);
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 4
Luận văn tốt nghiệp
Vẽ hình Ellipse:
Ellipse(int x1,int y1,intx2,int y2);
Hàm này có các tham tương tự các tham số hình chữ nhật, hàm này cũng thuộc lớp
CClientDC. Cú pháp vẽ hình Ellipse như sau:
CClientDC dc(this);
dc.ellipse(int x1, int y1, intx2, int y2);
Hàm loan vùng kín:
FloodFill(int x,int y, int color);
Hàm này dùng để tô màu vùng được giới hạn bởi một đường biên khép kín. Hàm này
thuộc lớp CClientDC có tác dụng tô màu với màu color tô hết vùng có tọa độ (x,y) và
một vùng kín bao quanh điểm đó. Cú pháp hàm như sau:
CClientDC dc(this);
dc.FloodFill(x, y, color);
Tạo các đường vẽ:
CreatePen(typeline, width, color);
Để tạo đường vẽ trong các ứng dụng vẽ ta xét hàm CreatePen của lớp Cpen, hàm này có
dạng như sau:
Cpen *pPen=new Cpen;
pPen->CreatePen(typeline, width, color);
Trong đó :
• Tham số typeline là kiểu đường vẽ, nó có giá trị được định nghĩa như sau:
PS-SOLID Đường thẳng đồng nhất.
PS-DASH Đường thẳng gồm các gạch ngang đứt nét.
PS-DOT Đường thẳng gồm các nét chấm đứt.
PS-DASDOT Đường thẳng gồm các gạch ngang chấm đứt.
PS-DASHDOTDOT Đường thẳng gồm các gạch ngang chấm đứt.
PS-NULL Đường thẳng vô hiệu lực không vẽ ra.
PS-INSIDEFRAME Đường thẳng nằm bên trong đường viền.
• Tham số width cho độ rộng của nét vẽ tính bằng pixel.
• Tham số color cho màu vẽ
b. Các hàm trong bộ thư viện OpenGL
OpenGL gồm 5 bộ hàm, bộ hạt nhân có 115 hàm cơ bản. Tên các hàm này bắt đầu
bằng GL. Windows NT hỗ trợ 4 chủng loại hàm khác, bao gồm thư viện OpenGL
utility(tên hàm bắt đầu bằng GLU), thư viện OpenGL auxiliary(tên hàm bắt đầu bằng
AUX), bộ hàm”WGL” (tên hàm bắt đầu bằng WGL), và các hàm WIN32 API (tên hàm
không có tiền tố đặc biệt). Bộ hàm hạt nhân cho phép thiết kế các hình dạng khác nhau,
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 5
Luận văn tốt nghiệp
tạo các hiệu quả chiếu sáng, kết hợp antialiasing và gán cấu trúc, thực hiện biến đổi ma
trận…
Do các hàm cơ bản được thể hiện ở nhiều dạng khác nhau tùy thuộc vào loại dữ liệu
mà chúng tiếp nhận, nên trên thực tế có hơn 300 nguyên mẫu (prototype) các hàm cơ bản.
Thư viện OpenGL utility gồm các hàm cao cấp. Các hàm này đơn giản hố
việc sử dụng hình ảnh cấu trúc, thực hiện việc biến đổi tọa độ mức cao, hỗ trợ tesselation
đa giác, và biểu diễn các đối tượng có cơ sở đa giác như hình cầu, hình trụ hình dĩa.
Thư viện OpenGl auxiliary gồm các hàm đặc biệt dùng đơn giản hóa các ví dụ
lập trình trong sách chỉ dẫn lập trình OpenGL. Các hàm phụ thuộc platform này thực hiện
các nhiệm vụ như quản ký cửa sổ, điều khiển xuất/nhập, vẽ các đối tượng 3D nhất định.
Do các hàm này có mực đích thiết minh nên không được dùng trong các mã sản xuất.
Các hàm “WGL”kết nối OpenGL với WINdows NT, cho phép người lập trình
xây dựng và chọn lựa các ngữ cảnh biểu diễn, tạo các bitmap font, các hàm này chỉ dùng
trên Windows NT.
Cuối cùng, các hàm Win32 API được dùng giải quyết các định dạng điểm ảnh
và tạo bộ đệm đôi.
Trong phần này, tôi trình bày một số hàm được sử dụng trong đề tài.
Hàm vẽ điểm, đường, đa giác:
Được bắt đầu bởi hàm:
glBegin (Glenum mode)
Để chỉ sự bắt đầu những đỉnh của một primitive, tham số mode chỉ kiểu các primitive.
Tham số mode có các giá trị sau:
GL_POINTS : chỉ đỉnh được sử dụng là điểm.
GL_LINES : chỉ những đỉnh được dùng để tạo đoạn thẳng.
GL_LINE_STRIP : chỉ những đỉnh được sử dụng tạo đoạn thẳng nhẵn.
GL_TRIANGLES : những đỉnh được sử dụng tạo ra những tam giác.
GL_TRIANGLE_STRIP : những đỉnh được sử dụng tạo ra tam giác có
cạnh nhẵn.
GL_POLYGON : những đỉnh được sử dụng tạo ra đa giác lồi.
glEnd ( )
Hàm trên dùng để chấm dứt danh sách các đỉnh mà nó chỉ rõ primitive được khởi tạo bởi
hàm glBegin.
Ví du: Vẽ đường thẳng từ 2 điểm
glBegin(GL_LINES)
glVertex3f(0.0f, 0.0f, 0.0f);
glVertex3f(50.0f, 50.0f, 50.0f);
glEnd( );
Hàm chỉ ra tọa độ của điểm, đường, đa giác:
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 6
Luận văn tốt nghiệp
glVertex2f (Glfloat x,Glfloat y)
glVertex3f (Glfloat x,Glfloat y,Glfloat z)
Hàm biến đổi tọa độ:
• glLoadIdentity(); thay thế ma trận hiện hành bởi ma trận đơn vị.
• glMultMatrix(); nhân ma trận hiện hành với ma trận được chỉ định.
• gl PopMatrix(void); lấy ma trận hiện hành từ stack.
• glPushMatrix(void); đẩy ma trận hiện hành vào stack.
• glTranslatef (Glfloat x, Glfloat y, Glfloat z); nhân ma trận hiện hành bởi ma
trận tịnh tiến.
• gl Rotatef(Glfloat Angle, Glfloat x, Glfloat y, Glfloat z); nhân ma trận hiện hành
bởi ma trận quay.
Các hàm liên quan đến màu:
• glColor3f (Glfloat red, Glfloat green, Glfloat blue); đặt màu hiện hành bởi các
thành phần red, green, blue với giá trị từ 0,0 đến 1,0.
• glClearColor(GLclampf red, GLclamp green, Glclamp blue, Glclamp alpha); đặt
màu cho việc xóa buffer màu.
• glClear(GL_COLOR_BUFFER_BIT); xóa buffer màu, xóa cửa sổ bởi màu xóa
hiện hành .
Các hàm liên quan đến ánh sáng:
• glLightf(Glenum light, Glenum pname, GLfloat param);
• glLighti(Glenum light, Glenum pname, GLint param);
Trong đó:
Tham số light chỉ ra nguồn sáng có giá trị từ GL_LIGHT0 đến GL_LIGHT7.
Tham số pname chỉ ra tham số light nào được lập như GL_AMBIENT,
GL_DIFFUSE…
Tham số param chỉ có ý nghĩa đối với nguồn sáng điểm. Tham số này có các
giá trị như: GL_SPOT_EXPONENT, GL_SPOT_CUTOFF…
Các hàm liên quan đến thuộc tính ánh sáng của vật liệu:
• glColorMaterialf(Glenum face,Glenum pname, GL float param);
• glMateriali(Glenum face,Glenum pname, GL int param);
• glMaterialfi(Glenum face,Glenum pname, const Glint* params);
• glMaterialfi(Glenum face,Glenum pname, const Glint* params);
Trong đó:
face: là thuộc tính bề mặt trước ,sau của đa giác.
pname: là thuộc tính của vật liệu: GL_AMBIENT,GL_DIFFUSE,…
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 7
Luận văn tốt nghiệp
param : chỉ định giá trị mà tham số pname được lập.
params: chỉ định dãy số nguyên hay thực chứa các thành phần thuộc tính được
lập.
• glFrontFace(Glenum mode); xác định bề mặt đa giác là mặt trước hay sau.
PHẦN II: NỘI DUNG
PHẦN II: NỘI DUNG
Trong phần giới thiệu tôi đã trình bày những nội dung sơ lược mang tính tổng quát
của đề tài. Phần nội dung tôi trình bày chi tiết hơn theo thứ tự logic các vấn đề từ lý
thuyết tốn học đến các thuật tốn chương trình.
I. LÝ THUYẾT CƠ SỞ TỐN HỌC
Các lý thuyết cơ sở tốn học được sử dụng cho các thuật tốn trong đề tài “THIẾT
KẾ HỆ THỐNG KIỂM TRA CÁC QUAN HỆ HÌNH HỌC“ bao gồm:
• Hình học giải tích trong mặt phẳng
• Hình học giải tích trong không gian.
Phần lý thuyết cơ sở tốn học này rất cần thiết cho việc thiết kế chương trình thực hiện
việc kiểm tra các quan hệ hình học, không gian vector là cơ sở lý thuyết tốn học tất yếu
để xây dựng các cấu trúc đồ họa máy tính.
I.1. Giới thiệu về vector:
I.1. Giới thiệu về vector:
Điểm (point): Mô tả các vị trí của đồ hình và có nhiều cách để diễn đạt. Trong hai
chiều biểu diễn bằng cách dùng bộ-2 để cho các tọa độ theo hai trục. Hai dạng thường
được áp dụng nhiều đó là dạng Cartesian như (x,y) =(3,4) hay dạng tọa độ cực (R,
θ)=(2.4,45
0
).
Trong khi chúng được định nghĩa một cách đại số theo các thao tác nhất định trên đó,
chúng cũng cho phép một diễn dịch hình học theo các điểm, đường, chiều.
Vector: Nhìn một cách hình học, vector là một đoạn thẳng mà các điểm đầu và
điểm cuối đã được xác định . Vector là một đối tượng có độ dài và chiều tương ứng với
một số thực thể vật lý như lực, khoảng cách, và vận tốc. Vector thường được vẽ như một
mũi tên có chiều dài chỉ về một hướng.
Khi vector được chọn để chỉ định hệ tọa độ, các vector có một hàm số để đưa ra hai hằng
số, ba hằng số,... Vì thế, một trong các thể hiện của một vector hai chiều a là một cặp có
thứ tựï a=(a
x
, a
y
). Trong chương trình, vector được biểu diễn bằng kiểu dữ liệu:
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 8
Luận văn tốt nghiệp
Typedef struct
{
dx,dy: float;
} vector;
struct
{
dx,dy,dz : float;
} vector3D
Với hai điểm P
1
(x
1
,y
1
) và P
2
(x
2
,y
2
) ta định nghĩa vector v với các thành phần là
vector v =(x
2
-x
1
, y
2
-y
1
). Đôi khi vector này được ghi là P
1
P
2
và gọi là vector từ P
1
đến
P
2
. Bản thân vector không bị buộc vào một vị trí, mặc dù để dễ hình dung thường vẽ
chúng xuất phát từ một điểm. Với điểm bất kỳ P = (P
x
, P
y
) trong một hệ tọa độ, vector đi
từ gốc tọa độ với các tọa độ v=(P
x
, P
y
) được gọi là vector vị trí cho P. Vector 3D cũng
rất quan trọng trong đồ họa.
I.2. Các phép tính vector:
I.2. Các phép tính vector:
Một vector n chiều, với n là số nguyên dương bất kỳ:
W=(W1,W2,. . .,Wn)
với mỗi thành phần Wi là số vô hướng.
Các vector 2 chiều và 3 chiều với n=2, n=3 thì thường gặp nhất trong đồ hoạ Chúng ta
không thể thấy được các vector lớn hơn 3 nhưng chúng là những thành phần có giá
rị rât lớn.
Hai phép tính số học cơ bản trên vector là cộng hai vector và định tỷ lệ một vector.
Cộng hai vector
Tổng hai vector a,b là vector c được định nghĩa như sau:
C = (c
1
, c
2
, …, c
n
) = (a
1
+ b
1
, a
2
+ b
2
, …, a
n
+ b
n
)
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 9
x
P
2
v
P
4
P
3
v
P
1
y
P
5
b
a+b
a
a+b
b
a
Hình a
Hình b
a
a-c
c
-c
Luận văn tốt nghiệp
Hình a: Các thành phần của tổng là tổng các thành phần của các vector tham gia.
Hình b: Tổng các vector là đường chéo hình bình hành.
Procedure AddVectors( vector a, vector b; vector &c );
{
c.dx := a.dx + b.dx;
c.dy := a.dy + b.dy;
}
Định tỷ lệ một vector
Việc định tỷ lệ một vector nhằm thay đổi độ dài của hay đảo chiều của nó.
sa = (sa
1
, sa
2
, …, sa
n
)
Với s là hệ số tỷ lệ và a là vector. Khi s âm, chiều của sa ngược lại với a.
Procedure Scalar(real s; vector a; vector &b)
{
b.d
x
= s
∗
a.d
x
;
b.d
y
= s
y
a.d
y
;
}
Phép trừ hai vector:
Trên cơ sở cộng và định tỷ lệ, phép trừ dễ dàng định nghĩa:
a-c = a +(-c)
với thành phần thứ i là ai-ci.
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 10
Luận văn tốt nghiệp
Trị tuyệt đối (độ dài) của vector
Nếu một vector W được thể hiện trong không gian nhiều chiều (W
2
, W
2
, …, W
n
),
dựa theo định lý Pithagore ta có công thức sau:
)...(
22
2
2
1 n
WWWW +++=
Vector có độ dài bằng zero thường được gọi là vector 0. Chương trình con minh họa như
sau: Function Length(vector v): Real;
•
Chuẩn hóa vector -Vector đơn vị
Việc định tỷ lệ một vector để kết qủa có độ dài bằng 1 gọi là chuẩn hố một vector,
và kết qủa gọi là vector đơn vị. Ví dụ dạng chuẩn hố u
a
của a như sau:
u
a
= a / | a|
và có cùng chiều với a.
Biểu thức cho hệ số của vector có thể khai báo trực tiếp như sau:
Normalize(vector v, vector &u);
Nó có dạng vector đơn vị u do các hệ số mỗi thành phần của v:
u.d
x
:= v.d
x
/Length(v);
u.d
y
:= v.d
y
/Length(v);
Tổ hợp tuyến tính của vector:
Để hình thành tổ hợp tuyến tính của hai vector V và W, định tỷ lệ mỗi vector theo các
tỷ số a và b rồi cộng kết qủa để thành vector mới av+bw.
Tổng quát, tổ hợp tuyến tính của m vector V
1
, V
2
, …, V
m
như sau:
W = a
1
V
1
+ a
2
V
2
+ …+ a
m
V
m
Procedure Combo2D(float a,b vector u,v ,vector &W );
{
w.dx:=a*u.dx+b*v.dx;
w.dy:=a*u.dy+b*v.dy;
}
• Tổ hợp lồi của vector
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 11
Luận văn tốt nghiệp
Một lớp đặc biệt của tổ hợp tuyến tính có vị trí quan trọng trong tốn học và ứng
dụng số học trong đồ họa, đó là:Tổ hợp lồi (convex combination), hay tổ hợp tuyến tính
mà các hệ số không âm và tổng bằng 1. Vậy tổ hợp tuyến tính:
W = a
1
V
1
+ a
2
V
2
+ … +a
m
V
m
là tổ hợp lồi nếu tổng
∑
i
a
=1và a
i
≥
0, và cung “spline” thực ra là tổ hợp lồi của
một tập các vector.
Tích vô hướng của hai vector:
Tích vô hướng của hai vector cho ta thông tin đáng giá về một cặp vector như góc giữa
chúng (cụ thể là khi nào chúng vuông góc) và chiếu vector lên vector khác. Nó cũng cho
ta phương trình của một mặt phẳng mô tả bằng một điểm và hai vector.
Cho hai vector, ví dụ hai chiều (a
1
,a
2
) và (b
1
,b
2
).
Tích vô hướng hai vector định nghĩa là:
a.b = a
1
b
1
+ a
2
b
2
Một cách tổng quát cho vector n chiều như sau: Cho Vector V= (v
1
, v
2
, …, v
n
) và
W=( w
1
, w
2
, …, w
n
), tích vô hướng củahai vector trên là:
V. W =
i
i
V
∑
W
với i = 1,… ,n
Tích vô hướng của hai vector được thể hiện trong thủ tục sau:
Procedure Float Dot (vector a,b)
{
return Dot = a.d
x
* b.d
x
+ a.d
y
* b.d
y
;
}
• Các tính chất của tích vô hướng
1. Đối xứng : a.b = b.a
2. Tuyến tính: (a+c).b = a.b + c.b
3. Đồng nhất : (sa).b = s(a.b)
4. | b
2
| = b.b
Độ dài của hiệu và tổng hai vector được cho như sau:
| a-b|
2
= |a|
2
- 2ab + |b|
2
| a+b|
2
= |a|
2 +
2ab + |b|
2
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 12
Luận văn tốt nghiệp
Các ứng dụng của tích vô hướng:
a. Góc giữa hai vector (hay hai đường)
Đây là ứng dụng quan trọng của tích vô hướng. Hình a dưới cho thấy góc θ giữa
hai vector a và b. Các vector này có thể có hai, ba, hay nhiều chiều. Chúng tạo thành
hai cạnh của tam giác, và cạnh thứ ba là a-b. Theo hệ thức lượng trong tam giác, ta có :
| a-b|
2
= |a|
2
+ |b|
2
- 2 |a||b|cos(θ)
Từ phương trình này và phương trình
| a-b|
2
= |a|
2
- 2ab + |b|
2
ta suy ra được: a.b = |a||b| cos(θ)
Nghĩa là cos(
θ
) = u
a
.u
b
Vậy cosin của góc giữa hai vector a và b là tích vô hướng của dạng chuẩn hóa hai
vector.
∗ Dấu cuả vector a.b và sự trực giao
Ta biết rằng
cos(
ϕ
) >0 nếu
ϕ
< 90
0
cos(
ϕ
) <0 nếu
ϕ
> 90
0
cos(
ϕ
) =0 nếu
ϕ
= 0
Do vậy từ phương trình:
cos(
ϕ
) = u
a
.u
b
ta có góc giữa hai vector như sau:
Nhỏ hơn 90
o
nếu a.b >0
Bằng 90
0
nếu a.b = 0
Lớn hơn 90
o
nếu a.b < 0
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 13
a
b
Hình a
a.b>0 a.b=0 a.b<0
a
a
a
b
b
b
c
a
e
b
x
y
Luận văn tốt nghiệp
b. Chiếu và phân tích vector:
Hình trên ta phân tích a thành c theo chiều vector b và e. Theo cách này vector c
gọi là chiếu trực giao của a lên b. Rõ ràng c có cùng chiều với b, ta còn phải tính độ lớn |
c|.
Theo phương trình a.b = |a||b|cos(
ϕ
) và hệ thức lượng tam giác ta có
phương trình:
|c| = |a|
( )
ba
ba.
= a.u
b
(*)
Như thế độ dài của c chỉ phụ thuộc vào độ dài của a. Bây giờ ta hình thành vector
c, bằng cách thêm chiều của b.
c = |c|.u
b
Sau đó, kết hợp với phương trình (*) trên ta có:
c = ( a.u
b
)u
b
c =
a.b
b
|b|
2
Ví dụ: trong hai chiều, chiếu của a = (6,4) lên b = (1,2) như hình dưới
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 14
Luận văn tốt nghiệp
Hình chiếu của c nằm dài hơn b kể từ gốc, từ phương trình trên ta có độ dài của
c là (2.8, 5.6), vector e = a-c = (3.2, -1.6 ).
c. Dạng điểm chuẩn cho đường và mặt phẳng
Dạng điểm chuẩn cho đường và cho mặt phẳng dùng nhiều trong đồ họa như việc
cắt loại bỏ đường bị che và tô đa giác.
Xét đường L đi qua điểm A = (A
x ,
A
y
) theo chiều vector c = (c
x
,c
y
), ta có vector n
vuông góc với vector c nghĩa là c.n = 0, cũng có nghĩa là c
x
.n
x
+ c
y
.n
y
=0, hay:
c
y
/ c
x
=
-n
x
/
n
y
Điều kiện n trực giao với c cho ta suy ra n có thể là bội số bất kỳ của (c
x
, c
y
), có
hai chiều đối nhau. Để có phương trình cho đường L, xét điểm bất kỳ R = (x,y) trên L.
Vector R phải vuông góc với n, nên n.(R-A) = 0. Ta có thể viết lại như sau: nR=nA,
nhưng không thể nhân điểm với vector được. Ta thay vector R bằng r đi từ gốc và thay A
bằng a. Như vậy, các tính tốn đều phụ thuộc vào việc chọn gốc tọa độ, còn phương trình
đường thẳng vẫn phụ thuộc vào gốc không có gì thay đổi. Như vậy ta có:
n.r = D Với D = n.a = n
x
Ax + n
y
Ay
Đây là phương trình điểm chuẩn cho đường. Phương trình này có thể viết dạng quen
thuộc như sau:
n
x
x + n
y
y = D
• Mở rộng dạng điểm cho mặt phẳng
Các mặt phẳng cũng có thể biểu diễn ở dạng chuẩn điểm. Một mặt phẳng hồn tồn
được xác định với một điểm S = (s
x
, s
y
, s
z
) nằm trong đó và hướng chuẩn của mặt phẳng.
Chuẩn cho mặt phẳng được hiểu là vuông góc với mọi đường trong mặt phẳng. Gọi
hướng chuẩn là n= (n
x
, n
y
, n
z
). Với điểm R= (x, y, z) bất kỳ trong mặt phẳng, xây dựng
vector từ R đến S, vuông góc với n.
n.(R-S) = 0
Thay R-S bằng r -s và dùng tính tuyến tính, ta được:
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 15
A
c
n
L
L
cn
x
y
Luận văn tốt nghiệp
n.r = D với D = n.s
Đây là phương trình điểm chuẩn của mặt phẳng. Mọi điểm trên mặt phẳng có cùng tích
vô hướng với chuẩn. Nghĩa là mọi điểm có cùng hình chiếu lên n.
Phương trình mặt phẳng P thường viết là: Ax + By + Cz = D
Tư ø tích vô hướng của phương trình ta thấy rằng dạng điểm chuẩn thực ra là:
n
x
X + n
y
Y + n
z
Z = D
Với A = n
x
, B = n
y
, và C = n
z
. Điều này cho thấy (A, B, C) là chiều chuẩn của mặt
phẳng.
Điểm trên mặt gần gốc nhất là điểm chiếu vuông góc của gốc lên mặt. Như vậy nó tỉ lệ
với n, gọi là Kn, nên khoảng cách là| Kn |. Vì Kn nằm trên mặt nên n. (Kn)=D.
d. Kiểm tra nửa không
gian trong và ngồi của một điểm
Xét điểm Q, giả sử đường E đi qua điểm A và có chuẩn hướng ra n như hình vẽ:
Góc
ϕ
giữa n và
Q -A < 90
0
, nếu Q nằm phía ngồi, vì vậy tích n.(Q - A) > 0. Tương tự, góc
ϕ
sẽ lớn hơn
90
0
nếu Q nằm phía trong, vì vậy n.(Q -A) < 0. Cuối cùng,
ϕ
= 90
0
nếu Q nằm trên E, và
n .(Q - A) = 0. Nếu thay Q -A bằng vector q - a và gọi đặt a.n = D, thì đường E được cho
bởi phương trình n.p = D, và ta viết lại thủ tục kiểm tra điểm Q với vector biểu diễn q sẽ
nằm:
1. Ở nửa không gian phía ngồi của E nếu q.n > D.
2. Trên E nếu p.n = D.
3. Ở nửa không gian phía trong của E nếu q.n < D.
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 16
S
n
ϕ
n
E
E
A
inside
E
P
P
P
P
c
c
n
n
E E
Luận văn tốt nghiệp
• Mở rộng cho mặt phẳng
Giả sử mặt P qua điểm A và có vector chuẩn hướng ra n thì điểm Q sẽ:
1. Ở nửa không gian phía ngồi của P nếu T=(q-a).n > 0
2. Trên P nếu (q-a).n=0
3. Ở nửa không gian phía trong của P nếu (q-a).n<0.
e. Cắt đường thẳng với cửa sổ lồi
Ta dùng kiểm tra trong-ngồi để xây dựng công cụ cắt hữu hiệu với cửa sổ là đa giác
lồi bất kỳ. Cửa sổ W chứa một đa giác lồi cùng với đường thẳng L từ P
1
tới P
2
. Ta muốn
xác định phần thấy của L nằm trong W. Đa giác lồi nên phần trong cửa sổ được định
nghĩa là vùng nằm ở nửa không gian phía trong của mỗi cạnh của W. Đoạn L được kiểm
tra đối với mỗi cạnh của W, và phần nằm ở nửa không gian phía ngồi được loại ra. Sau
khi mọi cạnh đã được kiểm tra, phần còn lại của L sẽ nằm trong W.Ta biểu diễn L ở dạng
tham số:
P(t) = P
1
+ ct với c = P
2
- P
1
.
Với mỗi cạnh
cửa sổ, dùng hai giá trị t
in
và t
out
để giữ lại vùng của t mà đoạn có thể nằm trong cửa
sổ. Nghĩa là không thể thấy đoạn ở ngồi khoảng (t
in
, t
out
). Giá trị bắt đầu cho t
in
và t
out
là 0 và 1. Khoảng này liên tục được cắt xén khi xử lý xong mỗi cạnh. Nếu lúc nào khoảng
này thành rỗng, thốt ra khỏi thuật giải cắt, và đoạn L hồn tồn bị cắt. Còn không thì
khoảng (t
in
, t
out
) xác định phần của L nằm trong cửa sổ. Vì W lồi, mỗi cạnh E của nó có
thể cho là đường cho ở dạng điểm chuẩn:
n.p = D
Với n là chuẩn hướng ra của cạnh. Bây giờ E có thể có một số tình huống so với
đường L.
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 17
w
L
P
P
Luận văn tốt nghiệp
• E song song L: nếu n trực giao với c (nghĩa là: n .c= 0). Như vậy L sẽ nằm hồn
tồn ở trong hoặc ở ngồi cửa sổ. Để xét tiếp, chọn điểm bất kỳ trên L, là P
1
và kiểm tra
trong-ngồi. Đặt p
1
= P
1
- 0 là vector từ gốc tọa độ đến P
1
. L sẽ hồn tồn nằm trong nếu:
p
1
.n < D
Ngược lại L hồn tồn nằm ngồi.
• E không song song với L: L phải cắt cạnh E tại ti, để tính ti dùng phương trình:
ti=( D - n.p
1
) /n.c
Nếu chiều c của nó nhỏ hơn 90
0
kể từ n ( n.c > 0) thì đường sẽ đi ra. Ngược lại
sẽ đi vào. Nếu đi vào, thì phần với t < ti sẽ không thấy được, và t
in
được gán là ti(nếu t
in
<
ti). Ngược lại, thì phần với t > ti sẽ không thấy được, và t
out
được giảm về ti(nếu ti < t
out
). Khi kết thúc, giá trị của t
in
và t
out
sẽ được thay vào P
1
+ ct, để có được các điểm
đầu của đường bị cắt.
Tích hai vector
Tích vector của hai vector là một vector. Một trong nhiều tính chất hữu dụng của nó là
nó trực giao với hai vector ban đầu. Tích vector chỉ được định nghĩa cho vector ba chiều,
nhưng nó cũng áp dụng trong một số vấn đề trong đồ họa liên quan đến đa giác hai chiều.
Cho vector a=(a
x
, a
y
, a
z
) và b=(b
x
, b
y
, b
z
) tích vector của chúng viết là a x b. Nó
được định nghĩa theo các vector đơn vị chuẩn i, j, k như sau:
a x b = (a
y
.b
z
- a
z
.b
y
).i + (a
z
.b
x
- a
x
.b
z
).j + (a
x
.b
y
- a
y
b
x
).k
• Từ định nghĩa suy ra các tính chất đại số sau:
1. i x j = k
j x k = i
i x k = j
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 18
Luận văn tốt nghiệp
2. a x b = -b x b
3. a x (b + c) = a x b +a x c
4. (sa) x b = s(a xb)
• Ý nghĩa hình học của tích vector:
1. ax b trực giao với cả a và b.
2. Độ dài a x b bằng diện tích hình bình hành xác định bởi a và b. Diện
tích này là:
|a x b| = |a||b|sin(
ϕ
)
với
ϕ
là góc giữa a và b, đo từ a đến b hay ngược lại miễn sao góc nhỏ hơn
180
0
.
3. Chiều của a x b xác định từ quy tắc bàn tay phải khi làm việc trong hệ
tay phải.
Tích bộ ba vô hướng
Cho ba vector a, b, c kết hợp chúng cho ra số vô hướng như sau:
S = a.(b x c) = a
x
(b
y
c
z
-b
z
c
y
) + a
y
(b
z
c
x
- b
x
c
z
) + a
z
(b
x
c
y
- b
y
c
x
).
Ta co:ù S = a.(b x c) = b.(c x a) = c.(a x b)
Tích bộ ba vô hướng có ý nghĩa hình học đơn giản. Giá trị của nó là thể tích của khối lăng
trụ tạo bởi các vector a,b, c. Dấu của tích bộ ba vô hướng tùy theo
cos (
ϕ
) dương nếu
ϕ
< 90
0
và âm nếu
ϕ
> 90
0
.
Phương trình mặt phẳng
Trong không gian, qua 3 điểm A (x
a
, y
a
, z
a
), B(x
b
, y
b
, z
b
), và C(x
c
, Y
c
, z
c
) không thẳng
hàng xác định được phương trình mặt phẳng như sau:
Ta có vector AB = (x
b
-x
a
, y
b
-y
a
, z
b
-z
a
) và
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 19
a x b
Thể tích a x b x c
a
b
c
ϕ
Luận văn tốt nghiệp
AC = (x
c
-x
a
, y
c
-y
a
, z
c
-z
a
)
Tích hữu hướng của hai vector AB và AC là pháp vector n của mặt phẳng mp(ABC).
Vector n có tọa độ như sau:
n = ((y
b
-y
a
)*(z
c
-z
a
) - (y
c
-y
a
)*(z
b
-z
a
),
(z
b
-z
a
)*(x
c
-x
a
) - (z
c
-z
a
)*(x
b
-x
a
),
(x
b
-x
a
)*(y
c
-y
a
) - (x
c
-x
a
)*(y
b
-y
a
))
Nếu chúng ta đặt:
a
1
= (y
b
-y
a
)*(z
c
-z
a
) - (y
c
-y
a
)*(z
b
-z
a
)
b
1
= (z
b
-z
a
)*(x
c
-x
a
) - (z
c
-z
a
)*(x
b
-x
a
)
c
1
= (x
b
-x
a
)*(y
c
-y
a
) - (x
c
-x
a
)*(y
b
-y
a
)
d
1
= - x
a
a
1
- y
a
b
1
- z
a
c
1
thì vector n có thể viết lại như sau: n = (a
1
, b
1
, c
1
)
Phương trình mặt phẳng được xác định theo định thức cấp 3 như sau:
Phương trình mặt phẳng mp(ABC) ở dạng tổng quát:
a
1
X + b
1
Y+ c
1
Z + d
1
= 0
Phương trình đường thẳng
Trong không gian cho hai điểm A (x
a
, y
a
, z
a
), B(x
b
, y
b
, z
b
) sẽ xác định được
phương trình đường thẳng đi qua hai điểm A ,B như sau:
Vector AB = (x
b
- x
a
, y
b
- y
a
, z
b
-z
a
) là vector chỉ phương của đường thẳng qua hai điểm
A, B (để gọn hơn ta viết vector chỉ phương AB=(a
1
, a
2
, a
3
), phương trình của đường
thẳng có ba dạng như sau:
• Phương trình tham số:
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 20
x-x x-x x-x
y-y y-y y-y
z-z z-z z-z
= 0
Luận văn tốt nghiệp
X = a
1
t + x
a
Y = a
2
t + y
a
Z = a
3
t + y
a
• Phương trình dạng chính tắc:
1
a
xX
a
−
=
2
a
yY
a
−
=
3
a
zZ
a
−
(với điều kiện a
1
, a
2
, a
3
<> 0 )
• Phương trình dạng tổng quát:
a
2
(x - x
a
) = a
1
( y - y
a
)
a
1
(z - z
a
) = a
3
( x - x
a
)
Hệ phương trình trên tương đương với hệ phương trình sau:
a
2
x - a
1
y + 0 + a
1
y
a
- a
2
x
a
= 0
a
3
x + 0 - a
1
z + a
1
z
a
- a
3
x
a
= 0
Phương trình tổng quát của đường thẳng qua 2 điểm trong không gian là hệ phương trình
bậc nhất 3 biến x, y, z như trên.
II. CÁC ĐỐI TƯỢNG HÌNH HỌC VÀ SỰ TƯƠNG QUAN
Trong phạm vi của môn hình học thì không gian diễn dịch của nó rất lớn, chính vì vậy
tôi thiết kế thuật tốn trên các đối tượng hình học cơ bản. Và từ những thuật tốn này chúng
ta có thể mở rộng ra cho một diễn dịch rộng lớn hơn.
II.1. CÁC QUAN HỆ HÌNH HỌC TRONG 2D
1. Các đối tượng hình học cơ bản:
• Điểm
• Đường thẳng
• Đa giác
2. Sự tương quan giữa các đối tượng hình học:
• Điểm - Đường thẳng.
• Điểm - Đa giác.
• Đường thẳng - Đường thẳng.
• Đường thẳng - Đa giác.
• Đa giác - Đa giác.
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 21
Luận văn tốt nghiệp
3. Kiểm tra sự tương quan giữa các đối tượng hình học:
a. Điểm - Đường thẳng
Kiểm tra điểm có thuộc đường thẳng?
Tính khoảng cách từ điểm đến đường thẳng nếu điểm không
thuộc đường thẳng.
b. Điểm - Đa giác
Kiểm tra điểm bên trong hay bên ngồi đa giác?.
c. Đường thẳng - Đường thẳng
Kiểm tra hai đường thẳng trùng nhau, cắt nhau hay song song.
Tính góc giữa hai đường thẳng.
Tính hình chiếu của đoạn thẳng trên đường thẳng.
d. Đường thẳng - Đa giác
Kiểm tra đường thẳng nằm bên trong hay bên ngồi đa giác.
Clip một đoạn thẳng vào đa giác.
e. Đa giác - Đa giác
Kiểm tra sự tương quan giữa hai đa giác.
• Cắt nhau?
• Lồng nhau hay rời nhau?
• Tính diện tích giao nhau của hai đa giác.
Kiểm tra đa giác lồi, lõm.
Tính diện tích của đa giác.
II.2. CÁC QUAN HỆ HÌNH HỌC TRONG 3D
1. Các đối tượng hình học cơ bản:
• Điểm
• Đường thẳng
• Mặt phẳng
2. Sự tương quan giữa các đối tượng hình học:
• Điểm - Đường thẳng.
• Điểm - Mặt phẳng.
• Đường thẳng - Đường thẳng.
• Đường thẳng - Mặt phẳng.
• Mặt phẳng - Mặt phẳng.
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 22
Luận văn tốt nghiệp
3. Kiểm tra sự tương quan giữa các đối tượng hình học:
a. Điểm - Đường thẳng
Kiểm tra điểm có thuộc đường thẳng?
Tính khoảng cách từ điểm đến đường thẳng nếu điểm không
thuộc đường thẳng.
b. Điểm - Mặt phẳng
Kiểm tra điểm có thuộc mặt phẳng?
Tính khoảng cách từ điểm đến mặt phẳng nếu điểm không thuộc
mặt phẳng.
c. Đường thẳng - Đường thẳng
Kiểm tra hai đường thẳng đồng phẳng, cắt, song song, chéo
nhau, vuông góc?
Tính góc giữa hai đường thẳng.
Tính khoảng cách giữa hai đường thẳng chéo nhau.
Tính hình chiếu của đoạn thẳng trên đường thẳng.
d. Đường thẳng - Mặt phẳng
Kiểm tra đường thẳng thuộc mặt phẳng?
Kiểm tra đường thẳng vàø mặt phẳng cắt nhau?
Kiểm tra đường thẳng và mặt phẳng song song?
Kiểm tra đường thẳng và mặt phẳng vuông góc?
Tính góc giữa đường thẳng và mặt phẳng nếu đường thẳng và
mặt phẳng cắt nhau.
Tính khoảng cách giữa đường thẳng và mặt phẳng nếu đường
thẳng và mặt phẳng song song nhau.
e. Mặt phẳng - Mặt phẳng
Kiểm tra hai mặt phẳng trùng nhau?
Kiểm tra hai mặt phẳng cắt nhau?
Kiểm tra hai mặt phẳng song song?
Kiểm tra hai mặt phẳng vuông góc?
Tính góc giữa hai mặt phẳng nếu hai mặt phẳng cắt nhau.
Tính khoảng cách giữa hai mặt phẳng nếu hai mặt phẳng song
song nhau.
Tìm giao điểm của hai mặt phẳng.
III. CÁC THUẬT TỐN KIỂM TRA SỰ TƯƠNG QUAN GIỮA CÁC ĐỐI
TƯỢNG HÌNH HỌC
Trong phần này tôi trình bày cách thực hiện một vấn đề, được xây dựng theo
logic nhằm mục đích để người đọc hoặc tham khảo có thể dễ dàng kiểm tra so sánh đối
chiếu giữa thuật tốn với cơ sở tốn học.
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 23
Luận văn tốt nghiệp
III.1. CÁC QUAN HỆ HÌNH HỌC TRONG MẶT PHẲNG (2D)
1. Tính góc giữa hai đường thẳng
Cơ sở tốn học:
Đây là ứng dụng quan trọng của tích vô hướng. Hình a dưới cho thấy góc θ
giữa hai vector a và b. Chúng tạo thành hai cạnh của tam giác, và cạnh thứ ba là a-b.
Từ định nghĩa tích vô hướng của vector
( )
21
,aaa =
ø và
),(
21
bbb =
là a.b= |a||b| cos(
ϕ
)
với θ :góc giữa vector a và vector b
Và từ biểu thức giải tích của tích vô hướng:
a.b = a
1
b
1
+ a
2
b
2
Ta có cos(
ϕ
) = a.b / |a||b|=
2211
baba +
/ ))((
2
2
2
1
2
2
2
1
bbaa ++
Cos(
ϕ
) dương nếu |
ϕ
| nhỏ hơn 90
o
, và âm nếu |
ϕ
| lớn hơn 90
o
.
Giải thuật:
- Tính vector chỉ phương a và b của 2 đoạn thẳng
- Tính vector vô hướng a.b
- Cos (
ϕ
)= a.b / |a| |b|
- Góc 2 đoạn thẳng Alpha= arcos(cos(
ϕ
))
2. Tìm hình chiếu của đoạn thẳng AB lên đường thẳng b
Cơ sở tốn học:
Để tính hình chiếu đoạn AB lên đường thẳng b đi qua C và D, ta tìm hình
chiếu của điểm A là A’ và B là B’ trên đường thẳng b. Đoạn A’B’ chính là hình chiếu của
AB trên đường b.
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 24
ϕ
b
a
a-b
A
B
B
’
’
A’
C
D
(b)
Luận văn tốt nghiệp
• Xác định PT đi qua 2 điểm C, D:
ax + by + c = 0
có vector chỉ phương VCF = (x
D
-x
C
, y
D
-y
C
) = (-b, a) và c = - a * x
C
- b * y
C
.
• Xác định PT đường thẳng ∆ đi qua điểm A và vuông góc với CD:
bx -ay + c’ = 0
có vector chỉ phương của ∆ =(a, b)
và c’= b*x
A
+ a*y
A
• Tính giao điểm A’(x
A
’
, y
A
’
) của hệ PT (1) và (2)
ax + by + c = 0 (1)
bx - ay + c’= 0 (2)
x
A
’
= (-c’*b + c*a) / ( a*a + b*b)
y
A
’
= ( -c*b + c’*a) / ( a*a + b*b)
• Tương tự tính B’ là giao điểm của:
. Phương trình đường thẳng đi qua CD
. Và Phương trình đường thẳng ∆’ đi qua B và vuông góc với CD
Giải thuật:
- Tìm vector chỉ phương VCF (-b, a) của phương trình đường thẳng qua
hai diểm C, D: ax + by + c =0
- Tính hệ số c.
- Tính c1 của phương trình ∆1 đi qua điểm A và vuông góc với CD:
bx - ay + c1 = 0
- Tìm giao điểm A’của đường ∆1 và đường qua C, D .
- Tìm giao điểm B’ của đường ∆2 đi qua điểm B và vuông góc với đường
thẳng CD.
- Khi đó A’B’ chính là hình chiếu của AB.
3. Xác định giao điểm giữa hai đoạn thẳng
Cơ sở tốn học:
Thiết kế hệ thống kiểm tra các quan hệ hình học trang 25