Tải bản đầy đủ (.doc) (48 trang)

Định lượng thiếc trong không khí bằng phương pháp quang phổ hấp thụ nguyên tử không ngọn lửa (GF AAS)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (744.68 KB, 48 trang )

Lời cảm ơn
Với lòng biết ơn sâu sắc, tôi xin chân thành cảm ơn PGS.TS. Nguyễn
Xuân Trung đã giao đề tài và tận tình hướng dẫn, giúp đỡ tôi trong suốt
quá trình thực hiện luận văn.
Tôi xin cảm ơn sự tận tình giúp đỡ của TS. Chu Đình Bính- Trường
Đại học Bách khoa Hà Nội và các Thầy, Cô giáo Bộ môn Hóa phân tích đã
hỗ trợ tôi trong quá trình làm luận văn.
Tôi xin gửi lời cảm ơn tới ban lãnh đạo và các bạn bè đồng nghiệp tại
Viện nghiên cứu KHKT Bảo hộ Lao động đã tạo điều kiện thuận lợi cho
tôi được học tập và nghiên cứu trong quá trình làm luận văn.
Cuối cùng tôi xin gửi lời cảm ơn tới gia đình và bạn bè đã luôn động
viên, ủng hộ tôi trong quá trình thực hiện khóa luận này.

Hà Nội, tháng 9 năm 2015
Học viên
Trần Ngọc Thanh


MỤC LỤC
Hà Nội, tháng 9 năm 2015........................................................................................................1
Trần Ngọc Thanh.........................................................................................................1
Tác giả Zhao Fei-rong và các cộng sự [55]. Giới hạn phát hiện của thiếc là 0,3 µg/L, nồng
độ phát hiện thấp nhất của thiếc trong các mẫu là 0,0001 mg/ m3 (dựa trên 75 lít mẫu không
khí), các RSD là 2,7% -3,5%, độ thu hồi trong khoảng 96,5% -104,7%....................5
CHƯƠNG 2: PHƯƠNG PHÁP VÀ ĐỐI TƯỢNG NGHIÊN CỨU........................................6
2.1. Mục tiêu nghiên cứu..............................................................................................6
Mục tiêu chính của luận văn: Xây dựng quy trình định lượng bụi và sol khí thiếc trong
không khí khu vực làm việc bằng phương pháp quang phổ hấp thụ nguyên tử không ngọn
lửa GF-AAS..................................................................................................................6
2.2. Nội dung nghiên cứu.............................................................................................6
2.5. Nguyên tắc phép đo quang phổ hấp thụ nguyên tử không ngọn lửa (GF-AAS)..8


2.6. Hệ trang thiết bị của phép đo AAS không ngọn lửa.............................................8
2.7. Dụng cụ và hóa chất..............................................................................................9
2.7.1. Dụng cụ........................................................................................................9
3.4.2. Kiểm tra sự sai khác giữa b và b’..............................................................16
3.6. Tổng kết các điều kiện đo, và điều kiện xử lí để đo phổ Sn...............................17
3.10.1. Kỹ thuật lấy mẫu Sn trong không khí.....................................................21
3.10.2. Bảo quản mẫu..........................................................................................21
3.10.3. Xử lý mẫu................................................................................................21
Ghi chú: LOQ: 0,0024mg/m3..................................................................................................22


DANH MỤC BẢNG
Hà Nội, tháng 9 năm 2015........................................................................................................1
Trần Ngọc Thanh.........................................................................................................1
Tác giả Zhao Fei-rong và các cộng sự [55]. Giới hạn phát hiện của thiếc là 0,3 µg/L, nồng
độ phát hiện thấp nhất của thiếc trong các mẫu là 0,0001 mg/ m3 (dựa trên 75 lít mẫu không
khí), các RSD là 2,7% -3,5%, độ thu hồi trong khoảng 96,5% -104,7%....................5
CHƯƠNG 2: PHƯƠNG PHÁP VÀ ĐỐI TƯỢNG NGHIÊN CỨU........................................6
2.1. Mục tiêu nghiên cứu..............................................................................................6
Mục tiêu chính của luận văn: Xây dựng quy trình định lượng bụi và sol khí thiếc trong
không khí khu vực làm việc bằng phương pháp quang phổ hấp thụ nguyên tử không ngọn
lửa GF-AAS..................................................................................................................6
2.2. Nội dung nghiên cứu.............................................................................................6
2.5. Nguyên tắc phép đo quang phổ hấp thụ nguyên tử không ngọn lửa (GF-AAS)..8
2.6. Hệ trang thiết bị của phép đo AAS không ngọn lửa.............................................8
2.7. Dụng cụ và hóa chất..............................................................................................9


2.7.1. Dụng cụ........................................................................................................9
3.4.2. Kiểm tra sự sai khác giữa b và b’..............................................................16

3.6. Tổng kết các điều kiện đo, và điều kiện xử lí để đo phổ Sn...............................17
3.10.1. Kỹ thuật lấy mẫu Sn trong không khí.....................................................21
3.10.2. Bảo quản mẫu..........................................................................................21
3.10.3. Xử lý mẫu................................................................................................21
Ghi chú: LOQ: 0,0024mg/m3..................................................................................................22

DANH MỤC HÌNH


Hà Nội, tháng 9 năm 2015........................................................................................................1
Trần Ngọc Thanh.........................................................................................................1
Tác giả Zhao Fei-rong và các cộng sự [55]. Giới hạn phát hiện của thiếc là 0,3 µg/L, nồng
độ phát hiện thấp nhất của thiếc trong các mẫu là 0,0001 mg/ m3 (dựa trên 75 lít mẫu không
khí), các RSD là 2,7% -3,5%, độ thu hồi trong khoảng 96,5% -104,7%....................5
CHƯƠNG 2: PHƯƠNG PHÁP VÀ ĐỐI TƯỢNG NGHIÊN CỨU........................................6
2.1. Mục tiêu nghiên cứu..............................................................................................6
Mục tiêu chính của luận văn: Xây dựng quy trình định lượng bụi và sol khí thiếc trong
không khí khu vực làm việc bằng phương pháp quang phổ hấp thụ nguyên tử không ngọn
lửa GF-AAS..................................................................................................................6
2.2. Nội dung nghiên cứu.............................................................................................6
2.5. Nguyên tắc phép đo quang phổ hấp thụ nguyên tử không ngọn lửa (GF-AAS)..8
2.6. Hệ trang thiết bị của phép đo AAS không ngọn lửa.............................................8
2.7. Dụng cụ và hóa chất..............................................................................................9
2.7.1. Dụng cụ........................................................................................................9
3.4.2. Kiểm tra sự sai khác giữa b và b’..............................................................16
3.6. Tổng kết các điều kiện đo, và điều kiện xử lí để đo phổ Sn...............................17
3.10.1. Kỹ thuật lấy mẫu Sn trong không khí.....................................................21
3.10.2. Bảo quản mẫu..........................................................................................21
3.10.3. Xử lý mẫu................................................................................................21
Ghi chú: LOQ: 0,0024mg/m3..................................................................................................22



DANH MỤC CÁC TỪ VIẾT TẮT
Viết tắt
F-AAS

Tiếng Anh
Flame Atomic Absorption

Tiếng Việt
Phương pháp quang phổ hấp

Spectrometry

thụ nguyên tử kĩ thuật ngọn

GF- AAS Graphite Furnace Atomic

lửa
Phương pháp quang phổ hấp

Absorption Spectrometry

thụ nguyên tử không ngọn

Inductively Couped

lửa( lò graphit)
Phương pháp phổ khối


Plasma- Atomic Emission

plasma cao tần cảm ứng

Spectrometry
Limit of detection
Limit of quantitation
National Institute for

Giới hạn phát hiện
Giới hạn định lượng
Viện An toàn nghề nghiệp và

Occupational Safety and

Sức khỏe quốc gia

OSHA

Health
Occupational Safety and

Cơ Quan Quản Lý An Toàn

ppb
ppm
R
RSD%
SD
UV-VIS


Health Administration
Part per billion
Part per million
Correlation coefficient
Relative standard deviation
Standard deviation
Ultraviolet

và Sức Khoẻ Nghề Nghiệp
Nồng độ phần tỷ (µg/l)
Nồng độ phần triệu (mg/l)
Hệ số tương quan
Độ lệch chuẩn tương đối
Độ lệch chuẩn
Phương pháp quang phổ hấp

VisbleMolecullar

thụ phân tử tử ngoại-khả

Absorption Spectrometry

kiến

ICP-MS

LOD
LOQ
NIOSH



MỞ ĐẦU
Hiện nay, ngành công nghiệp Việt Nam nói riêng và trên thế giới
nói chung đang trong giai đoạn phát triển mạnh mẽ. Cùng với sự phát triển
đó đi liền với việc phát triển mạnh về lĩnh vực lắp ráp điện tử. Trong lĩnh
vực lắp ráp điện tử, thiếc được ứng dụng một cách rộng rãi và phổ biến
như hàn các bản mạch điện tử, trong công nghệ mạ, phủ. Lớp phủ thiếc
được dùng để tráng lên bề mặt các vật bằng thép, vỏ hộp đựng thực phẩm,
nước giải khát, có tác dụng chống ăn mòn. Thiếc cũng được sử dụng trong
nhiều loại hợp kim khác nhau. Ngoài ra, các hợp chất vô cơ của thiếc cũng
được sử dụng như chất màu trong ngành công nghiệp gốm sứ và dệt may.
Tuy nhiên thiếc cũng là kim loại có độc tính. Độc tính cấp tính của nó thể
hiện như kích ứng mắt, da, kích ứng dạ dày, buồn nôn, nôn và khó thở…,
ảnh hưởng lâu dài đến gan, thiếu máu, ảnh hưởng đến hệ thần kinh v.v.
Vì vậy việc xác định hàm lượng thiếc trong không khí khu vực làm
việc là hết sức cần thiết. Trên thế giới đã đưa ra nhiều phương pháp xác
định thiếc trong không khí. Tuy nhiên, ở Việt Nam, nghiên cứu xác định
hàm lượng thiếc trong không khí còn rất hạn chế và chưa có phương pháp
chuẩn. Trong khi đó, thiếc lại nằm trong danh mục các chỉ tiêu cần được
đo đạc, kiểm soát trong công tác đánh giá chất lượng môi trường làm việc
theo Tiêu chuẩn vệ sinh lao động số 3733/2002/QĐ-BYT đã được Bộ Y tế
ban hành ngày 10/10/2002. Vì vậy, việc nghiên cứu “Định lượng thiếc
trong không khí bằng phương pháp quang phổ hấp thụ nguyên tử
không ngọn lửa (GF-AAS)” là điều có ý nghĩa khoa học và thực tiễn.

1


CHƯƠNG 1. TỔNG QUAN

1.1. Thiếc và ứng dụng
Thiếc là một nguyên tố tương đối hiếm, trong lớp vỏ của trái đất
chiếm khoảng 2,2 phần triệu hoặc 2,2 mg/kg, xấp xỉ 0,00022% tổng khối
lượng của vỏ Trái Đất. Thiếc được xem như là một kim loại tự do trong tự
nhiên. Các nguồn khoáng sản chủ yếu của thiếc là quặng Cassiterit
(SnO2). Tuy nhiên, một số lượng nhỏ thiếc thu hồi được từ các khoáng
chất sulfide có chứa thiếc như stannite (Cu2S-FeS-SnS2), cylindrite
(Pb3Sn4FeSb2S14), frankeite (Fe(Pb,Sn)6Sn2Sb2S14), và teallite (PbSnS2)
[39]. Tổng sản lượng khai thác thế giới đạt 265.000 tấn trong năm 2010 và
giảm nhẹ xuống 253.000 tấn trong 2011 [7,10,13,14, 26].
1.2. Tính chất vật lí và hóa học của Thiếc
1.2.1. Tính chất vật lí
Thiếc là nguyên tố kim loại, trong bảng tuần hoàn thuộc nhóm IVA, chu
kì 5, có số nguyên tử là 50, với cấu hình electron là [Kr] 4d105s25p2. Thiếc
tồn tại ở nhiều dạng oxi hoá: 0, +2, +4, Nhiệt độ nóng chảy 232 0C, Nhiệt
độ sôi 22700C, Tỉ khối: 7,30[1, 4]:
1.2.2. Tính chất hóa học
Nước không tác dụng với thiếc. Các axit clohidric và sunphuric
loãng tác dụng với thiếc rất chậm,
Sn + 2HCl

SnCl2 + H2 ↑

Trong axit HNO3 loãng tạo thành thiếc (II) nitrat:
4Sn + 10HNO3 4Sn(NO3)2 + NH4NO3 + 3H2O
Còn trong axit đặc tạo thành hợp chất thiếc (IV), chủ yếu là axit βstanic không tan, thành phần của nó ứng gần đúng với công thức H2SnO3:
Sn + 4HNO3
H2SnO3 ↓ + 4NO2 + H2O
Kiềm đặc cũng hòa tan thiếc.
2



Sn + 2 NaOH

H2SnO2 + H2 ↑

Trong dung dịch nước axit stanit chuyển thành hidroxostanit
Na3SnO2 + H2O Na2[Sn(OH)4
1.3. Nguồn phát thải thiếc vào môi trường
Thiếc có thể thải ra môi trường từ nguồn tự nhiên hoặc từ các cơ sở
sản xuất công nghiệp, nông nghiệp, sản xuất, sử dụng, xử lý, và phục hồi
thiếc và thiếc hợp chất, từ quá trình luyện và tinh luyện, công nghiệp sử
dụng quặng thiếc, tiêu huỷ chất thải, đốt nhiên liệu hóa thạch [30, 25 11,
42,30].
1.4. Sự vận chuyển của Thiếc trong môi trường
Trong môi trường không khí, thiếc được phát hiện ở nồng độ thấp,
ngoại trừ trong các vùng lân cận với các khu công nghiệp. Nồng độ thiếc
trong không khí ở các thành phố của Mỹ trong nhiều nghiên cứu xác định
được hàm lượng có nồng độ trung bình thường là dưới 0,1 µg/m 3, nồng
độ cao hơn ở gần một số các cơ sở công nghiệp [25, 48].
Thiếc trong khí quyển có liên quan đến các hạt vật chất và nồng độ
đỉnh điểm đã được tìm thấy ở dạng các hạt nhỏ có thể hít phải với kích
thước 1–3 µm [25]. Tổng nồng độ thiếc trung bình trong không khí đường
hầm cao tốc Elbtunnel ở Hamburg, Đức trong thời gian giữa tháng 8/1988
và tháng 1/1989 là 10,9 ng/m3 [17].
Nồng độ thiếc trung bình ở mức 0,038 µg/lít đã được tìm thấy trong
nước bề mặt ở Maine, Mỹ [25, 33].
Trong một nghiên cứu về nước ở Canada, gần 80% các mẫu được
tìm thấy thiếc vô cơ ở nồng độ dưới 1 µg/lít; nồng độ cao lên tới 37 µg/lít
đã được tìm thấy gần các nguồn ô nhiễm [32]. Nồng độ thiếc (IV) trung

bình trong hồ Michigan năm 1978 dao động trong khoảng từ 0,08 đến 0,5
µg/lít [24].
3


Tổng lượng thiếc hiện tại trong nước biển là khoảng 0,2-3 µg/lít [25,
33]. Nồng độ thiếc vô cơ trong khoảng từ 0,001 đến 0,01 µg/lít được tìm
thấy ở vùng nước ven biển, với mức độ lên tới 8 µg/lít gần các nguồn ô
nhiễm [46, 50]. Người ta đo được nồng độ thiếc (IV) khoảng từ 0,003
µg/lít đến 0,04 µg/lít ở Vịnh San Diego, California, Mỹ [24]. Langston và
các cộng sự [29,44, 27]. Nồng độ thiếc trong các nguồn nước công cộng
dao động từ khoảng 1,1 đến 2,2 µg/lít, ở 42 thành phố ở Mỹ và từ 0,8 đến
30 µg/lít ở 32 trong số 175 nguồn cung cấp nước ở Arizona, Mỹ [25, 33].
Nồng độ trung bình 6 µg/lít được tìm thấy trong nước uống thành phố ở
Mỹ [23]. Nồng độ thiếc trong tuyết mới từ dãy Alps của Pháp lấy mẫu
năm 1998 ở các độ cao khác nhau dao động từ 0,16 đến 0,44 µg/lít
[21,32,51].
Nồng độ thiếc trong trầm tích ở cảng Toronto, Canada năm 1983
được tìm thấy là cao nhất (lên đến 13,8 mg/kg). Các lõi trầm tích thu thập
ở Hồ công viên trung tâm (Central Park Lake) ở thành phố New York, Mỹ
trong tháng giêng năm 1996 có nồng độ thiếc trung bình từ 4,0 mg/kg ở
độ sâu 44 – 47cm, đến 67 mg/kg ở độ sâu 22 – 24 cm [15].
Trong đất, nồng độ thiếc nói chung là thấp, ngoại trừ ở các khu vực
mà có các loại khoáng sản có chứa thiếc [9, 16,10, 25, 41].
1.5. Độc tính và cơ chế gây độc
Nhiều loại hợp chất thiếc hữu cơ rất độc, độc nhất là trimethyl thiếc
và triethyl thiếc, là những hợp chất được hấp thu tốt qua đường tiêu hóa
Những nhiễm độc này đã được chứng minh là do triethyl thiếc làm phù nề
và do trimethyl thiếc gây ra hoại tử tế bào thần kinh. [6,52].
1.6. Một số phương pháp phân tích thiếc

1.6.1. Phương pháp phân tích hóa học [45]
1.6.1.1. Phương pháp khối lượng
Phương pháp phổ biến nhất xác định Sn bằng phương pháp phân tích
4


khối lượng là kết tủa dưới dạng β- acid thiếc, hydroxyt, sunfit hay một dạng
kết tủa hợp chất hữu cơ với thiếc, sau đó nung kết tủa dưới dạng SnO2.
1.6.1.2. Phương pháp chuẩn độ
1.6.2. Phương pháp phân tích công cụ
1.6.2.1. Phương pháp phân tích điện hóa
Tác giả Li Ying Xu, Ning Li và Jiamin Li [53] Chiều cao song
tỉ lệ nồng độ Sn(II) có trong mẫu trong khoảng nồng độ 0,002-10 µg/L.
1.6.2.2. Phổ huỳnh quang nguyên tử
Tác giả Sun Zhen [56] đã sử dụng phương pháp phổ huỳnh quang để
xác định hàm lượng thiếc trong khí thải. Mẫu được xử lí bằng axit nitrichydrogen peroxide. Nghiên cứu cho thấy khoảng tuyến tính từ 0 ~ 10
mg / L, hệ số tương quan có thể đạt 0.9996, giới hạn phát hiện phương
pháp 0,003 µg, độ thu hồi là 92,7% ~ 95,9%, RSD≤2.1.
Cao Yun và các cộng sự [12]. được phát hiện bởi phổ huỳnh quang
nguyên tử HG-AFS. Trong điều kiện này, khoảng tuyến tính phép xác
định 0,1 ~ 100 µg / L, giới hạn phát hiện của thiếc là 0,4μg / L, độ thu hồi
là 94,3% ~ 102,4%, độ lệch chuẩn tương đối (RSD) là 1,2% ~ 2,6% (n =
8).
Tác giả Zhao Fei-rong và các cộng sự [55]. Giới hạn phát hiện của
thiếc là 0,3 µg/L, nồng độ phát hiện thấp nhất của thiếc trong các mẫu là
0,0001 mg/ m3 (dựa trên 75 lít mẫu không khí), các RSD là 2,7% -3,5%, độ
thu hồi trong khoảng 96,5% -104,7%.
1.6.2.4. Phương pháp trắc quang UV-VIS
Tác giả Anitha Vaghese và các cộng sự [31,49] đã phát triển
phương pháp xác định Sn(II) với thuốc thử hữu cơ diacetylmonoxin phydroxybenzoethydiamin trong môi trường chất hoạt động bề mặt cation

hệ số hấp thụ mol đạt giá trị 3,2. 10 4L.mol-1.cm-1. Định luật Beer tuân theo
trong khoảng 0,25-2,76 µg/ml. Tỉ lệ mol giữa Sn(II) và thuốc thử (1:2).
Phương pháp này đã được đề xuất để xác định hàm lượng Sn trong các
5


mẫu hợp kim khác nhau có nhiệt độ nóng chảy thấp.
1.6.2.5. Phương pháp quang phổ hấp thụ nguyên tử AAS
Quá trình đó được gọi là quá trình hấp thụ năng lượng của nguyên tử
tự do ở trạng thái hơi và tạo ra phổ hấp thụ nguyên tử của nguyên tố đó.
Phổ sinh ra trong quá trình này được gọi là phổ hấp thụ nguyên tử [2, 3,
19, 20, 35].
1.6.2.6. Phương pháp phân tích sử dụng nguồn kích thích plasma
cảm ứng
Phương pháp phổ phát xạ nguyên tử dựa trên sự xuất hiện phổ phát xạ
của nguyên tố cần phân tích khi nguyên tử của nó ở trạng thái kích thích giải
phóng năng lượng đã nhận để trở về trạng thái cơ bản và sinh ra phổ phát xạ.
Để kích thích phổ AES, người ta dùng các nguồn năng lượng là ngọn lửa, hồ
quang hay tia điện.[54, 18, 5, 40, 8, 34, 22, 43, 36].

CHƯƠNG 2: PHƯƠNG PHÁP VÀ ĐỐI TƯỢNG NGHIÊN CỨU
2.1. Mục tiêu nghiên cứu
Mục tiêu chính của luận văn: Xây dựng quy trình định lượng bụi và
sol khí thiếc trong không khí khu vực làm việc bằng phương pháp quang
phổ hấp thụ nguyên tử không ngọn lửa GF-AAS.
2.2. Nội dung nghiên cứu
Nội dung nghiên cứu của chúng tôi gồm các vấn đề sau:
1. Tối ưu hóa các điều kiện xác định Sn bằng phương pháp quang
phổ hấp thụ nguyên tử không ngọn lửa (GF- AAS).
2. Khảo sát các điều kiện nguyên tử hóa:

6


3. Khảo sát các yếu tố ảnh hưởng đến phép đo GF-AAS xác định
thiếc
4. Đánh giá, thẩm định phương pháp xác định Sn bằng GF-AAS:
2.3. Dụng cụ lấy mẫu, bảo quản mẫu
Mẫu không khí khu vực hàn thiếc được lấy bằng hệ thống hút không
khí (bơm shibata) qua màng lọc mixed cellulose ester (MCE) 37mm, kích
thước lỗ 0,8µm gắn vào đầu lấy mẫu filter. Tốc độ lấy mẫu 2L/phút, thể
tích lấy mẫu 120-1000L/phút

a, Đầu lấy mẫu Filter 37mm

b, Đầu lấy mẫu filter 37mm và

bơm lấy mẫu shibata
Hình 2.1: Dụng cụ lấy mẫu thiếc
2.4. Quy trình xử lí mẫu
Mở cassettes bảo quản mẫu, dùng panh nhựa gắp giấy lọc chuyển
vào bình Kendan, trên có cắm một phễu nhỏ dài chuôi, sau đó cho 0,5 ml
HNO3 65%, vào bình kendan đun trên bếp cách cát, ở nhiệt độ 140 0C đến
khi đuổi axit, mẫu chuyển về trạng thái khô ẩm. Mẫu được để nguội tới
nhiệt độ phòng (khoảng 25°C), sau đó chuyển toàn bộ mẫu vào bình định
mức 25ml, tráng rửa bình kendan bằng nước cất 2 lần, thêm chất cải biến
hóa học và định mức tới vạch. Mẫu được phân tích ngay sau khi xử lý
7


hoặc bảo quản tối đa trong ba ngày ở nhiệt độ 4°C.

2.5. Nguyên tắc phép đo quang phổ hấp thụ nguyên tử không ngọn lửa
(GF-AAS)
Để thực hiện được phép đo AAS cần phải có các quá trình sau: Sấy
mẫu, tro hóa mẫu, nguyên tử hóa mẫu, làm sạch cuvet.
2.6. Hệ trang thiết bị của phép đo AAS không ngọn lửa

Hình 2.2: Cuvet

Hình 2.3: Bộ phận nguyên

graphite

tử hóa mẫu

Hình 2.4:Hệ thống máy quang phổ hấp thụ nguyên tử AA 600-Perkin Elmer
8


2.7. Dụng cụ và hóa chất
2.7.1. Dụng cụ
- Bể siêu âm, bếp cách cát
- Các loại micropipet: 25-1000µl.
- Bình định mức class A các loại: 10; 25; 50; 100 ml
- Cốc chịu nhiệt các loại: 50; 100; 250; 500 ml
- Ống đong: 25; 50; 100 ml
- Bình kendan: 20ml
- Phễu
2.7.2. Hóa chất
- Dung dịch gốc Sn 1000ppm Merk, Đức
- Các dung dịch làm việc Sn được pha hằng ngày từ dung dịch gốc 1000

ppm.
- Các hóa chất tinh khiết dùng cho quang phổ:
- Mg(NO3)2 Merck, Đức
- Pd(NO3)2 Merck, Đức
- NH4H2PO4 Merck, Đức
- Dung dịch chuẩn Ag, Cu, Zn, Mn, Mn, Cr, Merck, Đức
-Axit: HNO3 65% tinh khiết phân tích, Merck, Đức
- Axit HCl 37 % tinh khiết phân tích, Merck, Đức
- Nước cất 2 lần.

9


CHƯƠNG 3: KẾT QUẢ VÀ THẢO LUẬN
3.1 Tối ưu hóa điều kiện xác đinh Sn bằng phương pháp GF- AAS
3.1.1. Khảo sát chọn vạch đo phổ
Bảng 3.1: Kết quả chọn vạch đo phổ của Sn
Bước sóng (nm)
Abs (t/bình)
%RSD
286,3
0,0283
1,77
270,7
0,094
55,9
300,9
0,0102
55,04
303,4

0,0103
53,99
Vì vậy chúng tôi chọn vạch phổ 286,3 nm làm vạch phổ phân tích
nguyên tố Sn cho các nghiên cứu tiếp theo.
3.1.2. Khảo sát cường độ dòng đèn catot rỗng (HCL)
I (mA)
18mA (60%)
21mA (70%)
24mA (80%)
Abs
%RSD
Abs
%RSD
Abs
%RSD
0,0100
49,29
0,099
52,64
0,0283
1,77
Bảng 3.2: Kết quả khảo sát cường độ dòng đèn HCL
Vì vậy, chúng tôi chọn cường độ dòng đèn HCL là 24 mA cho các
nghiên cứu tiếp theo.
3.1.3. Khảo sát độ rộng khe đo
Bảng 3.3: Kết quả khảo sát khe đo
2,0 L

Khe đo (nm)
0,2L

10

0,7L


Abs
0,0104

%RSD
65,3

Abs
0,0091

%RSD
52,36

Abs
0,0283

%RSD
1,77

Với kết quả bảng trên ta thấy khe đo 0,7L cho kết quả tín hiệu cao
nhất, vì vậy chúng tôi chọn khe 0,7L cho phép đo Sn.
3.2. Khảo sát các yếu tố ảnh hưởng đến độ hấp thụ quang phép xác
định Sn
3.2.1. Ảnh hưởng của loại axit và nồng độ axit
Bảng 3.4: Kết quả khảo sát ảnh hưởng nồng độ Axit đến độ hấp thụ
quang

C(%) Axit
0
0,05
0,1
0,2
0,3
TB
0,0146 0,0153 0,0156 0,0151 0,0147
RSD (%)
8,38
6,04
0,97
4,01
4,16
HNO3
TB
0,0127 0,0119 0,0128 0,0122 0,0120
HCl
RSD (%)
1,07
2,27
8,03
4,06
2,70
Qua kết quả khảo sát, nhìn vào bảng 3.4 và hình 3.1 khi nồng độ axit
tăng từ 0,05% - 0,3% thì độ hấp thụ quang của Sn thay đổi đáng kể. Ở
nồng độ axit HNO3 0,1 % cho kết quả độ hấp thụ quang và độ lặp lại tốt
nhất. Vì vậy chúng tôi chọn môi trường axit HNO 3 0,1 % cho cả quá trình
đo tiếp theo.
3.2.2. Ảnh hưởng của nhiệt độ và thời gian sấy mẫu

Bảng 3.5: Ảnh hưởng nhiệt độ sấy mẫu đến độ hấp thụ quang
Nhiệt độ sấy (0C)
100-120 110-130 120-140 120-150
TB
0,0169
0,0145
0,0150
0,0162
Abs
RSD(%)
5,11
1,38
3,71
4,32
Bảng 3.6: Ảnh hưởng của thời gian sấy mẫu
Thời gian sấy (giây)
25
30
35
TB
0,0237
0,0233
0,0219
Abs
RSD (%)
6,97
1,87
8,46
0
Vì vậy, chúng tôi chọn nhiệt độ sấy mẫu 110-130 C và thời gian sấy

11


30 giây cho các thí nghiệm tiếp theo.
3.2.3. Ảnh hưởng nhiệt độ và thời gian tro hóa
Bảng 3.7: Ảnh hưởng nhiệt độ tro hóa mẫu đến độ hấp thụ quang
Nhiệt độ tro hóa (0C)
900
1000
1100
TB
0,0157
0,0215
0,0202
Abs
RSD (%)
3,02
1,17
2,54
Bảng 3.8: Kết quả ảnh hưởng thời gian nhiệt độ tro hóa mẫu
Thời gian tro hóa (giây)
15
20
25
30
TB
0,0157
0,0253
0,0202
0,0189

Abs
RSD (%)
3,90
11,43
3,73
5,02
Nhìn vào bảng 3.7 và 3.8 cho thấy nhiệt độ tro hóa mẫu ở 1000 0C
và thời gian tro hóa mẫu 25 giây cho kết quả độ hấp thụ quang cao nhất và
độ lặp lại tốt nhất. Vì vậy chúng tôi chọn nhiệt độ tro hóa 1000 0C và thời
gian tro hóa 25 giây cho các phép đo tiếp theo.
3.2.4. Ảnh hưởng nhiệt độ và thời gian nguyên tử hóa mẫu
Bảng 3.9: Ảnh hưởng nhiệt độ nguyên tử hóa mẫu đến độ hấp thụ
quang
Nhiệt độ nguyên tử hóa mẫu

2000

2100

2200

2300

0,0194
3,67

0,0200
8,62

0,0203

0,99

0,0184
3,69

(0C)
Abs

TB
RSD (%)

Bảng 3.10: Ảnh hưởng thời gian nguyên tử hóa mẫu
Thời gian nguyên tử hóa

3

4

5

6

(giây)
Abs

TB
0,0187
0,0199
0,0187
0,0184

RSD (%)
2,67
2,09
2,64
2,27
Nhìn vào bảng 3.9 và 3.10 cho thấy nhiệt độ nguyên tử hóa ở
12


22000C và thời gian nguyên tử hóa 4 giây cho kết quả độ hấp thụ quang và
độ lặp tốt nhất. Vì vậy chúng tôi chọn nhiệt độ nguyên tử hóa mẫu 2200 0C
và thời gian nguyên tử hóa 4 giây cho các thí nghiệm tiếp theo.
3.2.5. Ảnh hưởng của các chất cải biến nền
Bảng 3.11: Ảnh hưởng nồng độ và loại chất cải biến nền
Nồng độ Sn µg/mL
Nồng độ chất cải
biến nền( mg)
Pd(NO3)2+
Mg(NO3)2

AbsSn
RSD

(%)
Nồng độ chất cải
biến nền (mg)
NH4H2PO4+
Mg(NO3)2

AbsSn

RSD
(%)

50

50

0

50

50

0,003+0,001 0,005+0,003 0,007+0,005

0,0360

0,0401

0,0417

0,0208

6,75

1,01

0,03

1,44


0

0,03+ 0,001

0,05+ 0,003

0,07+ 0,005

0,0360

0,0143

0,0172

0,0120

6,75

1,55

0,91

16,63

Vì vậy chúng tôi chọn chất cải biến nền Pd(NO 3)2 0,005 mg +
Mg(NO3)2 0,003 mg cho phép đo GF-AAS để xác định hàm lượng Sn.
3.3. Đường chuẩn, giới hạn phát hiện và giới hạn định lượng
3.3.1. Khảo sát khoảng tuyến tính và xây dựng đường chuẩn
Để khảo sát khoảng tuyến tính của phép đo GF-AAS của thiếc,

chúng tôi tiến hành lập một dãy mẫu chuẩn có nồng độ từ 5 – 200µg/L
trong hỗn hợp nền HNO3 0,1%, chất cải biến nền Pd(NO3)2 0,005 mg +
Mg(NO3)2 0,003 mg và các điều kiện nguyên tử hóa mẫu từ bảng 3.5 đến
bảng 3.11. Kết quả được trình bày ở bảng 3.12.
Bảng 3.12: Kết quả khảo sát khoảng tuyến tính của Sn
C(µg/L)

0,00

5

10
13

20

30

40


Abs

0,0003

0,002

0,0072

0,0133


0,0210

0,0280

RSD (%)

39,89

13,23

6,88

2,84

2,18

1,20

C (µg/L)

60

80

100

150

200


-

Abs

0,0436

0,0581

0,0731

0,1129

0,1294

-

RSD (%)

0,54

0,84

0,62

0,58

0,72

-


Hình 3.2: khoảng tuyến tính của

Hình 3.3: Đường chuẩn thiếc

thiếc
Kết luận: Từ bảng 3.12 và hình vẽ, ta có khoảng tuyến tính của thiếc
từ 10,0 đến 150,0 µg/L
Phương trình đường chuẩn:
Y = (0,00169± 1,25.10-3) + (0,000757 ± 1,79.10-5).C hệ số tương quan
R= 0,999
3.3.2. Giới hạn phát hiện và giới hạn định lượng:
* Giới hạn phát hiện (LOD)
LOD =

3.S y
B

=

3.0,000878
= 3,47
0,000757

* Giới hạn định lượng (LOQ)
14

µg/L



LOQ =

10.S y
B

=

10.0,000878
= 11,59 µg/L
0,000757

3.4. Đánh giá phương trình đường chuẩn
3.4.1. Kiểm tra sự khác nhau có nghĩa giữa hệ số a và giá trị 0
Nếu xem a≈0 thì phương trình y=a+bx được viết thành phương trình
y=b'x và các giá trị b' được tính:
Bảng 3.13: Các giá trị b’
x
y

10
20
30
40
60
80
100
150
0.0072 0.0133 0.0210 0.0280 0.0436 0.0581 0.0731 0.1129

b


0.0007 0.0006 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007



20

65

00

00

27

26

31

53

Bảng 3.14: Các giá trị liên quan đến hệ số
Mean
Trung bình
0.000703
Standard Error
Độ sai chuẩn
0.000019
Standard Deviation
Độ lệch chuẩn

0.000053
Sample Virance
Phương sai mẫu
0,000000
Sum
Tổng
0.0056
Bảng 3.15: Các giá trị thống kê thu được:
Hàm

Tổng các bình

y=a+b.x

phương
0,0088

y = b’. x

0,0250
Có Ftính =

S '2
S2

=

0,0070

0,0038


Bậc tự do

Phương sai

6

0,0038

5

0,0070

Ftính = 1,84

Fbảng : F(0.95, 5, 6) = 4,59
Ta thấy Ftínhkhông có ý nghĩa thống kê, hay phương pháp xác định Sn không mắc sai số
hệ thống.
15


3.4.2. Kiểm tra sự sai khác giữa b và b’
Bảng 3. 16: Kết quả so sánh giữa b và b′ trong phương trình đường
chuẩn của Sn
N=8
b
b'

ttinh =


Trung bình
Độ lệch chuẩn
Độ sai chuẩn
0,00076
0,000074
0,000026
0,00071
0,000026
0,000009
Sự sai khác với độ tin cậy 95%: (-0,000418; 0,000010)
T- Test = 0; T- Value = 0,18 ; P-Value = 0,430

x A − xB
S pooled

0,00076 − 0,00071
n A .nB
=
= 0,257
n A + nB
1,94.−4

So sánh giá trị t tính được từ thực nghiệm và t tra bảng (độ tin cậy 95 %):
tbảng (0,95, n1+n2-2) = tbảng (0,95, 14) = 2,145
ttính < tbảng
Suy ra ttính < tbảng => kết luận được rằng 2 giá trị trung bình của hệ số
b, b’ của đường chuẩn của Sn khác nhau không ý có nghĩa thống kê. Hay
phương pháp xác định Sn không mắc sai số hệ thống (cả sai số hệ thống
biến đổi và sai số hệ thống không đổi).

3.5. Khảo sát các điều kiện xử lí mẫu loại axit
Bảng 3.17: Ảnh hưởng nồng độ axit đến độ hấp thụ quang
Nồng độ (%v/v) HNO3
0,78
1,30
2,08
2,60
TB
0,0312
0,0321
0,0216
0,0214
RSD (%)
5,23
0,15
7,07
0,80
Nồng độ (%v/v) HCl
0,78
1,30
2,08
2,60
TB
0,0253
0,0251
0,0150
0,0163
RSD (%)
1,42
2,34

0,43
1,55
Bảng 3.18: Ảnh hưởng tỉ lệ axit xử lí mẫu đến độ hấp thụ quang
Thể tích HNO3 và HCl %

0,52+0,52

1,30+1,30

2,60+2,60

(v/v)
TB
0,0255
0,0315
0,0281
RSD (%)
11,56
2,17
3,75
Vì vậy, chúng tôi chọn HNO3 1,3 %(v/v) tương đương 0,5ml cho quá
16


trình xử lí mẫu.
3.6. Tổng kết các điều kiện đo, và điều kiện xử lí để đo phổ Sn
Bảng3.19: Các điều kiện đo phổ của Sn
Nhiệt độ sấy mẫu

110-1300C (30 giây)


Nhiệt độ tro hóa

10000C (25 giây)

Nhiệt độ nguyên tử hóa mẫu

22000C (4 giây)

Nhiệt độ làm sạch lò graphit
Môi trường mẫu đo phổ Sn
Chất cải biến nền

2450 (3 giây)
HNO3 0,1%
Pd(NO3)2 0,005+ Mg(NO3)20,003(mg/L)

3.7. Khảo sát sơ bộ thành phần mẫu phân tích
Bảng 3.20: Khảo sát sơ bộ thành phần không khí tại vị trí hàn thiếc
bằng ICP-MS
Stt
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Nguyên tố
Cr
Cd
Ca
Mg
Ag
Al
Fe
Ni
Cu
Pb
K
Na
Se
Sn
Zn

Hàm lượng (µg/L)
0,881
0,001
0,023
0,006
0,001

0,026
162,40
0,101
13,960
0,229
0,023
0,021
0,415
109,22
49,090

17

SD
0,001
0,001
0,002
0,001
0,001
0,002
1,13
0,006
0,053
0,009
0,001
0,004
0,045
0,02
0,113



3.8. Khảo sát ảnh hưởng của các Cation
Bảng 3.21: Khảo sát các yếu tố ảnh hưởng của phép đo
Lần đo
1
2
3
4
5
6
7
Xtb
S
RSD (%)

Kết quả( µg/L)
99,63
97,37
98,92
98,59
95,38
99,20
97,68
98,11
1,44
1,48

Từ kết quả phân tích ở bảng 3.21 cho thấy đối với nồng độ các
cation trong không khí tại vị trí hàn thiếc không ảnh hưởng đến kết quả độ
nhạy và tín hiệu đo của phương pháp.

3.9. Đánh giá phương pháp phân tích
3.9.1. Đánh giá độ đúng của phương pháp
3.9.1.1. Đánh giá độ thu hồi của phương pháp
Bảng 3.22: Kết quả đánh giá độ thu hồi của phép xác định thiếc
Lượng
Sn có
Mẫu

Mức

trong
mẫu
(µg/L)

Thiếc

1
2
3
TB

6,736

Tổng

Lượng
Sn thêm
vào
(µg/L)
5,00

20,00
50,00
18

lượng

Lượng

xác định

tìm thấy

được

(µg/L)

(µg/L)
11,25
25,55
54,93
-

4,51
18,82
48,19
-

Độ thu
hồi (%)


90,28
94,10
96,38
93,58


Qua kết quả khảo sát độ thu hồi trình bày ở bảng 3.22 cho thấy độ
thu hồi của phương pháp khá cao từ 90,28 – 96,38% . Vì vậy có thể kết
luận phương pháp xử lí mẫu đáng tin cậy.
3.9.2. Đánh giá độ lặp lại và độ tái lặp
3.9.2.1. Đánh giá độ lặp lại của thiết bị
Bảng 3.23: Độ ổn định trong ngày và giữa các ngày của phép đo thiếc
bằng GF-AAS
TT

Trung bình

RSD (%)

Ngày 1
0,0137
0,61
Ngày 2
0,0136
0,40
Ngày 3
0,0138
0,88
Giá trị trung bình và độ lệch chuẩn tương đối trong 3 ngày đo tương ứng
là 0,0137 Abs và 0,63 %.

Kết quả thí nghiệm chỉ ra rằng các thông số kĩ thuật, các điều kiện
nguyên tử hóa mẫu, nền mẫu chất cải biến nền được lựa chọn và điều kiện
xử lí bảng 3.19 cho kết quả độ lặp lại và độ tin cậy cao.
3.9.2.2. Đánh giá độ chụm, độ lệch chuẩn lặp lại và độ tái lặp của
phương pháp phân tích
Bảng 3.24: Kết quả hàm lượng thiếc tìm lại được bằng phương pháp
thêm chuẩn của 3 kỹ thuật viên khác nhau
STT
1
2
3
4
5
6
7

KTV-1 (µg/L)

KTV-2 (µg/L)

KTV-3 (µg/L)

49,58
49,38
47,69
49,67
48,27
49,88
50,19


49,87
49,65
48,11
49,69
49,17
49,09
49,30

49,83
48,76
49,80
48,98
49,70
50,03
49,90
19


×