Tải bản đầy đủ (.doc) (23 trang)

Nghiên cứu phổ hấp thụ hồng ngoại của các hạt nano zns pha tạp mn (Tóm tắt)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (679.96 KB, 23 trang )

LỜI NÓI ĐẦU
Hiện nay, công nghệ nano được đầu tư phát triển mạnh mẽ với những ứng
dụng trong mọi lĩnh vực của đời sống. Chẳng hạn, người ta đã chế tạo ra các chip
nano máy tính có độ tích hợp rất cao và triển vọng cho phép dung lượng bộ nhớ
máy tính tăng lên rất lớn; các ống nano cacbon cực kỳ vững chắc, có độ bền cơ học
gấp 10 lần thép và đặc biệt có tính bền nhiệt rất cao; những loại pin mới có khả
năng quang hợp nhân tạo sẽ giúp con người sản xuất năng lượng sạch….Ngoài ra
công nghệ nano còn nhiều ứng dụng quan trọng trong nhiều ngành nghề khác như
y tế, an ninh quốc phòng, thực phẩm…
ZnS, ZnS : Mn là một trong những vật liệu nano bán dẫn có độ rộng vùng
cấm lớn (Eg =3,68eV ở 300K), chuyển mức thẳng, có độ bền nhiệt cao được ứng
dụng rộng rãi trong các dụng cụ quang điện tử [2, 3].
Để làm tăng khả năng ứng dụng của các vật liệu nano nói chung và của ZnS,
ZnS : Mn nói riêng người ta thường bọc phủ chúng bằng các chất hoạt hóa bề mặt
như polymer : polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) ... Khi các hạt
nano ZnS:Mn được bọc phủ polymer thì kích thước của chúng giảm, điều này dẫn
đến dịch bờ hấp thụ của ZnS về phiá bước sóng ngắn (dịch chuyển xanh), dịch đám
phát quang Mn2+ về phía bước sóng dài (dịch chuyển đỏ), cường độ phát quang
mạnh và thời gian phát quang ngắn [3, 4]. Khi đó, khả năng ứng dụng của vật liệu
nano ZnS, ZnS : Mn trong các dụng cụ quang điện tử sẽ tăng lên.
Để kiểm tra các hạt nano có được bọc phủ các chất hoạt hóa bề mặt hay
không ta có thể khảo sát phổ nhiệt vi sai, phổ hấp thụ hồng ngoại FT-IR. Đó là lý do
chúng tôi chọn đề tài : “Nghiên cứu phổ hấp thụ hồng ngoại của các hạt nano
ZnS pha tạp Mn”.
Ngoài phần mở đầu, luận văn gồm 3 chương:
Chương 1. Tổng quan về cấu trúc tinh thể, vùng năng lượng của vật liệu nano
ZnS:Mn.
Chương 2. Tổng quan về phổ hấp thụ hồng ngoại của vật liệu nano ZnS pha tạp Mn
không bọc phủ và bọc phủ polymer.
Chương 3. Kết quả thực nghiệm và thảo luận


Bộ môn Quang Lượng tử

1

Năm 2015


CHƯƠNG 1. TỔNG QUAN VỀ CẤU TRÚC TINH THỂ, VÙNG NĂNG
LƯỢNG CỦA VẬT LIỆU NANO ZnS : Mn
1.1.

Cấu trúc tinh thể của ZnS
ZnS là hợp chất bán dẫn thuộc nhóm A 2B6. Nó có độ rộng vùng cấm tương

đối lớn (Eg = 3,67 eV ở 300K) và chuyển mức thẳng. Các nguyên tử Zn và S liên kết
với nhau theo một cấu trúc tuần hoàn tạo thành tinh thể. Tinh thể ZnS có hai dạng
cấu trúc chính là mạng tinh thể lập phương tâm mặt (hay sphalerite) và mạng tinh
thể lục giác (hay wurtzite). Tuỳ thuộc vào nhiệt độ nung mà ta thu được ZnS có cấu
trúc sphalerite hay wurtzite , ở nhiệt độ nung từ 950oC ZnS có cấu trúc sphalerite,
nhiệt độ từ 950oC đến trên 1020oC thì có khoảng 70% ZnS có cấu wurtzite. Nhiệt độ
từ 1020oC đến 1200oC thì ZnS hoàn toàn dưới dạng wurtzite [2].
1.1.1. Cấu trúc tinh thể lập phương (hay sphelerite)
Hình 1.1 là cấu trúc dạng dạng lập phương tâm mặt (hay sphalerite) của tinh
thể ZnS [3].

z
0;

Zn2+
S2-


y

0
x

a

b

Hình 1.1: Cấu trúc dạng lập phương (hay sphalerite) của
tinh thể ZnS (a) và toạ độ của các nguyên tử Zn, S (b) [2]

Bộ môn Quang Lượng tử

2

Năm 2015


Nhóm đối xứng không gian của mạng tinh thể này là Td2 − F 43m .Ở cấu trúc này,
trong mỗi ô mạng cơ sở có 4 phân tử ZnS với tọa độ các nguyên tử như sau:
1 1 1
4 4 4

1 3 3
4 4 4

3 1 3
4 4 4


3 3 1
4 4 4

+ 4 nguyên tử Zn có toạ độ: ( , , );( , , );( , , );( , , )
1 1
2 2

1
2

1
2

1 1
2 2

+ 4 nguyên tử S có toạ độ: (0,0,0);(0, , );( ,0, );( , ,0)
1.1.2. Cấu trúc tinh thể lục giác hay wurtzite
Cấu trúc dạng wurtzite được xây dựng trên quy luật xếp cầu theo hình 6 cạnh
của các nguyên tử S trong đó một nửa số hỗng 4 mặt chứa nguyên tử Zn định hướng
song song với nhau (hình 1.2). Nhóm đối xứng không gian của cấu trúc lục giác là
- p 63 mc.

Hình1. 2: Cấu trúc dạng lục giác hay wurtzite của tinh thể ZnS [2]
1.2. Cấu trúc vùng năng lượng của ZnS
ZnS là chất bán dẫn vùng cấm rộng và thẳng, đây là lí do tại sao ZnS có thể
phát quang với bước sóng ngắn và có thể tạo ra những bẫy bắt điện tử khá sâu trong
vùng cấm [1]. Trong phân tử ZnS các nguyên tử Zn và S có thể liên kết dạng hỗn
hợp: ion (77%) và cộng hoá trị (23%). Trong liên kết ion nguyên tử Zn nhường 2

electron cho S trở thành ion Zn2+ có cấu hình điện tử là 1s22s22p63s23p63d10 , còn
nguyên tử S nhận thêm 2 electron trở thành S 2- có cấu hình điện tử là
1s22s22p63s23p6. Liên kết cộng hoá trị, do phải đóng góp chung điện tử nên nguyên
tử Zn trở thành Zn2- có cấu hình electron lớp ngoài cùng là 4s14p3 và S trở thành S2+

Bộ môn Quang Lượng tử

3

Năm 2015


có cấu hình lớp ngoài cùng là 3s 13p3. Như vậy trong liên kết cộng hoá trị cả Zn và S
đều có cấu hình s1p3 (gọi là liên kết lai hoá sp3).
Mỗi nguyên tử Zn được bao quanh bởi bốn nguyên tử S và ngược lại. Với 3
orbital nguyên tử p và một orbital nguyên tử s mỗi cation và anion, sẽ có orbital
nguyên tử lai hoá sp3. Khi các nguyên tử sắp xếp trong một nhóm các orbital được
coi là một tập hợp các liên kết orbital giữa các nguyên tử bên cạnh gần nhất. Chúng
hình thành một obital liên kết σ và một orbital chống liên kết σ*. Khi số lượng các
nguyên tử trong tinh thể tăng, mỗi orbital địa phương hình thành một orbital phân tử
mở rộng trên tinh thể, cuối cùng phát triển thành vùng dẫn và vùng hóa trị. Orbital
phân tử lấp đầy cao nhất (the highest occupied molecular orbital: HOMO) trở thành
đỉnh của vùng hóa trị và orbital phân tử không lấp đầy thấp nhất (the lowest
unoccupied molecular orbital: LUMO) trở thành đáy của vùng dẫn. Khoảng cách
HOMO-LUMO là khe năng lượng hay độ rộng vùng cấm của tinh thể ZnS.
Hầu hết các lý thuyết hiện nay gần đúng vùng dẫn là các parabol đơn giản.
Phương pháp này phù hợp cho sự mô tả cả vùng dẫn và vùng hóa trị.
Vùng dẫn
Loại


Loại

Zincblende

Wurtzite

Vùng hóa trị

Hình 1.3: Cấu trúc vùng năng lượng của bán dẫn loại zincblende và wurtzite[19]
1.3.

Ảnh hưởng của Mn lên cấu trúc tinh thể, vùng năng lượng của ZnS
Bằng thực nghiệm người ta thấy rằng đối với đa số các hợp chất bán dẫn

vùng cấm rộng khi tăng nồng độ tạp chất trong một khoảng nào đó thì độ rộng vùng
cấm của chúng tăng . Tuy nhiên đối với bán dẫn bán từ ZnS pha tạp Mn, Co, Fe, Cu
… khi tăng nồng độ tạp chất thì độ rộng vùng cấm bị giảm một chút xuống cực tiểu,
sau đó mới tăng khi tăng tiếp tục nồng độ tạp chất. Nguyên nhân của hiện tượng này

Bộ môn Quang Lượng tử

4

Năm 2015


là do tương tác giữa các điện tử dẫn và các điện tử 3d của các ion từ (gọi là tương
tác trao đổi s- d).
Về cơ bản, sự có mặt của nguyên tử tạp chất trong khoảng nồng độ nhỏ vẫn
không làm thay đổi cấu trúc mạng tinh thể của chúng so với khi chưa pha tạp,

nhưng hằng số mạng của tinh thể có thể bị thay đổi.
Những chuyển dời quang học ở các nguyên tố xảy ra giữa các trạng thái với
cấu hình 3d chưa lấp đầy. Các hàm sóng của các trạng thái này được xác định một
cách thuận tiện nhờ hàm sóng của các ion tự do và có tính tới sự nhiễu loạn do
trường mạng tinh thể gây ra.

Bộ môn Quang Lượng tử

5

Năm 2015


CHƯƠNG 2. TỔNG QUAN VỀ PHỔ HẤP THỤ HỒNG NGOẠI CỦA VẬT
LIỆU NANO ZnS PHA TẠP Mn KHÔNG BỌC PHỦ VÀ BỌC PHỦ
POLYMER
2.1. Một số tính chất của PVP và PVA
2.1.1. Tính chất của PVP
Polymer PVP có công thức phân tử (C6H9NO)n và công thức cấu tạo [3]:

trong đó có nhóm carbonyl (–C=O) phân cực mạnh
Polymer PVP dưới dạng bột có màu trắng, ánh sáng màu vàng, hút ẩm mạnh
nó tan tốt trong nước và cồn, nhiệt độ nóng chảy của PVP khoảng 110 đến 1800C.
Khi các hạt nano ZnS:Mn được bọc phủ PVP thì các nhóm carbonyl của
phân tử PVP liên kết với ion Zn 2+, Mn2+ hình thành lên các liên kết –C=O →
Mn2+ ,–C=O → Zn2+ dẫn đến sự che phủ các quỹ đạo phân tử PVP với các quỹ đạo
của Zn2+, Mn2+ định xứ ở trên bề mặt các hạt nano ZnS:Mn. Do sự hình thành các
liên kết trên mà các hạt nano ZnS:Mn không kết tụ với nhau vì thế kích thước hạt bị
giảm đi.
2.1.2. Tính chất của PVA

Polymer PVA có công thức phân tử (CH2CHOH)n và công thức cấu tạo :

Trong đó có nhóm hidroxyl OH phân cực mạnh
Các electron của nhóm OH liên kết mạnh với các ion Zn 2+(3d10), Mn2+(3d5)
trên bề mặt các hạt nano và hình thành các liên kết –OH–Zn 2+(3d10), –OH–
Mn2+(3d5) bao quanh các hạt nano.
Tất cả các PVA được alcol phân một phần hay hoàn toàn đều có nhiều tính
chất thông dụng, làm cho polymer có giá trị cho nhiều ngành công nghiệp. Các tính
chất quan trọng nhất là khả năng tan trong nước, dễ tạo màng, chịu dầu mỡ và dung

Bộ môn Quang Lượng tử

6

Năm 2015


môi, độ bền kéo cao, chất lượng kết dính tuyệt vời và khả năng hoạt động như một
tác nhân phân tán - ổn định.
2.2 . Ảnh hưởng của polymer lên sự hình thành của các hạt nano
ZnS:Mn
Polymer là một chất hoạt hoá bề mặt. Chất hoạt hoá bề mặt là các chất có tác
dụng làm giảm sức căng bề mặt của chất lỏng. Phân tử chất hoạt hoá bề mặt gồm
hai phần: Đầu kỵ nước (hydrophopic) và đầu ưa nước (hydrophylic).
Vai trò chính của chất hoạt hoá bề mặt là tạo lớp màng trên bề mặt hạt nano
để ngăn cản quá trình kết tụ của các hạt. Ngoài ra sự có mặt của chất hoạt hoá bề
mặt trong quá trình chế tạo các hạt nano còn có thể có một số tác động khác như tạo
liên kết với một số vị trí nào đó trên bề mặt hạt nano, giúp cho các hạt nano phân
tán tốt trong dung môi, tăng tính ổn định của dung dịch và ngăn chặn sự ôxi hoá bề
mặt.

2.3. Phổ hấp thụ hồng ngoại của PVA và PVP
2.3.1 Phổ hấp thụ hồng ngoại của PVA
Phổ hấp thụ hồng ngoại của PVA và PVP đã được một số tác giả nghiên cứu.
Theo nghiên cứu của nhóm tác giả stoica-Guzun Anicuta, Loredana Dobre, Marta
Stroescu và Iuliana Jipa về màng PVA tinh khiết. Phổ FT-IR được ghi lại bằng một
máy đo phổ FT/IR 6200 khoảng đo từ 500cm -1 - 4000 cm-1. Kết quả cho thấy trong
phổ hấp thụ hồng ngoại của màng PVA xuất hiện các đỉnh hấp thụ ở khoảng 3247,5
cm-1( dao động mở rộng -OH), 1082cm -1 và 1414,5 đặc trưng cho nhóm –C-O;
2914cm-1 được gán cho dao động của C-H. Ngoài ra trong phổ hấp thụ hồng ngoại
của PVA còn xuất hiện các đỉnh 578 cm -1, 831 cm-1, 918 cm-1, 1564 cm-1, 1654 cm-1.
[17]
Nhóm tác giả Miss Narumon Seeponkai và cộng sự nghiên cứu về phổ hấp
thụ hồng ngoại của PVA cho thấy trong phổ hấp thụ hồng ngoại của PVA xuất hiện
các đỉnh hấp thụ 3350 cm-1, 1720 cm-1, 1432 cm-1, 1373 cm-1, 1258 cm-1, 1096cm-1.
Trong đó vạch 3350 đặc trưng cho nhóm OH, vạch 1720 đặc trưng cho liên kết
C=O[12]
2.3.2. Phổ hấp thụ hồng ngoại của PVP

Bộ môn Quang Lượng tử

7

Năm 2015


Nhóm tác giả Jyesh D.Patel và Tapas K. Chaudhuri nghiên cứu về phổ hấp
thụ hồng ngoại của PVP và PbS/PVP [16]
Các đỉnh hấp thụ FT-IR và nhóm chức đặc trưng của PVP và PbS/PVP được
dẫn ra ở bảng 2.1
Bảng 2.1 : Các vạch hấp thụ FT-IR nhóm chức đặc trưng của PVP và

PbS/PVP
Các đỉnh hấp thụ FT-IR(cm-1)
PVP
PbS/PVP
2957
2926
2880
2856
1657

1637

1495

1418

Nhóm chức
Bất đối xứng và đối xứng
C-H
-C=O
Trong mặt phẳng C-H của các
gốc khác nhau –CH2 và C-H

1463
1442
1424
1375
1320

1288


1292
1218

1120

1172
1077
1019
934
842
735

606

650

Bộ môn Quang Lượng tử

8

Năm 2015


573

-C-C-

410


Nhóm tác giả Gopa Ghosh, Milan Kanti Naskar, Amitava Patra, Minati
Chatterjee nghiên cứu về phổ hấp thụ hồng ngoại của PVP và ZnS boc phủ PVP.
Phổ hấp thụ hồng ngoại của PVP và ZnS/PVP biểu diễn trong khoảng từ 500cm -1 ÷
4000cm-1 được dẫn ra ở hình 2.6. Trong phổ FT-IR của ZnS/PVP các đỉnh hấp thụ
trong khoảng 2959cm-1 – 2879cm-1, 1494cm-1 – 1414cm-1 và 1374cm-1 ứng với liên
kết C-H, hai đỉnh hấp thụ mạnh trong phổ FT-IR của PVP là 1659cm -1 và 1295cm-1,
ứng với liên kết C-O [10]
2.4. Phổ hấp thụ hồng ngoại của ZnS:Mn
Phổ hấp thụ hồng ngoại của ZnS:Mn đã được một số tác giả nghiên cứu.
Nhóm tác giả B S Rema Devi, R Raveendran và A V Vaidyan [15] nghiên cứu về
đặc tính của hạt nano ZnS pha tạp Mn kết quả cho thấy : Khi hạt nano ZnS pha tạp
Mn được chế tạo bằng phương pháp đồng kết tủa. Hạt nano này được chế tạo ở
nhiệt độ phòng bởi sự pha tạp đồng thời 50ml dung dịch ZnS 0,4M, 50ml dung dịch
MnS 0,1M và 50ml dung dịch EDTA 0,1M được khuấy mạnh nhờ một máy khuấy
từ
Phổ FT-IR được ghi lại bằng một máy đo phổ FT-IR(Nicolet Magna – 750)
khoảng đo từ 500cm-1 - 4000 cm-1
Với mẫu ở nhiệt độ phòng và ở các nhiệt độ 300 0C, 5000C Xuất hiện các
đỉnh 612 cm-1, 865 cm-1, 1004 cm-1, 1119 cm-1. Đỉnh 612 cm-1 ứng với ZnS [15]
Với mẫu ở 7000C, 9000C Xuất hiện đỉnh 796cm-1 ứng với ZnO, 3469 cm-1
ứng với dao động của nước bị hấp thụ. Dải 483 cm -1, 473 cm-1, 436 cm-1 ứng với Mn
– O. Đám 3000-3600 cm-1 ứng với sự mở rộng của nhóm OH. Đám 900-1500 cm -1
ứng với sự mở rộng của oxy và độ cong tần số. Đám 2921 cm -1, 2847 cm-1, 2353
cm-1, 1634 cm-1, 1409 cm-1 có thể ứng với siêu cấu trúc của mẫu.[15]
Nhóm tác giả A.-I Cadis, E.-I Popovici, E. Bica, I. Perhaită, nghiên cứu Bột
ZnS được chế tạo bằng phương pháp đồng kết tủa, dùng các phản ứng liên tục được
thêm vào. Bột kết tủa ZnS : Mn 2+ được mang ra ở nhiệt độ thấp là 5 0C trong môi

Bộ môn Quang Lượng tử


9

Năm 2015


trường nước, từ dung dịch nước Zn-Mn acetate 1M và NaS tương ứng. Trong mục
đích này 50ml dung dịch nước Zn-Mn1M được chuẩn bị từ dung dịch gốc
Zn(CH3COO)2 và Mn(CH3COO)2 và được thêm vào 400ml nước khử ion chứa
20.3g/l chất phản ứng hữu cơ axit methacrylic MAA, 50ml dung dịch nước Na 2S
1M được thêm vào và khuấy mạnh trong 30 phút [8]
Trong phổ hấp thụ Hồng ngoại của ZnS : Mn Xuất hiện các vạch :480 cm -1
ứng với liên kết Zn-S. 1300 - 1600 cm -1 ứng với H2O và nhóm COO từ ion acetate
CH3COO-( với mẫu có chứa C74). Với mẫu có chứa MAA và SDS : 1000-1200 cm -1
ứng với liên kết C=C và =CH của ion methacrylate (CH 2 = C(CH3)-CO-O). Hoặc
950-1100, 2800-3000 cm-1, và 1100-1300 cm-1 ứng với nhóm CH3 và SO2 của
(CH3(CH2)11 O-SO2-O-) [8]
2.5. Phổ hấp thụ hồng ngoại của ZnS:Mn bọc phủ PVA hoặc PVP
Phổ hấp thụ hồng ngoại của ZnS:Mn bọc phủ PVA hoặc PVP đã được một
số tác giả nghiên cứu. Theo nhóm tác giả G.Murugadoss và cộng sự [14] . Hạt nano
ZnS pha tạp ion Mn2+ được chế tạo bằng phương pháp Đồng kết tủa. Tiến chất là từ
Zn(CH3COO)2 .2H2O, Na2S và MnCl2.4H2O, chất bọc phủ là polyvinyl pyrrolidone
(PVP) và sodium hexametaphosphate (SHMP). Phổ FT-IR được ghi lại bằng một
máy đo phổ FT-IR khoảng đo từ 400cm -1 đến 4000 cm-1. Phổ hấp thụ Hồng Ngoại
của hạt nano ZnS : Mn2+, ZnS : Mn2+ bọc phủ PVP được dẫn ra ở hình 2.7
Trong phổ hấp thụ hồng ngoại của ZnS:Mn và ZnS:Mn/PVP xuất hiện các
đỉnh 1110cm-1, 618 cm-1, 491cm-1 đặc trưng cho dao động Zn-S; 991 cm -1, 668 cm-1
đặc trưng dao động Mn-S; 2924 cm-1, 2364 cm-1, 1635 cm-1 đặc trưng cho vi cấu
trúc của mẫu; 1636 cm-1, 899 cm-1 đặc trưng cho tương tác N-O và 1261 cm -1, 1097
cm-1 đặc trưng cho tương tác P-O.[14]
Theo nhóm tác giả Abdul Kareem Thottoli và Anu Kaliani Achuthanunni

nghiên cứu về phổ hấp thụ hồng ngoại của PVA và ZnS/PVA [6]
Các vạch đặc trưng cho các loại dao động của ZnS và ZnS/PVA được dẫn ra
ở bảng 2.2
Bảng 2.2. Các vạch đặc trưng của PVA và của ZnS/PVA [6]

Bộ môn Quang Lượng tử

10

Năm 2015


PVA(cm-1)

Loại dao động

ZnS/PVA(cm-1)

Loại dao động

3444

Mở rộng O-H

3395

Mở rộng O-H

2901


Mở rộng C-H

2917

Mở rộng C-H

1733

Mở rộng C=O

2369

Mở rộng C=O

1626

Mở rộng C=C

1574

Mở rộng C=C

1428

CH2

1392

Mở rộng C-H


1263

Mở rộng C-H

1114

Mở rộng C-O-H

1045

Mở rộng C-O

915

Mở rộng C-C

578

Mở rộng C-H

854,23

Mở rộng CH2

Nhóm tác giả N. Soltani, A. Dehzangi, a Kharazmi, E. Saion, W. Mahmood
Mat Yunus, B. Yeopmajlis, M. Reza Zare, E. Ghribshahi và N. Khalilzadeh [18]
nghiên cứu cấu trúc, tính chất quang, điện của hạt nano ZnS ảnh hưởng bởi sự bọc
phủ hữu cơ. Để hiểu cơ chế hấp thụ của PVP trên bề mặt của hạt nano, nhóm tác giả
đã phân tích phổ hấp thụ hồng ngoại của PVP và ZnS/PVP với nồng độ khác nhau
(5 và 3%).

Từ đồ thị cho thấy đỉnh hấp thụ 1655cm -1 đặc trưng cho liên kết C=O của
PVP(đường a) đã dịch chuyển tới 1635cm -1(đường b) và 1639cm-1(đường c) chứng
tỏ khi ZnS được bọc phủ PVP thì đỉnh hấp thụ 1655cm -1 đã bị dịch đi về phía số
sóng ngắn, ngoài ra một số vạch hấp thụ của PVP ứng với liên kết C-H, C-N cũng
bị dịch chuyển hoặc yếu đi.[18]
Nhóm tác giả Damian C. Onwudiwe, Tjaart P.J. Kruger, Anine jordaan và
Christien A. Strydom đã nghiên cứu cấu trúc tính chất của hạt nano ZnS/PVP.[9]

Bộ môn Quang Lượng tử

11

Năm 2015


Trong phổ hấp thụ hồng ngoại của PVP và ZnS/PVP xuất hiện các đỉnh : ở
khoảng 3300cm-1÷ 3400 cm-1 đặc trưng cho dao động mở rộng của O-H, 1654cm -1
của PVP và 1633cm-1, 1633cm-1 của ZnS/PVP đặc trưng cho liên kết C=O, 2948cm 1

đặc trưng cho dao động C-H, Đỉnh 641 cm -1, 643 cm-1 : đặc trưng cho dao động

Zn-S.[17]
Từ đồ thị cũng cho thấy đỉnh hấp thụ ứng với liên kết C=O của PVP là
1654cm-1 đã bị dịch đi về phía số sóng ngắn khi ZnS bọc phủ PVP.
2.6. Hệ đo phổ hấp thụ hồng ngoại
2.6.1. Cơ sở lí thuyết của nghiên cứu phổ hấp thụ hồng ngoại
Dựa vào sự chuyển dời giữa các mức năng lượng dao dộng của phân tử đối
với chất khí, chất lỏng hoặc dao động của các mạng tinh thể đối với chất rắn.
2.6.2. Máy đo phổ hấp thụ hồng ngoại
Máy quang phổ hấp thụ hồng ngoại hiện đại là loại máy quang phổ hấp thụ hồng

ngoại biến đổi Fourier. Loại máy quang phổ mới này khác với loại máy cũ là
thay bộ đơn sắc bằng một giao thoa kế Michelson.

CHƯƠNG 3. KẾT QUẢ THỰC NGHIỆM VÀ THẢO LUẬN
3.1. Phổ hấp thụ hồng ngoại của ZnS:Mn bọc phủ PVA
Sự bọc phủ các hạt nano ZnS:Mn bằng PVA đã được kiểm tra bằng phổ hấp
thụ hồng ngoại. Hình 3.8, 3.9 là phổ hấp thụ hồng ngoại FT-IR của các hạt nano

Bộ môn Quang Lượng tử

12

Năm 2015


ZnS:Mn bọc phủ PVA với các khối lượng PVA khác nhau. Từ các phổ hấp thụ
hồng ngoại FT-IR này chúng tôi đã xác định được các thông số đặc trưng : số sóng,
cường độ của các vạch đặc trưng cho các loại dao động. Kết quả được dẫn ra ở bảng
3.4
a: PVA
b: ZnS:Mn
c: ZnS:Mn/0,8gPVA

100

(OH)
3422

(Mn-S)
653


3410
(Zn-S)
617
(Zn-S)
476

§é hÊp thô(%)

80

(C=O)
1638
(C=O)
N-OH 1556
1288

60
(Zn-S)
1102

b
3450

c

(C-H)
1411

(Oxy)


40

1003

a

20

0
0

500

1000

1500

2000

2500

3000

3500

-1

Sè sãng(cm )


(Zn-S)
476

160

(Zn-S)
617

(Zn-S)
1556
(Oxy) 1102
1003
(C-H)
1411

140

§é hÊp thô(%)

(C=O)
1638

(Mn-S)
670
658

(OH)
3410

a:PVA

b: ZnS:Mn
c: ZnS:Mn/0,8gPVA

c

b

120
658

100
80

3456

60
670

40

a

20
0
0

500

1000


1500

2000

2500

3000

3500

-1

Sè sãng(cm )

Hình 3.8: Phổ hấp thụ hồng ngoại RT-IR của PVA(a), ZnS:Mn(b) và
ZnS:Mn0,8g PVA(c)

Bộ môn Quang Lượng tử

13

Năm 2015


a:PVA
b: ZnS:Mn
c: ZnS:Mn/0,2gPVA
d: ZnS:Mn/0,4gPVA
e: ZnS:Mn/0,6gPVA
f: ZnS:Mn/0,8gPVA

g: ZnS:Mn/1gPVA
(C=O) h: ZnS:Mn/1,2gPVA
1637 i: ZnS:Mn/1,5gPVA

100
(Zn-S)

(Zn-S)
471

80

617

(Mn-S)
657

(OH)
3415

c

§é hÊp thô(%)

1556

60

(Oxy)
1004


i

f

(C-H)

g
d

e

(0-H)
(Zn-S)
1104

b

h

1415

40

a

20

0
0


500

1000

1500

2000

2500

3000

3500

-1

Sè sãng(cm )

(OH)
3410

(C-H)

260
240

(Zn-S) (Zn-S) (Mn-S)
470 612 655
670

(Oxy)
1004

1410 1552

(C=O)
1629

i

h

220
200

g

180

§é hÊp thô(%)

a:PVA
b: ZnS:Mn
c: ZnS:Mn/0,2gPVA
d: ZnS:Mn/0,4gPVA
e: ZnS:Mn/0,6gPVA
f: ZnS:Mn/0,8gPVA
g: ZnS:Mn/1gPVA
h: ZnS:Mn/1,2gPVA
i: ZnS:Mn/1,5gPVA


f

160

e

140
120

d

100

c

80

b

3456

60
40

a

20
0
500


1000

1500

2000

2500

3000

3500

-1

Sè sãng(cm )

Hình 3.9: Phổ hấp thụ hồng ngoại của PVA (đường a), ZnS:Mn (đường b) và
ZnS:Mn/PVA với các khối lượng PVA khác nhau

Bộ môn Quang Lượng tử

14

Năm 2015


Kiều Bá Chiến

Luận văn Thạc sĩ


Từ đồ thị và bảng các thông số đặc trưng : số sóng, cường độ của các vạch trong phổ hấp
thụ hồng ngoại của PVA và các hạt nano ZnS : Mn/ PVA với các khối lượng PVA khác nhau cho
thấy:

+ Khi các hạt nano ZnS:Mn được bọc phủ PVA, trong phổ FT-IR của nó
vẫn xuất hiện các đám và vạch đặc trưng của PVA ,ngoài ra còn xuất hiện các vạch đặc
trưng cho Zn-S ở khoảng 1109cm -1, 620cm-1, 471cm-1 . Tuy nhiên so với các hạt nano
ZnS:Mn không bọc phủ (nhóm OH có số sóng 3443cm -1), khi tăng khối lượng bọc phủ của
PVA từ 0,2g đến 1,5g thì đám đặc trưng cho dao động mở rộng của nhóm OH bị dịch về
phía số sóng nhỏ khoảng 46cm-1. Kết quả được dẫn ra ở bảng 3.5 và hình 3.10
Bảng 3.5 : Vị trí số sóng của nhóm OH theo khối lượng PVA
mPVA(g)
số sóng(cm-1)

0
3443

0,2
3430

0,4
3426

0,6
3422

0,8
3420


1
3415

1,2
3410

1,5
3410

3460

-1

Sè sãng(cm )

3440

3420

3400
0,2

0,4

0,6

0,8

1


1,2

1,5

mPVA(g)

Hình 3.10 : Đồ thị biểu diễn thay đổi vị trí số sóng của nhóm OH theo khối lượng PVA
trong các hạt nano ZnS:Mn/PVA
3.2. Phổ hấp thụ hồng ngoại của ZnS:Mn bọc phủ PVP
Sự bọc phủ các hạt nano ZnS:Mn bằng PVP cũng được kiểm tra bằng phổ hấp thụ
hồng ngoại. Hình 3.12 là phổ hấp thụ hồng ngoại FT-IR của ZnS:Mn (CMn= 8%mol) không
bọc phủ và bọc phủ PVP với mPVP = 1,2g, Hình 3.13 là phổ hấp thụ hồng ngoại FT-IR của
PVP, ZnS:Mn (CMn= 8% mol) không bọc phủ và bọc phủ PVP với các khối lượng PVP

Bộ môn Quang – Lượng tử

17

Năm 2014


Kiều Bá Chiến

Luận văn Thạc sĩ

khác nhau. Từ các phổ hấp thụ hồng ngoại FT-IR này chúng tôi đã xác định được các
thông số đặc trưng : số sóng, cường độ của các vạch đặc trưng cho các loại dao động. Kết
quả được dẫn ra ở bảng 3.6
100


(Zn-S)

(Zn-S)
476

617

a: PVP
b: ZnS:Mn
c: ZnS:Mn/1,2gPVP

(Mn-S)
655

b

(C=O)
1641

80

(C-H)
2952

(C=O)

§é hÊp thô(%)

(OH)
3420


(C=N) 1551
(Oxy)
1007 (Zn-S)1292
1106

60

c

40

a

20

0
0

500

1000

1500

2000

2500

3000


3500

-1

Sè sãng(cm )

(Zn-S)
476

220

(Zn-S)
617

(Mn-S)
655

(C=O)
1641
1551

200

(Oxy)
(C=N)
1007 (Zn-S) 1292
1106

180


(OH)
3420

a: PVP
b: ZnS:Mn
c: ZnS:Mn/1,2gPVP

(C-H)
2952

c

§é hÊp thô(%)

160
140

b

120
100
80
60

a

40
20
0

0

500

1000

1500

2000

2500

3000

3500

-1

Sè sãng(cm )

Hình 3.12: Phổ hấp thụ hồng ngoại RT-IR của PVP(a), ZnS:Mn(b) và ZnS:Mn/1,2g
PVP(c)

Bộ môn Quang – Lượng tử

18

Năm 2014



Kiều Bá Chiến

Luận văn Thạc sĩ

1642

653

100

1546

617

1411

471

b

1288

80

c

1102
1006

§é hÊp thô(%)


a: PVP
b: ZnS:Mn
c: ZnS:Mn/0,2gPVP
d: ZnS:Mn/0,4gPVP
e: ZnS:Mn/0,8gPVP
f: ZnS:Mn/1,2gPVP
g: ZnS:Mn/1,6gPVP

3422

f

d

60

g
a

40

e

20

0
0

500


1000

1500

2000

2500

3000

3500

-1

Sè sãng(cm )

(Zn-S) (Zn-S) (Mn-S)

471 617 653

260

(Zn-S)

(C=O)

(OH)

1642


3422

1546

1102

240

g

(C=N)1411

1006

220

2962

1288

f

200

e

180

§é hÊp thô(%)


a: PVP
b: ZnS:Mn
c: ZnS:Mn/0,2gPVP
d: ZnS:Mn/0,4gPVP
e: ZnS:Mn/0,8gPVP
f: ZnS:Mn/1,2gPVP
g: ZnS:Mn/1,6gPVP

160

d

140
c

120
100

b

80
60

a

40
20
0
0


500

1000

1500

2000

2500

3000

3500

-1

Sè sãng(cm )

Hình 3.13: Phổ hấp thụ hồng ngoại FT-IR của PVP, ZnS:Mn và ZnS:Mn bọc phủ
PVP với các khối lượng khác nhau

Bộ môn Quang – Lượng tử

19

Năm 2014


Kiều Bá Chiến


Luận văn Thạc sĩ

Bảng 3.5 : Vị trí số sóng của nhóm C=O theo khối lượng PVP
mPVP(g)
số sóng(cm-1)

0
1655

0,2
1649

0,4
1649

0,8
1645

1,2
1642

1,6
1640

-1

Sè sãng(cm )

1650


1600
0,2

0,4

0,8

1,2

1,6

mPVP(g)

Hình 3.14 : Đồ thị biểu diễn thay đổi vị trí số sóng của nhóm C=O theo khối
lượng PVP trong các hạt nano ZnS:Mn/PVP

KẾT LUẬN

Bộ môn Quang – Lượng tử

20

Năm 2015


Kiều Bá Chiến

Luận văn Thạc sĩ


Thực hiện đề tài : “Khảo sát phổ hấp thụ hồng ngoại của các hạt nano
ZnS pha tạp Mn”, chúng tôi đã thu được một số kết quả chính sau:
1. Thu thập tài liệu tham khảo về cấu trúc tinh thể, vùng năng lượng và phổ
FT-IR của vật liệu nano ZnS, ZnS:Mn, ZnS:Mn bọc phủ một số chất hoạt hóa bề
mặt
2. Khảo sát cấu trúc tinh thể, hình thái học thông qua các phổ X-Ray và ảnh
TEM của chúng và phổ phát quang của một số hạt nano ZnS:Mn không bọc phủ,
bọc phủ PVA, PVP. Kết quả cho thấy :
PVA, PVP không làm thay đổi tính chất cấu trúc của các hạt nano ZnS:Mn
mà chỉ làm tăng cường độ phát quang của đám da cam vàng đặc trưng cho các ion
Mn2+ trong tinh thể ZnS. Nguyên nhân của hiện tượng này là do hiệu ứng giam cầm
lượng tử liên quan đến sự giảm kích thước hạt và sự truyền năng lượng từ các phân
tử PVA, PVP sang các hạt nano ZnS:Mn.
3. Nghiên cứu phổ hấp thụ hồng ngoại FT-IR của PVA, PVP, và của các hạt
nano ZnS:Mn bọc phủ PVA, PVP. Kết quả cho thấy :
+ Trong phổ FT-IR của PVA xuất hiện các đám, các vạch đặc trưng cho dao
động của các nhóm: OH ở 3453 cm -1; CH/CH2 ở 2902 cm-1; C-O ở 1108 cm-1 ...,
trong đó đám đặc trưng cho OH có độ hấp thụ lớn.
+ Trong phổ FT-IR của PVP xuất hiện các đám, các vạch đặc trưng cho dao
động của các nhóm hiđroxyl OH ở 3433 cm-1, C-H ở 2953 cm-1, C=O ở 1646 cm-1, –
C-C- ở khoảng 657 cm-1. Ngoài ra còn xuất hiện các vạch ở 571 cm -1, 731 cm-1,
1300cm-1, 1473cm-1, trong đó các đám và vạch đặc trưng cho nhóm carbonyl C=O
có độ hấp thụ tương đối lớn.
+ Khi các hạt nano ZnS:Mn được bọc phủ PVA, trong phổ FT-IR của nó vẫn
xuất hiện các đám và vạch đặc trưng của PVA ,ngoài ra còn xuất hiện các vạch đặc
trưng cho Zn-S ở 620cm-1, 471cm-1 . Tuy nhiên so với các hạt nano ZnS:Mn không
bọc phủ (nhóm OH có số sóng 3443cm-1), khi tăng khối lượng bọc phủ của PVA từ

Bộ môn Quang – Lượng tử


21

Năm 2015


Kiều Bá Chiến

Luận văn Thạc sĩ

0,2g đến 1,5g thì đám đặc trưng cho dao động mở rộng của nhóm OH bị dịch về
phía số sóng nhỏ khoảng 46cm-1
+ Khi các hạt nano ZnS:Mn được bọc phủ PVP, cũng giống như ZnS:Mn/PVA,
trong phổ hấp thụ hồng ngoại của nó cũng xuất hiện các đám và vạch đặc trưng của
PVP , Zn-S Tuy nhiên so với các hạt nano ZnS:Mn không bọc phủ (nhóm C=O có
số sóng 1649cm-1), khi tăng khối lượng bọc phủ của PVP từ 0,2g đến 1,6g thì đám
đặc trưng cho dao động mở rộng của nhóm C=O cũng bị dịch về phía số sóng nhỏ
khoảng 15cm-1 .
Sự dịch chuyển vị trí của các đám, vạch đặc trưng cho nhóm OH trong các
hạt nano ZnS:Mn bọc phủ PVA và nhóm C=O trong các hạt nano ZnS:Mn bọc phủ
PVP là bằng chứng cho thấy các hạt nano ZnS:Mn đã được bọc phủ các chất hoạt
hóa bề mặt PVA, PVP.
4. Đã giải thích sự dịch chuyển vị trí của các đám đặc trưng cho dao động
của nhóm OH, C=O là do khi các nhóm này tham gia vào liên kết phối trí với các
ion Zn2+ trên bề mặt các hạt nano đã làm giảm liên kết của đám này với các mạch
PVA, PVP.

Bộ môn Quang – Lượng tử

22


Năm 2015


Kiều Bá Chiến

Luận văn Thạc sĩ

TÀI LIỆU THAM KHẢO
Tài liệu tiếng Việt
1. Nguyễn Quang Liêm (1995), Chuyển dời điện tử trong các tâm phát tổ hợp của
bán dẫn AIIBVI, Luận văn phó tiến sĩ.
2. Nguyễn Ngọc Long (2007), Vật lý chất rắn, NXB ĐHQGHN, Hà Nội
3. Nguyễn Đức Nghĩa (2007), Hóa học Nano, Công nghệ nền và vật liệu nguồn
NXB Viện Khoa học Việt nam, Hà Nội.
4. Nguyễn Văn Trường(2012), Chế tạo các hạt nano ZnS:Mn bọc phủ chất hoạt
hóa bề mặt và khảo sát phổ phát quang của chúng, luận văn thạc sỉ khoa học,
Trường ĐHKHTN - ĐHQG Hà Nội.
5. Phùng Thu Hiền (2012), Nghiên cứu chế tạo vật liệu nano ZnS:Mn bọc phủ PVP
và khảo sát phổ phát quang của chúng, luận văn thạc sỉ khoa học,

Trường

ĐHKHTN - ĐHQG Hà Nội.
Tài liệu tiếng Anh
6. Abdul Kareem Thottoli and Anu Kaliani Achuthanunni (2013), Effect of
Polyvinyl alcohol concentration on the ZnS nanoparticles and wet chemical
synthesis of wurzite ZnS nanoparticles, pp1-9 .
7. Bhargava R.N, Gallagher D, Hong X, Nurmikkvo A (1994), Optical properties
of manganeses- doped nanocrystals of ZnS, physical Review letters 72(3), pp 416419.
8. Cadis A-I, E.-I Popovici, E. Bica, I. Perhaită (2010), On the preparation of

manganese-doped Zinc sulphide nanocrystalline powders using the wet-chemical
synthesis ruote, Chalcogenide letters, Vol 7, No 11,pp 631-640.
9. Damian C. Onwudiwe, Tjaart P.J. Kruger, Anine jordaan, Christien A.
Strydom(2014), Laser-assisted synthesis, and structural and thermal properties of
ZnS nanoparticles stabilised in polyvinulpyrrolidone, Applied Surface Science 321,
pp 197-204.

Bộ môn Quang – Lượng tử

23

Năm 2015


Kiều Bá Chiến

Luận văn Thạc sĩ

10. Gopa Ghosh, Milan Kanti Naskar, Amitava Patra, Minati Chatterjee(2006),
Synthesis and characterization of PVP – encapsulated ZnS nanoparticles, Optical
Materials, 28, pp 1047-1053.
11. Kelly Sooklal, Brian S. Cullum, S. Michale Angel and Catherine J.
Murphy(1996), Photophysical Properties of ZnS Nanoclusters with Spatially
Localized Mn2+, Vol 100, pp 4551-4555.
12. Miss Narumon Seeponkai(2004), Modification of poly(vinyl alcohol) for use as
an Electrolyte Membrane in Direct Mathanol Fuel Cell, School of Energy
Environment and Material King Mongkut's University of Technology Thonburi,
Bangkok, pp 1-39.
13. Murugadoss. G, Rajamannan. B, Ramasamy. V (2010), Synthesis and
photoluminescence study of PVA-capped ZnS:Mn nanoparticles, Vol 5, No 2, pp

339-345.
14. Murugadoss. G (2010), “Synthesis and optical characterization of PVP and
SHMP-encapsulated Mn2+-doped ZnS nanocrystals”, Journal of Luminescence,
130, pp.2207–2214.
15. Rema Devi B S, R Raveendran and A V Vaidyan(2007), Synthesis and
characterization of Mn2+ doped ZnS nanoparticles, Journal of Physics, Vol 68, No
2, pp 679-687.
16. Jayesh D. Patel, Tapas K. Chaudhuri(2009), Synthesis of PbS/poly (vinuypyrrolidone) nanocomposite, Materials Research Bulletin, 44, pp 1647-1651.
17. Stoica-Guzun Anicuta, Loredana Dobre, Marta Stroescu và Iuliana Jipa(2010),
Fourier

Transform

Infrared(FTIR)

spectroscopy

for

characerization

of

antimicrobial films containning chitosan, pp 1234-1240.
18. Soltani. N, A. Dehzangi, a Kharazmi, E. Saion, W. Mahmood Mat Yunus, B.
Yeopmajlis, M. Reza Zare, E. Ghribshahi và N. Khalilzadeh(2014), Structural,
optical and electrical properties of ZnS nanoparticles affecting by organic coating,
Chalcogenide letters, Vol 11, No 2, pp 79-90

Bộ môn Quang – Lượng tử


24

Năm 2015


Kiều Bá Chiến

Luận văn Thạc sĩ

19. Ulrike Woggon (2004), Optical properties of Semiconductor Quantum Dots,
pp.52-53.

Bộ môn Quang – Lượng tử

25

Năm 2015



×