Tải bản đầy đủ (.pdf) (96 trang)

ĐIỀU KHIỂN TRƯỢT THÍCH NGHI hệ THỐNG ĐỘNG PHI TUYẾN

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.67 MB, 96 trang )

ĐẠI HỌC QUỐC GIA TP. HỒ CHÍ MINH
TRƯỜNG ĐẠI HỌC BÁCH KHOA

NGUYỄN ĐỨC MINH

ĐIỀU KHIỂN TRƯỢT THÍCH NGHI
HỆ THỐNG ĐỘNG PHI TUYẾN

LUẬN ÁN TIẾN SĨ KỸ THUẬT

TP. HỒ CHÍ MINH NĂM 2012


ĐẠI HỌC QUỐC GIA TP. HCM
TRƯỜNG ĐẠI HỌC BÁCH KHOA

NGUYỄN ĐỨC MINH

ĐIỀU KHIỂN TRƯỢT THÍCH NGHI
HỆ THỐNG ĐỘNG PHI TUYẾN

Chuyên ngành: TỰ ĐỘNG HÓA
Mã số chuyên ngành: 6252600
Phản biện độc lập 1: GS.TSKH NGUYỄN XUÂN QUỲNH
Phản biện độc lập 2: PGS.TS NGUYỄN NGỌC PHƯƠNG
Phản biện 1: TS. NGUYỄN CHÍ NGÔN
Phản biện 2: PGS.TSKH HỒ ĐẮC LỘC
Phản biện 3: PGS.TS NGUYỄN TẤN TIẾN
NGƯỜI HƯỚNG DẪN KHOA HỌC
1. PGS. TS DƯƠNG HOÀI NGHĨA
2. TS NGUYỄN ĐỨC THÀNH




LỜI CAM ĐOAN
Tác giả xin cam đoan đây là công trình nghiên cứu của bản thân tác giả. Các kết
quả nghiên cứu và các kết luận trong luận án này là trung thực, và không sao chép từ
bất kỳ một nguồn nào và dưới bất kỳ hình thức nào. Việc tham khảo các nguồn tài liệu
(nếu có) đã được thực hiện trích dẫn và ghi nguồn tài liệu tham khảo đúng theo yêu
cầu.
Tác giả luận án

__________________________________
Nguyễn Đức Minh

i


ABSTRACT
Variable Structure Control with sliding mode or Sliding Mode Control is wellknown as a simple but effective robust non-linear control method. This method has
many advanced features such as good performance and robustness against parameter
variations. However, because of the switching of the control signal, there is a high
frequency oscillation of the phase portrait around the sliding surface. Furthermore,
designing SMC requires an upper bound of the model uncertainty. The model
uncertainty often consists of the non-model dynamic and the variation of the plant
parameters. If the actual modelling error exceeds the uncertainty upper bound used to
design the controller, the system stability will not be guaranteed. In addition, like
traditional control methods, designing SMC requires a mathematical model of the
plant. The control performance may be deteriorated in case of imprecise or time
varying model parameters.
This work aims to study a neural network based adaptive sliding mode
controller for uncertain non-linear dynamical system. It consists of three main points:

- The combination of neural networks and the sliding mode control theory to
design an adaptive sliding mode controller for uncertain non-linear dynamical systems.
This new controller can be characterized by: (i) it is a direct neural network controller;
(ii) the controller is identified on line without need of initial model, (iii) it has the
ability to adjust itself to cope with the variations of the upper bounds of the uncertainty
and it is noise insensitive.
- The development of the adaptive sliding mode controller mentioned above to
the Decoupled Adaptive Sliding Mode Controller DANSMC for multivariable nonlinear systems.
- The proposed controller has been successfully tested with an inverted rotary
pendulum and an inverted two-dimensional pendulum through simulations and
experiments.
Main results
ii


- The proposed sliding mode controller consists of two components: the
equivalent controller and the robust controller; it has a smooth form, it can overcome
the chattering phenomenon and it is appropriate for training the neural network.
- The update-law for one hidden layer feed forward neural network has been
carried out based on Lyapunov stability theory, which involves two feedback signals:
sliding surface signal and its derivative. The neural network can be trained online
without need of plant model nor its uncertainty upper bound.
- It is shown that the proposed neural network controller can completely replace
the traditional sliding mode controller. By using the system states as inputs instead of
sliding surface signals, DANSMC exploits the ability of neural network. Simulation
results also show that the system can self-develop to improve the control performance.
- Theories and simulations show that the DNSMC controller can adjust itself to
adapt to the variations of the plant as well as its uncertainty.

iii



TÓM TẮT LUẬN ÁN
Điều khiển có cấu trúc thay đổi VSC (Variable Structure Control) với chế độ
trượt, hay điều khiển trượt SMC (Sliding Mode Control) được biết đến như là một
phương pháp điều khiển phi tuyến bền vững đơn giản, hiệu quả. Phương pháp điều
khiển này có nhiều ưu điểm như: (i) ít nhạy với sự biến thiên của các thông số của hệ
thống; (ii) có khả năng chống nhiễu tốt; (iii) đáp ứng động học nhanh. Tuy nhiên do tín
hiệu điều khiển trượt cổ điển có dạng chuyển mạch nên tồn tại hiện tượng dao động có
tần số cao (chattering) của các quỹ đạo pha xung quanh mặt trượt. Hơn nữa, khi thiết
kế điều khiển SMC yêu cầu phải biết trước giá trị chặn trên của các thành phần bất
định của hệ thống. Các thành phần bất định thường bao gồm các thành phần động học
không mô hình, sự biến thiên của các thông số và nhiễu loạn. Nếu giá trị chặn trên
thực vượt quá giá trị chặn trên được giả thiết trong khi thiết kế bộ điều khiển, sự ổn
định của hệ thống sẽ không được bảo đảm. Ngoài ra cũng giống như các phương pháp
điều khiển kinh điển khác, việc thiết kế bộ điều khiển trượt yêu cầu phải biết mô hình
toán học cùng các thông số của mô hình của đối tượng. Điều này sẽ ảnh hưởng tới chất
lượng điều khiển trong một số ứng dụng mà ở đó mô hình toán học của đối tượng được
điều khiển khó xác định một cách chính xác và các thông số có tầm biến thiên rộng.
Luận án tiến sĩ nghiên cứu phương pháp điều khiển trượt thích nghi dùng mạng
nơ-ron áp dụng cho hệ phi tuyến động bất định không rõ thông số mô hình với ba nội
dung chính:
Kết hợp lý thuyết điều khiển trượt và mạng nơ-ron để thiết kế bộ điều khiển trượt
thích nghi dùng mạng nơ-ron áp dụng cho hệ thống phi tuyến động bất định không rõ
thông số mô hình. Bộ điều khiển mới có các đặc điểm: (i) là một mạng nơ-ron được
dùng làm bộ điều khiển trực tiếp; (ii) không cần nhận dạng trước các thông số của mô
hình đối tượng, luật điều khiển được suy ra trực tiếp trong quá trình huấn luyện trực
tuyến; (iii) có khả năng thích nghi trước sự thay đổi của các chặn trên của các thành
phần bất định và có khả năng kháng nhiễu tốt.
Phát triển bộ điều khiển trượt thích nghi nêu trên thành bộ điều khiển trượt thích

nghi phân ly DANSMC cho hệ phi tuyến đa biến.
Áp dụng các nghiên cứu về điều khiển trượt thích nghi phân ly lên hệ con lắc
ngược xoay và con lắc ngược hai chiều thông qua mô phỏng và thực nghiệm.
iv


Các kết quả đạt được của luận án
- Luật điều khiển trượt được đề nghị trong luận án bao gồm cả hai thành phần
điều khiển tương đương và điều khiển bền vững, có dạng hàm trơn, có khả năng khắc
phục được hiện tượng chattering và phù hợp để huấn luyện cho mạng nơ-ron.
- Luật cập nhật cho mạng nơ-ron truyền thẳng một lớp ẩn được đề nghị dựa trên
lý thuyết ổn định của Lyapunov với hai tín hiệu hồi tiếp bao gồm tín hiệu mặt trượt và
đạo hàm của nó đã được chứng minh là đáp ứng được yêu cầu của luật điều khiển
trượt được đề nghị và có khả năng huấn luyện trực tuyến cho mạng nơ-ron trở thành
bộ điều khiển trượt thích nghi mà không cần phải nhận dạng trước các thông số của
đối tượng và các giá trị chặn trên của các thành phần bất định của hệ thống.
- Với mô hình điều khiển được đề nghị trong luận án mạng nơ-ron truyền thẳng
một lớp ẩn đã thay thế hoàn toàn bộ điều khiển trượt. Với đặc điểm ngõ vào của mạng
là các biến trạng thái (khác với ngõ vào là tín hiệu mặt trượt như một số phương pháp
điều khiển trượt dùng mạng nơ-ron khác), phương pháp DANSMC đã khai thác được
khả năng nhớ theo trạng thái của mạng nơ-ron và qua các kết quả mô phỏng đã cho
thấy khả năng tự nâng cấp chất lượng điều khiển của hệ thống qua từng phiên điều
khiển.
- Lý thuyết và mô phỏng cũng đã cho thấy khả năng tự thay đổi để thích nghi
của bộ điều khiển DANSMC trước sự thay đổi của các thông số của đối tượng cũng
như các chặn trên của các thành phần bất định.

v



LỜI CÁM ƠN
Tôi xin tỏ lòng biết ơn sâu sắc đến PGS. TS Dương Hoài Nghĩa và TS. Nguyễn
Đức Thành, hai người thầy đã hướng dẫn tận tình trong suốt thời gian tôi làm nghiên
cứu sinh tại Đại học Bách Khoa. Những gợi ý đúng lúc hết sức quý báu cùng những ý
kiến phản biện sâu sắc của các thầy đã giúp tôi nhận thức, định hướng đúng và hoàn
thiện nghiên cứu của mình. Trong những năm cùng làm nghiên cứu với các thầy, tôi
không chỉ học được các phương pháp nghiên cứu khoa học mà còn học được nhiều
điều về tư cách, đạo đức trong cuộc sống
Xin chân thành cảm ơn các thầy cô Bộ môn Tự Động ĐHBK TPHCM vì đã
truyền đạt cho tôi những kiến thức nền tảng hết sức quý báu trong thời gian tôi còn học
cao học, cũng như những góp ý khoa học và những phản biện thẳng thắn trong khi tôi
thực hiện các chuyên đề tiến sĩ là những cơ sở hết sức có giá trị giúp tôi hoàn chỉnh
luận án của mình.
Xin cảm ơn vợ, và các con tôi đã cùng chia xẻ trong những ngày khó khăn nhất
cả về vật chất và tinh thần để tôi có thể yên tâm thực hiện luận án này.
Xin gửi lời cảm ơn đến các đồng nghiệp là các giảng viên của Khoa tin học
trường Đại học Yersin và bạn bè thân hữu, những người luôn giúp đỡ và động viên tôi
trong những năm tháng làm luận án.
Mặc dù đã cố gắng hết sức nhưng luận án không tránh khỏi những thiếu xót.
Tác giả rất mong được sự góp ý của quý thầy cô và các bạn đồng nghiệp.

vi


MỤC LỤC

1

2


TỔNG QUAN ......................................................................................................... 1
1.1

Đặt vấn đề .......................................................................................................... 1

1.2

Mục tiêu và phương pháp nghiên cứu của luận án ............................................ 4

LÝ THUYẾT CƠ SỞ .............................................................................................. 8
2.1

3

2.1.1

Đối tượng điều khiển .................................................................................. 9

2.1.2

Mặt trượt ..................................................................................................... 9

2.1.3

Luật điều khiển trượt kinh điển ................................................................ 10

2.1.4

Điều khiển trượt cho hệ thống MIMO ...................................................... 12


2.1.5

Đặc điểm của điều khiển trượt .................................................................. 14

2.2

Xấp xỉ hàm của mạng nơ-ron truyền thẳng ..................................................... 15

2.3

Một số mô hình điều khiển trượt dùng mạng nơ-ron ...................................... 18

2.3.1

Mô hình sử dụng mạng nơ-ron làm thành phần điều khiển tương đương 19

2.3.2

Mô hình điều khiển trượt phân ly dùng mạng nơ-ron .............................. 20

ĐIỀU KHIỂN TRƯỢT THÍCH NGHI PHÂN LY DÙNG MẠNG NƠ-RON .... 28
3.1

Điều khiển trượt thích nghi dùng mạng nơ-ron ............................................... 28

3.1.1

Mô tả bộ điều khiển .................................................................................. 28

3.1.2


Luật cập nhật thích nghi để huấn luyện mạng .......................................... 29

3.2
4

Lý thuyết điều khiển trượt ................................................................................. 9

Điều khiển trượt thích nghi phân ly dùng mạng nơ-ron DANSMC ................ 33

KẾT QUẢ MÔ PHỎNG VÀ THỰC NGHIỆM ................................................... 38
4.1

Điều khiển trượt thích nghi phân ly con lắc ngược hai bậc xoay tự do .......... 38

4.1.1

Mô tả con lắc ngược xoay ......................................................................... 38

4.1.2

Phân tích điều khiển .................................................................................. 39

4.1.3

Mô tả quá trình và các kết quả mô phỏng ................................................. 42

4.1.4

Mô tả quá trình và các kết quả thực nghiệm ............................................. 56


4.2

Điều khiển trượt thích nghi phân ly con lắc hai chiều..................................... 66

5

KẾT LUẬN ........................................................................................................... 73

6

CÁC TÀI LIỆU CÔNG BỐ CỦA TÁC GIẢ ....................................................... 77

7

Tài liệu tham khảo ................................................................................................. 78

vii


DANH MỤC CÁC HÌNH ẢNH
Hình 2-1 Tín hiệu điều khiển trượt có dạng chuyển mạch ........................................... 14
Hình 2-2 Mô phỏng quỹ đạo pha và hiện tượng chattering .......................................... 15
Hình 2-3 Mạng nơ-ron một lớp ẩn trong bộ điều khiển DNNSMC.............................. 23
Hình 2-4 Hệ thống DNNSMC của Lon-Chen Hung và Hung Yuan Chung ................. 24
Hình 2-5 Mô hình điều khiển trượt phân ly dùng thuật toán SPSA.............................. 25
Hình 2-6 Đáp ứng góc con lắc ngược của điều khiển DNNSMC so với DFSM .......... 25
Hình 3-1 Mạng nơ-ron dùng làm bộ điều khiển ........................................................... 29
Hình 3-2 Mô hình điều khiển trượt thích nghi phân ly ................................................. 35
Hình 4-1 Mô hình con lắc ngược xoay ......................................................................... 39

Hình 4-2 Mô hình con lắc ngược trên simulink ............................................................ 41
Hình 4-3 Mô phỏng điều khiển DANSMC lên con lắc ngược xoay............................. 41
Hình 4-4 Mô phỏng điều khiển DNNSMC lên con lắc ngược xoay trong 10s đầu tiên
....................................................................................................................................... 45
Hình 4-5 Mô phỏng điều khiển DNNSMC lên con lắc ngược xoay trong 0.5s đầu tiên
....................................................................................................................................... 46
Hình 4-6 Đáp ứng của tín hiệu mặt trượt của điều khiển DNNSMC ........................... 47
Hình 4-7 Quỹ đạo pha các biến trạng thái của điều khiển DNNSMC .......................... 48
Hình 4-8 Quỹ đạo pha các biến trạng thái của điều khiển DNNSMC trong quá trình
quá độ ............................................................................................................................ 49
Hình 4-9 Quá trình huấn luyện và hội tụ bộ điều khiển DANSMC ............................. 50
Hình 4-10 Đáp ứng của tín hiệu trượt qua các phiên huấn luyện của điều khiển
DANSMC ...................................................................................................................... 51
Hình 4-11 Đáp ứng của điều khiển DANSMC ............................................................. 52
Hình 4-12 Đáp ứng của tín hiệu mặt trượtcủa điều khiển DASMC ............................. 53
Hình 4-13 Quỹ đạo pha các biến trạng thái của điều khiển DANSMC ........................ 54
Hình 4-14 So sánh đáp ứng của điều khiển DNNSMC và DANSMC ......................... 55
Hình 4-15 Kết cấu phần cứng mô hình thực nghiệm để điều khiển trượt thích nghi
phân ly con lắc ngược xoay dùng mạng nơ-ron ............................................................ 57
Hình 4-16 Mô hình thực con lắc ngược trong phòng thí nghiệm ................................. 58
Hình 4-17 Sơ đồ khối chip vi điều khiển TMS320 2812 .............................................. 59
Hình 4-18 Đáp ứng của trong 30 giây.(lật lên và ổn định) ......................................... 62
Hình 4-19 Đáp ứng của trong 30 giây.......................................................................... 62
Hình 4-20 Tín hiệu điều khiển u trong 30 giây ............................................................. 63
Hình 4-21 Đáp ứng của góc khi thay đổi khối lượng và chiều dài con lắc.................. 64
Hình 4-22 Đáp ứng của góc khi thay đổi khối lượng và chiều dài con lắc.................. 65
Hình 4-23 Con lắc ngược hai chiều .............................................................................. 66
Hình 4-24 Biểu diễn hệ tọa độ con lắc ngược hai chiều ............................................... 67
Hình 4-25 Mô hình điều khiển DANSMC cho con lắc ngược hai chiều ...................... 69
Hình 4-26 Kết quả phiên huấn luyện thứ nhất .............................................................. 70

Hình 4-27 Kết quả của phiên huấn luyện thứ hai ......................................................... 70
Hình 4-28 Quỹ đạo x-y của phiên huấn luyện thứ nhất và thứ hai ............................... 71
Hình 4-29 Mô phỏng với biên độ nhiễu biến thiên ....................................................... 71
Hình 4-30 Mô phỏng với biên độ nhiễu biến thiên mạnh ............................................. 72
viii


DANH MỤC BẢNG BIỂU
Bảng 1 Bộ trọng số thu được sau phiên huấn luyện đầu tiên ........................................ 43
Bảng 2 Bộ trọng số thu được sau phiên huấn luyện cuối.............................................. 44

ix


DANH MỤC CÁC TỪ VIẾT TẮT VÀ THUẬT NGỮ ĐỐI CHIẾU
ANSMC (Adapative Neural Sliding Mode Control): Điều khiển trượt thích nghi dùng
mạng nơ-ron
CCS (Code Composer Studio): phần mềm hỗ trợ lập trình và giao tiếp với bo mạch xử
lý tín hiệu số
Chattering: Hiện tượng dao động xung quanh mặt trượt
DANSMC (Decoupled Adaptive Neural Sliding Mode Control): Điều khiển trượt
thích nghi phân ly dùng mạng nơ-ron
DNNSMC (Decoupled Neural Network Sliding Mode Control): Điều khiển trượt phân
ly dùng mạng nơ-ron
DSP ( Digital Signal Processing): Xử lý tín hiệu số
Lyapunov: Lý thuyết ổn định được phát biểu bởi Lyapunov
NN (Neural Network): Mạng nơ-ron
SMC (Sliding Mode Control): Điều khiển trượt
SHL (Single Hidden Layer): Mạng nơ-ron một lớp ẩn
RBFN (Radial Basic Funtion Network): Mạng hàm cơ sở xuyên tâm

MLP (Multiple Layer Perceptron): Mạng nơ-ron nhiều lớp
Perceptron: Một đơn vị trong mạng nơ-ron
Swinging up: Điều khiển lật lên (cho con lắc ngược)
Sliding surface : mặt trượt
VSC (Variable Structure Control): điều khiển có cấu trúc thay đổi

x


1 TỔNG QUAN
1.1 Đặt vấn đề
Giới thiệu về điều khiển trượt
Điều khiển trượt là một phương pháp điều khiển phi tuyến đơn giản hiệu quả,
dựa vào hồi tiếp các biến trạng thái của hệ thống. Bộ điều khiển được thiết kế sao cho
các trạng thái của hệ thống luôn luôn hướng về một mặt phẳng Hurwitz của các trạng
thái, một khi các trạng thái đã nằm trên mặt trượt thì chúng sẽ tiến về gốc tọa độ. Vì
vậy mục đích điều khiển ổn định trạng thái trở thành điều khiển ổn định tiệm cận các
trạng thái bám trên mặt trượt.
Điều khiển trượt có hai thành phần là thành phần điều khiển tương đương và
thành phần điều khiển bền vững. Thành phần điều khiển bền vững mà trong nhiều tài
liệu còn gọi là thành phần điều khiển hiệu chỉnh có nhiệm vụ chính là điều khiển quỹ
đạo các trạng thái hướng về mặt trượt. Khi quỹ đạo các trạng thái đã ở lân cận mặt
trượt thì thành phần điều khiển tương đương có tác dụng điều khiển các trạng thái bám
chặt trên mặt trượt.
Để thiết kế thành phần điều khiển tương đương trong điều khiển trượt cần phải
biết rõ các hàm toán học phi tuyến của mô hình đối tượng và để thiết kế thành phần
điều khiển bền vững trong điều khiển trượt thì cần phải biết các chặn trên của các
thành phần bất định của mô hình. Trong đó các dạng của thành phần bất định của hệ
thống bao gồm: nhiễu ảnh hưởng lên hệ thống, nhiễu đo đạc, và sai số mô hình do các
thông số của đối tượng biến thiên theo thời gian.

Ưu điểm của điều khiển trượt là nó ít nhạy với sự biến động của các thông số của
mô hình và ảnh hưởng của nhiễu bên ngoài.
Điều khiển trượt đã được áp dụng khá thành công để thiết kế các bộ điều khiển
bền vững trong phòng thí nghiệm và ứng dụng rộng rãi trong thực tiễn.
Một số vấn đề của điều khiển trượt cổ điển
Tuy nhiên khi thiết kế các bộ điều khiển trượt có một số vấn đề thường gặp phải
như sau:

1


- Thành phần điều khiển bền vững trong điều khiển trượt có dạng hàm dấu kết
hợp với hiện tượng trễ vật lý của các đối tượng gây nên hiện tượng chattering các
trạng thái xung quanh mặt trượt. Thông thường để hạn chế hiện tượng chattering người
thường thay thế hàm dấu trong thành phần điều khiển bền vững bằng hàm bão hòa.
- Việc xác định các giá trị chặn trên của các thành phần bất định thường không
chính xác. Người ta thường dùng các giá trị hằng để ước lượng các giá trị này. Khi
thiết kế thành phần điều khiển bền vững, nếu việc chọn giá trị chặn trên quá lớn sẽ làm
gia tăng hiện tượng chattering, làm tổn hao năng lượng điều khiển không cần thiết và
xảy ra nhiều hiện tượng không mong muốn. Còn khi giá trị chặn trên thực lớn hơn giá
trị chặn trên theo thiết kế thì hệ thống sẽ mất tính ổn định.

Thông số ñối tượng
phi tuyến thông qua
nhận dạng

Thành phần ñiều
khiển tương ñương
Luật ñiều khiển
trượt cổ ñiển


Thông số, mô hình
nhiễu và các chặn
trên của các thành
phần bất ñịnh

Thành phần ñiều
khiển bền vững

Hình 1-1 Các thành phần của điều khiển trượt cổ điển
Bài toán điều khiển trượt khi áp dụng cho các hệ thống đa biến là một bài toán
khá phức tạp. Trong tài liệu [1] được giới thiệu năm 2000 dựa trên nhiều nghiên cứu
trước đó, Utkin đã giới thiệu một số các phương pháp thiết kế các bộ điều khiển trượt
phân ly áp dụng được cho các hệ thống phi tuyến bậc bốn. Các phương trình vi phân
biểu diễn mô hình động học của đối tượng được đề nghị biến đổi để đưa về dạng hệ
phương trình chuẩn đã được định nghĩa trước đó. Sau đó bài toán phân ly biến số được
giải quyết dựa trên việc xét từng trường hợp riêng với một loạt các phép biến đổi toán
học và chỉ có thể áp dụng lên từng đối tượng cụ thể chứ không có phương pháp biến
đổi tổng quát. Các nghiên cứu đã được thực hiện phân tích mô hình động học và thiết
kế bộ điều khiển phân ly các đối tượng phi tuyến có độ bất ổn cao như hệ xe con lắc
2


đơn, hệ xe con lắc đôi và hệ con lắc xoay hai bậc tự do. Tuy nhiên, các bài toán cho
thấy độ phức tạp cao và không dễ dàng thành công nếu áp dụng lên những đối tượng
phi tuyến khác.
Điều khiển trượt thích nghi dùng mạng nơ-ron
Trong những năm gần đây ứng dụng khả năng học được để xấp xỉ thích nghi các
hàm phi tuyến, một số nghiên cứu đã sử dụng mạng nơ-ron hoặc nơ-ron mờ để thay
thế một phần hoặc hoàn toàn bộ điều khiển trượt cổ điển.

Thông thường để thiết kế thành phần điều khiển tương đương của điều khiển
trượt cổ điển cần phải nhận dạng trước các thông số của mô hình đối tượng. Nhận
dạng thông số mô hình đối tượng thường phức tạp (có khi không thực hiện được) nhất
là đối với các đối tượng có tính phi tuyến và độ bất ổn cao. Tín hiệu điều khiển sau khi
thiết kế không như mong muốn do sai số nhận dạng và thường phải bù sai số nhận
dạng bằng các phương pháp điều khiển thích nghi.
Ưu điểm của các bộ điều khiển trượt dùng mạng nơ-ron là không cần biết trước
các thông số cũng như các chặn trên của các hàm phi tuyến của mô hình động học, và
hạn chế được hiện tượng chattering so với điều khiển trượt cổ điển.
Trong một số nghiên cứu [2], [3], [4], [5], [6] [7] thành phần điều khiển bền vững
được tách ra và hoạt động ở vùng xa mặt trượt, còn ở lân cận mặt trượt thì mạng nơron hoặc nơ-ron mờ được dùng để thay thế thành phần điều khiển tương đương của
điều khiển trượt cổ điển.
Trong một số nghiên cứu khác [8], [9], [10] hàm dấu trong thành phần điều khiển
bền vững được thay thế bằng hàm bão hòa để hạn chế hiện tượng chattering và mạng
nơ-ron hoặc nơ-ron mờ cũng được dùng để thay thành phần điều khiển tương đương
với mục đích là để bù cho các sai số mô hình và các thành phần bất định của đối tượng
Trong tất cả các nghiên cứu trên, các mạng nơ-ron hoặc nơ-ron mờ được huấn
luyện trực tuyến với các luật cập nhật được đề nghị khá đơn giản chủ yếu dựa trên tín
hiệu hồi tiếp là tín hiệu mặt trượt. Các chứng minh về sự ổn định của hệ thống, sự hội
tụ của các luật điều khiển trượt mạng nơ-ron thường dựa trên lý thuyết ổn định của
Lyapunov.
Đặc điểm của các phương pháp nghiên cứu này là chúng vẫn sử dụng luật điều
khiển trượt cổ điển làm cơ sở. Mạng nơ-ron chỉ dùng để thay thế thành phần điều
3


khiển tương đương. Hàm dấu trong thành phần điều khiển bền vững thường được thay
thế bằng hàm bảo hòa để hạn chế hiện tượng chattering. Tuy nhiên các chặn trên dùng
trong thiết kế thành phần điều khiển bền vững vẫn là các giá trị hằng được chọn trước,
vì vậy chất lượng điều khiển vẫn phụ thuộc vào việc lựa chọn các giá trị hằng khi thiết

kế thành phần điều khiển bền vững.
Vì bài toán điều khiển trượt dùng mạng nơ-ron hay nơ-ron mờ không có mô hình
toán học rõ ràng nên không thể áp dụng các phương pháp điều khiển trượt phân ly cổ
điển [1], nên trong các tài liệu [7], [8], [9], [10] các tác giả đã đề nghị một mô hình
điều khiển trượt phân ly đơn giản nhưng rất hiệu quả để kết hợp với bộ điều khiển
trượt dùng mạng nơ-ron thành bộ điều khiển trượt phân ly dùng mạng nơ-ron áp dụng
để điều khiển cho các hệ thống đa biến.
Các kết quả nghiên cứu bằng lý thuyết cũng như mô phỏng và thực nghiệm trên
nhiều đối tượng con lắc ngược, hệ cầu banh, cánh tay máy…, đã cho thấy các bộ điều
khiển phân ly dùng mạng nơ-ron có khả năng điều khiển thích nghi trong những điều
kiện không biết trước các hàm phi tuyến của đối tượng và có khả năng hạn chế được
hiện tượng chattering.
Tuy nhiên việc tách thành phần điều khiển bền vững với thành phần điều khiển
tương đương hoặc việc thay thế hàm dấu bằng hàm bão hòa trong thành phần điều
khiển bền vững đã làm giảm tính bền vững của hệ thống trước nhiễu ở vùng sát mặt
trượt.
1.2 Mục tiêu và phương pháp nghiên cứu của luận án
Mục tiêu nghiên cứu của luận án
Mục tiêu luận án là phát triển các nghiên cứu về điều khiển trượt cổ điển và điều
khiển trượt dùng mạng nơ-ron để thiết kế bộ điều khiển trượt thích nghi phân ly
DANSMC áp dụng cho hệ phi tuyến đa biến sử dụng mạng truyền thẳng làm bộ điều
khiển trực tiếp kết hợp được cả hai thành phần điều khiển tương đương và điều khiển
bền vững trong điều kiện không biết trước các thông số mô hình của đối tượng và các
chặn trên của các thành phần bất định hoặc hơn nữa các thông số của mô hình và các
giá trị chặn trên có thể bị thay đổi trong quá trình điều khiển. Luật điều khiển trượt
được nghiên cứu thiết kế theo hướng sao cho nó không chứa hàm có dấu nhằm khắc

4



phục hiện tượng chattering; vừa phải bảo đảm được tính bền vững của hệ thống trước
nhiễu.
Ứng dụng các kết quả nghiên cứu về điều khiển trượt thích nghi dùng mạng nơron lên các đối tượng phi tuyến có độ bất ổn cao như con lắc ngược xoay và con lắc
ngược hai chiều. Các ứng dụng bộ điều khiển nêu trên để điều khiển ổn định hệ thực
con lắc ngược xoay nhằm kiểm chứng khả năng của bộ điều khiển khi áp dụng lên các
hệ thực. (Kỹ thuật điều khiển con lắc ngược dùng mạng nơ-ron có thể phát triển để
điều khiển các đối tượng phi tuyến khác như rô-bốt di chuyển cân bằng trên hai bánh,
tên lửa, cánh tay rô-bốt ….)
Phương pháp nghiên cứu trong luận án
Về lý thuyết
- Nghiên cứu thiết kế một luật điều khiển trượt không có thành phần chuyển
mạch. Tín hiệu phản hồi bao gồm cả tín hiệu mặt trượt và đạo hàm của nó cho phép
xác định một quỹ đạo cho trước của tín hiệu mặt trượt nhằm khắc phục hiện tượng
chattering.
- Nghiên cứu sử dụng một mạng truyền thẳng với ngõ vào là các sai số trạng thái
và ngõ ra là tín hiệu điều khiển làm bộ điều khiển trượt thích nghi. Luật cập nhật thích
nghi với tín hiệu hồi tiếp bao gồm tín hiệu mặt trượt và đạo hàm của nó. Giải thuật
huấn luyện mạng được xây dựng sao cho quỹ đạo pha của hệ thống hội tụ về mặt trượt
theo một quỹ đạo cho trước trong điều kiện đối tượng bất định. Mạng truyền thẳng
được sử dụng làm bộ điều khiển trượt thích nghi trực tiếp cho cả hai thành phần điều
khiển tương đương và hiệu chỉnh. Nhờ đó mà không chỉ các thông số của mô hình đối
tượng mà cả các giá trị chặn trên cũng được cập nhật đầy đủ cho thành phần điều
khiển bền vững.
Về ứng dụng
- Cuối cùng luận án nghiên cứu kết hợp giữa điều khiển trượt dùng mạng nơ-ron
với lý thuyết điều khiển phân ly để hình thành bộ điều khiển trượt thích nghi phân ly
áp dụng được cho các hệ thống đa biến.
Các luật điều khiển và luật cập nhật được chứng minh dựa vào các hàm điều
khiển Lyapunov.


5


Các kết quả mô phỏng trên hệ thống con lắc ngược hai bậc xoay tự do và con lắc
ngược hai chiều với đầy đủ các quy trình từ huấn luyện ban đầu nhằm kiểm chứng tính
hội tụ của luật cập nhật thích nghi, đến các kết quả điều khiển bám theo quỹ đạo và các
kết quả thực nghiệm trên hệ thực con lắc ngược xoay nhằm kiểm tra chất lượng của bộ
điều khiển trong điều kiện các thông số mô hình thay đổi liên tục và ảnh hưởng mạnh
của nhiễu từ bên ngoài. Các mô phỏng dựa trên phần mềm matlab và simulink, còn
thực nghiệm dựa trên nền của board xử lý tín hiệu số DSP TMS320-2812 kết hợp với
phần mềm CCS (Code Composer Studio).
Nội dung của luận án
Luận án được chia thành bốn chương chính với các nội dung như sau:
Chương một là chương tổng quan về điều khiển trượt, điều khiển trượt dùng
mạng nơ-ron, mục đích cũng như phương pháp nghiên cứu của luận án.
Chương hai giới thiệu các kiến thức cơ sở về mạng nơ-ron và lý thuyết điều
khiển trượt, và một số mô hình điều khiển trượt dùng mạng nơ-ron. Phần đầu của
chương này giới thiệu mạng truyền thẳng với đầy đủ các cấu trúc cơ bản, khả năng xấp
xỉ các hàm phi tuyến và các phương pháp huấn luyện mạng. Phần tiếp theo giới thiệu
lý thuyết điều khiển trượt cổ điển được đưa ra cùng một số phân tích về ưu nhược
điểm. Phần cuối của chương này giới thiệu một số mô hình điều khiển trượt phân ly
dùng mạng nơ-ron đã được phát triển trong những năm gần đây.
Chương ba bao hàm nội dung chính của luận án. Trong chương này một bộ điều
khiển trượt thích nghi phân ly dùng mạng nơ-ron DANSMC được đề nghị với luật điều
khiển trượt mới không có các thành phần chuyển mạch nhằm khắc phục hiện tượng
chattering. Hơn nữa, khác với các phương pháp điều khiển trượt dùng mạng nơ-ron
khác được trình bày ở chương hai, mạng nơ-ron ở đây được dùng để thay thế cả hai
thành phần điều khiển tương đương và điều khiển bền vững với tín hiệu hồi tiếp huấn
luyện mạng bao gồm cả tín hiệu mặt trượt và đạo hàm của nó (trong khi các phương
pháp khác chỉ sử dụng tín hiệu mặt trượt), có khả năng học được luật điều khiển mới

và khả năng cập nhật thích nghi, tự điều chỉnh luật điều khiển phù hợp nhằm bảo đảm
chất lượng điều khiển khi các thông số của đối tượng bị thay đổi.
Chương bốn mô tả ứng dụng phương pháp điều khiển trượt thích nghi phân ly
DANSMC được giới thiệu trong chương ba vào hai mô hình con lắc ngược hai bậc
6


xoay tự do và con lắc ngược hai chiều là các mô hình phi tuyến cao, bất ổn và không
cực tiểu pha cùng với các kết quả mô phỏng và thực nghiệm. Trong các thí nghiệm
này, các mạng nơ-ron được khởi tạo với giá trị ngẫu nhiên ban đầu nhỏ, với vùng
không gian trạng thái được thu hẹp xung quanh điểm cân bằng ngược, và được mở
rộng dần ra, cùng với chất lượng điều khiển được tăng dần. Các mô phỏng trên con lắc
hai chiều được thực hiện trong điều kiện con lắc di chuyển theo một quỹ đạo cho trước
trên một mặt phẳng trong điều kiện bị tác động mạnh của nhiễu bên ngoài và sự biến
thiên lớn các thông số của con lắc. Các kết quả mô phỏng trên matlab và simulink và
trên thực nghiệm thông qua phần mềm CCS đã cho thấy khả năng thích nghi trước sự
thay đổi của các thông số mô hình và tính bền vững của bộ điều khiển được đề nghị
dưới tác động mạnh của nhiễu bên ngoài. Cũng trong chương này, một số kết quả mô
phỏng điều khiển DNNSMC trên con lắc ngược xoay cũng được đưa ra nhằm so sánh
với phương pháp điều khiển DANSMC.
Chương năm khái quát lại sự khác biệt và các kết quả đạt được của các phương
pháp nghiên cứu trong luận án so với các phương pháp nghiên cứu khác và nêu lên
một số tồn tại cũng như phương hướng nghiên cứu khắc phục.

7


2

LÝ THUYẾT CƠ SỞ

Hình thành và phát triển từ thập niên năm mươi của thế kỷ hai mươi, điều khiển

trượt đã trở nhanh chóng trở thành một trong những phương pháp kinh điển được ưa
chuộng trong các phương pháp điều khiển các hệ phi tuyến. Nhờ vào tính năng giảm
bậc, ít nhạy đối với nhiễu, với sự biến thiên của các thông số của đối tượng, điều khiển
trượt trở thành một công cụ mạnh để điều khiển các hệ thống động học bậc cao, phức
tạp dưới các điều kiện bất định của hệ thống.
Các nghiên cứu lý thuyết và thực hành điển hình về điều khiển trượt cổ điển đã
được trình bày đầy đủ trong các tài liệu [1], [11], [12], [13], [14].
Trong những năm gần đây nhiều công trình nghiên cứu kết hợp giữa điều khiển
trượt cổ điển và điều khiển thông minh đã được công bố nhằm khắc phục một số
nhược điểm còn tồn tại của điều khiển trượt cổ điển về tính tối ưu của tín hiệu điều
khiển, hiện tượng chattering của các biến trạng thái xung quanh mặt trượt…, cũng như
phát triển các luật điều khiển trượt mà không cần biết chính xác các thông số của đối
tượng.
Tổng hợp từ các nghiên cứu trên, chương này và trình bày lại một số nội dung
chính, làm cơ sở để phát triển cho mô hình điều khiển trượt phân ly DANSMC sẽ được
trình bày trong chương ba:
- Mô hình toán học của điều khiển trượt cổ điển dưới dạng tổng quát và phát triển
mô hình toán học của bộ điều khiển nhằm áp dụng cho các hệ thống phi tuyến bậc cao
MIMO.
- Mô hình toán học và các công thức để huấn luyện của mạng nơ-ron truyền
thẳng nhiều lớp làm cơ sở để phát triển cho các mô hình điều khiển trượt dùng mạng
nơ-ron và mô hình điều khiển trượt ANSMC được trình bày trong chương ba.
- Một số nghiên cứu về điều khiển trượt thích nghi ứng dụng mạng nơ-ron đã
được công bố trong và ngoài nước được trình bày lại theo thứ tự phát triển từ những ý
tưởng nghiên cứu ban đầu tới các công trình lý thuyết và thực tiễn đã được công bố
trong những năm gần đây.

8



2.1 Lý thuyết điều khiển trượt
2.1.1 Đối tượng điều khiển
Xét hệ thống phi tuyến biểu diễn bởi phương trình vi phân
y ( n ) = f ( y,.,., y ( n−1) ) + g ( y, ,.,., y ( n −1) ).u + d

(2.1)

Trong đó d là nhiễu
Đặt
x1 = y , x 2 = y& , x3 = &y&, ... x n = y ( n −1)

(2.2)

T



x = [ x1 , x2 , ... xn ]

ta được biểu diễn trạng thái :
 x&1 = x 2
 x& = x
3
 2
 M
 x& = x
n
 x −1

 x& n = f ( x) + g ( x).u + d

(2.3)

y = x1

Bài toán điều khiển được đặt ra là xác định tín hiệu điều khiển u sao cho tín hiệu
ra y bám theo tín hiệu đặt r.
2.1.2 Mặt trượt
Định nghĩa tín hiệu sai lệch
e = y−r

(2.4)

s = e ( n −1) + c n −1e ( n − 2 ) + .... + c 2 e& + c1e

(2.5)

và tín hiệu s

Trong đó c1, ... , cn-1, là các hệ số được chọn trước sao cho đa thức đặc trưng của
phương trình vi phân sau Hurwitz (có tất cả các nghiệm với phần thực âm)
e ( n −1) + c n −1e ( n − 2 ) + .... + c 2 e& + c1e = 0

(2.6)

Nếu thực hiện được luật điều khiển sao cho s = 0, tín hiệu sai lệch e là nghiệm
của phương trình (2.6). Do các nghiệm của phương trình đặc trưng của (2.6) đều nằm
bên trái mặt phẳng phức, nên e(t) sẽ tiến tới 0 khi t tiến tới ∞. Phương trình s=0 xác
định một mặt cong S trong không gian n chiều gọi là mặt trượt (sliding surface) S.


9


Vấn đề đặt ra là xác định luật điều khiển u để đưa các quỹ đạo pha của hệ thống
về mặt trượt và duy trì trên mặt trượt một cách bền vững đối với các biến động của
f ( x) và g ( x) .

Vấn đề chọn lựa các hệ số cho mặt trượt S.
Như đã phân tích ở trên, nếu có thể điều khiển được các trạng thái tiến tới mặt
trượt (s=0), thì các tín hiệu sai lệch e sẽ tiến tới 0 khi t tiến tới ∞. Đáp ứng của các sai
số trạng thái khi tiến về 0 phụ thuộc vào cách chọn lựa các hệ số cho mặt trượt.
Để làm rõ điều này, chúng ta lấy một ví dụ đơn giản sau :
Cho một mặt trượt được biểu diễn bằng sai số trạng thái như sau :
(2.7)

s = c.e + e&

Để phương trình : c.e + e& = 0 Hurwitz, ta chỉ cần chọn c>0.
Giả sử, ta đã tìm được các luật điều khiển sao cho s đạt tới giá trị không. Khi đó
phương trình (2.7) có thể viết lại :
(2.8)

e& = −c.e

(2.8) cho thấy e(t) có dạng hàm mũ và đạt tới giá trị lân cận 0, sau khoảng thời
gian t ≈ 3.τ = 3 / c .
Một cách tổng quát, để chọn các giá trị cho các hệ số của s, cần phải chọn trước
đáp ứng của sai số trạng thái theo mong muốn, chọn các cực tương ứng nằm bên trái
mặt phẳng phức, từ đó suy ra các hệ số cần tìm.

2.1.3 Luật điều khiển trượt kinh điển
Lấy đạo hàm (2.7), ta có:
s& = e ( n ) + c n −1e ( n−1) + .... + c 2 &e& + c1e&
= f ( x) + g ( x).u + d − r ( n ) + c n −1e ( n −1) + .... + c 2 &e& + c1e&

(2.9)

= f ( x) + c n −1e ( n −1) + .... + c 2 &e& + c1e& + d + g ( x).u − r n

Nếu chọn luật điều khiển sao cho
s& = −k.sign(s) ,

k >0

(2.10)

Lúc đó s.s& < 0 nên s − > 0 khi t− > ∞
Luật điều khiển trượt cổ điển có thể tính chính xác bằng cách thay (2.10) vào
(2.9) và rút u ra như sau:

10


u=−

1
f ( x) + c n−1e ( n −1) + .... + c 2 &e& + c1e& + k .sign( s ) − d + r ( n )
g ( x)

(


)

(2.11)

Luật điều khiển trượt có tính đến các thành phần bất định
Trong thực tế luật điều khiển trượt cần tính tới các thành phần bất định như nhiễu
hệ thống cũng như sự biến thiên theo thời gian của f (x) và g (x) .
Gọi ∆f ( x, t ) , ∆g ( x, t ) là các thành phần bất định của f ( x, t ) và

g ( x, t ) của hệ

thống
f ( x, t ) = f 0 ( x) + ∆f ( x, t )

(2.12)

g ( x, t ) = g 0 ( x) + ∆g ( x, t )

(2.13)



Trong đó f 0 ( x) và g 0 ( x) là các hàm danh định của hệ thống
Giả sử rằng ∆f ( x, t ) , ∆g ( x, t ) và nhiễu d là không tính được tại từng thời điểm
nhưng có thể biết được các chặn trên và dưới cụ thể là:
∆f ( x, t ) ≤ ∆f max , ∆g ( x, t ) ≥ ∆g min , và d (t ) ≤ D

(2.14)


Định nghĩa hàm V
V=

1 2
s
2

(2.15)

Điều kiện của luật điều khiển trượt là
V& < 0

(2.16)

Ta có :
V& = s.s& = s.( f ( x, t ) − r + c n −1e ( n −1) + ....c 2 &e& + c1e& + d ) + g ( x, t ).s.u
≤ s . ( g 0 ( x) + ∆g min ) .δ ( x) + ( g 0 (x ) + ∆g min ).s.u

(2.17)

Trong đó :
δ ( x) = δ 0 ( x) + δ max ( x, t )

(2.18)

Với
δ 0 ( x) =

1
( f 0 ( x) − r ( n ) + c n −1e ( n −1) + .... + c 2 e&& + c1e&)

(g 0 ( x) + ∆g min )

(2.19)


δ max ( x, t ) =

1
(∆f + D )
(g 0 ( x) + ∆g min ) max

11

(2.20)


Nếu luật điều khiển u được chọn sao cho V& < 0 , khi đó s − > 0 , khi t − > ∞
Từ (2.17) suy ra luật điều khiển trượt có tính đến các thành phần bất định như
sau:
u = uequivalent + ucorrective =
−δ 0 ( x).sign( g ( x)).sign( s) − δ max ( x, t ).sign( g ( x)).sign( s)

(2.21)

Trong đó u equivalent = −δ 0 ( x).sign( g ( x)).sign( s ) là thành phần điều khiển phụ thuộc
vào mô hình danh định của hệ thống còn gọi là thành phần điều khiển tương đương.
u corrective = −δ max .( x, t ) sign( g ( x)).sign( s ) là thành phần điều khiển bền vững, còn gọi

là thành phần điều khiển hiệu chỉnh có tác dụng bù cho các thành phần bất định của hệ
thống và có giá trị phụ thuộc vào các chặn trên của các thành phần bất định của hệ

thống. Thường thì δ max được chọn bằng một hệ số dương k với
k = sup
x

1
(∆f + D )
(g 0 ( x) + ∆g min ) max

(2.22)

2.1.4 Điều khiển trượt cho hệ thống MIMO
Xét một hệ thống phi tuyến MIMO

x& = f ( x) + g ( x).u

(2.23)

y = h( x )
Trong đó
T

x = [ x1 ,...., xn ]

f ( x) = [ f1 ( x) . .

T

f n ( x) ]

 g11 ( x)


 0
g ( x) =  ...

 0

 0

0

...

0

g 22 ( x) ...

0

...

...

...

0

... g( n −1)( m−1) ( x)

0


...

0

u = [u1 ,...., um ]T
T

h( x ) = [ h1 ( x ) ... h p ( x )]

Hệ thống có bậc tương đối

12

0



0 
... 

0 

g nm ( x) 

(2.24)

(2.25)


∂h

.x& = L f h + Lg h.u = L f h
∂x

y& =

&&
y=

∂L f h

(f

∂x

+ g.u ) = L2 f h + Lg L f h = L2f h
(2.26)

M

y ( m −1) = Lmf −1h
y ( m ) = Lmf h + Lg L(fm −1) h.u
Định nghĩa tín hiệu sai lệch

e = y−r

(2.27)

s = e( m−1) + cm−1e( m−2) + ... + c1e

(2.28)




Trong đó c1 , … cm−1 là các ma trận ( p × p ) được chọn sao cho (2.28) Hurwitz
Định nghĩa
V=

1 T
s s
2

(2.29)

Luật điều khiển trượt được xác định sao cho
dV ∂V d ( s )
V& =
=
.
= sT .s& = − k .sT .diag ( sign( s ))
dt
∂s dt

(2.30)

Ta có

s& = −k . diag ( sign( s)) = e( m ) + cm−1e( m−1) + ... + c1e&
= L(fm ) h + Lg L(fm−1) h.u − r ( m) + cm−1e( m−1) + ... + c1e&

(2.31)


Rút u ra ta có:

u = − ( Lg L(fm−1) h )

−1

(L

( m)
f

h + cm−1e( m −1) + ... + c1e& + k .diag ( sign( s) ) )

(2.32)

(2.32) thực hiện được khi số ngõ vào bằng số ngõ ra và bằng bậc của hệ thống
( m = p = n ). Trong trường hợp đó hệ thống (2.23) được gọi là hệ thống chuẩn. Trong
thực tế nhiều hệ thống phi tuyến có số ngõ vào điều khiển ít hơn số bậc của hệ thống,
điển hình là các hệ thống cơ khí như xe con lắc ngược hoặc con lắc ngược xoay …, lúc
đó bài toán thiết kế điều khiển trượt trở nên phức tạp hơn. Trong [1], Utkin đã trình
bày một số phương pháp thiết kế điều khiển trượt phân ly áp dụng được cho các hệ
thống phi tuyến đa biến có số ngõ vào điều khiển ít hơn số bậc của hệ thống. Các
13


×