Tải bản đầy đủ (.pdf) (54 trang)

GIAI CHI TIET DE THI TOAN 2010 2015

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (4.11 MB, 54 trang )


BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2010
Môn: TOÁN; Khối: A
Thời gian làm bài: 180 phút, không kể thời gian phát đề

ĐỀ CHÍNH THỨC

I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I (2,0 điểm)
Cho hàm số y = x3 − 2x2 + (1 − m)x + m (1), m là tham số thực.
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1.
2. Tìm m để đồ thị của hàm số (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ x1, x2, x3 thoả mãn điều
kiện x12 + x22 + x32 < 4.
Câu II (2,0 điểm)
π⎞

(1 + sin x + cos 2 x) sin ⎜ x + ⎟
1
4⎠

=
1. Giải phương trình
cos x .
1 + tan x
2
2. Giải bất phương trình

x−
1−



x
2

2( x − x + 1)

≥ 1.

1

x2 + e x + 2 x2e x
∫0 1 + 2e x dx .
Câu IV (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M và N lần lượt là
trung điểm của các cạnh AB và AD; H là giao điểm của CN với DM. Biết SH vuông góc với mặt phẳng
(ABCD) và SH = a 3 . Tính thể tích khối chóp S.CDNM và tính khoảng cách giữa hai đường thẳng DM và
SC theo a.
⎧⎪(4 x 2 + 1) x + ( y − 3) 5 − 2 y = 0
Câu V (1,0 điểm) Giải hệ phương trình ⎨
(x, y ∈ R).
2
2
+
+

=
4
x
y
2
3

4
x
7
⎪⎩
II. PHẦN RIÊNG (3,0 điểm)
Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)
A. Theo chương trình Chuẩn
Câu VI.a (2,0 điểm)
1. Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1: 3 x + y = 0 và d2: 3 x − y = 0 . Gọi (T) là
đường tròn tiếp xúc với d1 tại A, cắt d2 tại hai điểm B và C sao cho tam giác ABC vuông tại B. Viết
3
phương trình của (T), biết tam giác ABC có diện tích bằng
và điểm A có hoành độ dương.
2
x −1 y z + 2
= =
2. Trong không gian toạ độ Oxyz, cho đường thẳng ∆:
và mặt phẳng (P): x − 2y + z = 0.
−1
2
1
Gọi C là giao điểm của ∆ với (P), M là điểm thuộc ∆. Tính khoảng cách từ M đến (P), biết MC = 6 .

Câu III (1,0 điểm) Tính tích phân I =

Câu VII.a (1,0 điểm) Tìm phần ảo của số phức z, biết z = ( 2 + i ) 2 (1 − 2 i ) .
B. Theo chương trình Nâng cao
Câu VI.b (2,0 điểm)
1. Trong mặt phẳng toạ độ Oxy, cho tam giác ABC cân tại A có đỉnh A(6; 6); đường thẳng đi qua trung
điểm của các cạnh AB và AC có phương trình x + y − 4 = 0. Tìm toạ độ các đỉnh B và C, biết điểm E(1; −3)

nằm trên đường cao đi qua đỉnh C của tam giác đã cho.
x+2 y−2 z +3
=
=
2. Trong không gian toạ độ Oxyz, cho điểm A(0; 0; −2) và đường thẳng ∆:
. Tính
2
3
2
khoảng cách từ A đến ∆. Viết phương trình mặt cầu tâm A, cắt ∆ tại hai điểm B và C sao cho BC = 8.
(1 − 3i )3
Câu VII.b (1,0 điểm) Cho số phức z thỏa mãn z =
. Tìm môđun của số phức z + i z.
1− i
----------- Hết ---------Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.

Họ và tên thí sinh:.............................................; Số báo danh................................


BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011
Môn: TOÁN; Khối: A
Thời gian làm bài: 180 phút, không kể thời gian phát đề

ĐỀ CHÍNH THỨC

PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
−x + 1
Câu I (2,0 điểm) Cho hàm số y =

.
2x − 1
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
2. Chứng minh rằng với mọi m đường thẳng y = x + m luôn cắt đồ thị (C) tại hai điểm phân biệt A và
B. Gọi k1, k2 lần lượt là hệ số góc của các tiếp tuyến với (C) tại A và B. Tìm m để tổng k1 + k2 đạt
giá trị lớn nhất.
Câu II (2,0 điểm)
1 + sin 2 x + cos 2 x
= 2 sin x sin 2 x.
1. Giải phương trình
1 + cot 2 x
2
2
3
⎪⎧5 x y − 4 xy + 3 y − 2( x + y ) = 0
( x, y ∈ \).
2. Giải hệ phương trình ⎨
2
2
2
⎪⎩ xy ( x + y ) + 2 = ( x + y )
π

Câu III (1,0 điểm) Tính tích phân I =

4


0


x sin x + ( x + 1) cos x
dx.
x sin x + cos x

Câu IV (1,0 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a;
hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng (ABC). Gọi M là trung điểm của AB;
mặt phẳng qua SM và song song với BC, cắt AC tại N. Biết góc giữa hai mặt phẳng (SBC) và (ABC)
bằng 60o. Tính thể tích khối chóp S.BCNM và khoảng cách giữa hai đường thẳng AB và SN theo a.
Câu V (1,0 điểm) Cho x, y, z là ba số thực thuộc đoạn [1; 4] và x ≥ y, x ≥ z. Tìm giá trị nhỏ nhất của
x
y
z
biểu thức P =
+
+
.
y+z z+x
2x + 3 y
PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)
A. Theo chương trình Chuẩn
Câu VI.a (2,0 điểm)
1. Trong mặt phẳng toạ độ Oxy, cho đường thẳng ∆: x + y + 2 = 0 và đường tròn
(C ) : x 2 + y 2 − 4 x − 2 y = 0. Gọi I là tâm của (C), M là điểm thuộc ∆. Qua M kẻ các tiếp tuyến
MA và MB đến (C) (A và B là các tiếp điểm). Tìm tọa độ điểm M, biết tứ giác MAIB có diện tích
bằng 10.
2. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2; 0; 1), B(0; –2; 3) và mặt phẳng
( P) : 2 x − y − z + 4 = 0. Tìm tọa độ điểm M thuộc (P) sao cho MA = MB = 3.
2

Câu VII.a (1,0 điểm) Tìm tất cả các số phức z, biết: z 2 = z + z.

B. Theo chương trình Nâng cao
Câu VI.b (2,0 điểm)

x2
y2
+
= 1. Tìm tọa độ các điểm A và B thuộc
1. Trong mặt phẳng tọa độ Oxy, cho elip ( E ):
4
1
(E), có hoành độ dương sao cho tam giác OAB cân tại O và có diện tích lớn nhất.
2. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu ( S ) : x 2 + y 2 + z 2 − 4 x − 4 y − 4 z = 0 và điểm
A(4; 4; 0) . Viết phương trình mặt phẳng (OAB), biết điểm B thuộc (S) và tam giác OAB đều.
Câu VII.b (1,0 điểm) Tính môđun của số phức z, biết: (2 z − 1)(1 + i ) + ( z + 1)(1 − i ) = 2 − 2i .
----------- Hết ---------Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.

Họ và tên thí sinh:.............................................; Số báo danh:................................


BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012
Môn: TOÁN; Khối A và khối A1
Thời gian làm bài: 180 phút, không kể thời gian phát đề

ĐỀ CHÍNH THỨC

I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu 1 (2,0 điểm). Cho hàm số y = x 4 − 2( m + 1) x 2 + m 2 (1), với m là tham số thực.
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 0.

b) Tìm m để đồ thị của hàm số (1) có ba điểm cực trị tạo thành ba đỉnh của một tam giác vuông.
Câu 2 (1,0 điểm). Giải phương trình 3 sin 2 x + cos 2 x = 2 cos x − 1.
⎧ x3 − 3 x 2 − 9 x + 22 = y 3 + 3 y 2 − 9 y

Câu 3 (1,0 điểm). Giải hệ phương trình ⎨ 2
( x, y ∈ \).
1
2
x
+
y

x
+
y
=

2

3

1 + ln( x + 1)
dx.
2
x
1
Câu 5 (1,0 điểm). Cho hình chóp S . ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S
trên mặt phẳng (ABC) là điểm H thuộc cạnh AB sao cho HA = 2 HB. Góc giữa đường thẳng SC và mặt
phẳng (ABC) bằng 60o. Tính thể tích của khối chóp S.ABC và tính khoảng cách giữa hai đường thẳng SA
và BC theo a.

Câu 6 (1,0 điểm). Cho các số thực x, y , z thỏa mãn điều kiện x + y + z = 0. Tìm giá trị nhỏ nhất của biểu thức
Câu 4 (1,0 điểm). Tính tích phân I = ∫

P = 3 | x− y | + 3 | y − z | + 3 | z − x | − 6 x 2 + 6 y 2 + 6 z 2 .
II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần riêng (phần A hoặc phần B)
A. Theo chương trình Chuẩn
Câu 7.a (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD. Gọi M là trung điểm
11 1
của cạnh BC, N là điểm trên cạnh CD sao cho CN = 2 ND. Giả sử M
và đường thẳng AN có
;
2 2
phương trình 2 x − y − 3 = 0. Tìm tọa độ điểm A.
x +1 y z − 2
Câu 8.a (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

= =
1
2
1
điểm I (0; 0;3). Viết phương trình mặt cầu (S) có tâm I và cắt d tại hai điểm A, B sao cho tam giác IAB
vuông tại I.
Câu 9.a (1,0 điểm). Cho n là số nguyên dương thỏa mãn 5Cnn −1 = Cn3 . Tìm số hạng chứa x 5 trong khai

(

(

)


)

n

nx 2 1

, x ≠ 0.
triển nhị thức Niu-tơn của
14 x
B. Theo chương trình Nâng cao
Câu 7.b (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C ): x 2 + y 2 = 8. Viết phương
trình chính tắc của elip (E), biết rằng (E) có độ dài trục lớn bằng 8 và (E) cắt (C) tại bốn điểm tạo thành
bốn đỉnh của một hình vuông.
x +1 y z − 2
Câu 8.b (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
= =
, mặt
2
1
1
phẳng ( P ): x + y − 2 z + 5 = 0 và điểm A(1; −1; 2). Viết phương trình đường thẳng ∆ cắt d và (P) lần lượt
tại M và N sao cho A là trung điểm của đoạn thẳng MN.
5( z + i )
Câu 9.b (1,0 điểm). Cho số phức z thỏa mãn
= 2 − i. Tính môđun của số phức w = 1 + z + z 2 .
z +1
---------- HẾT ---------Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh:....................................................................; Số báo danh: ..............................................



BỘ GIÁO DỤC VÀ ĐÀO TẠO
−−−−−−−−−−
ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013
Môn: TOÁN; Khối A và khối A1
Thời gian làm bài: 180 phút, không kể thời gian phát đề
−−−−−−−−−−−−−−−−−−−

I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu 1 (2,0 điểm). Cho hàm số y = −x3 + 3x2 + 3mx − 1

(1), với m là tham số thực.

a) Khảo sát sự biến thiên và vẽ đồ thò của hàm số (1) khi m = 0.

b) Tìm m để hàm số (1) nghòch biến trên khoảng (0; + ∞).

π
Câu 2 (1,0 điểm). Giải phương trình 1 + tan x = 2 2 sin x +
.
4


x + 1 + 4 x − 1 − y4 + 2 = y
Câu 3 (1,0 điểm). Giải hệ phương trình
x2 + 2x(y − 1) + y 2 − 6y + 1 = 0

(x, y ∈ R).


2

Câu 4 (1,0 điểm). Tính tích phân

x2 − 1
ln x dx.
x2

I=
1

Câu 5 (1,0 điểm). Cho hình chóp S.ABC có đáy là tam giác vuông tại A, ABC = 30◦ , SBC là
tam giác đều cạnh a và mặt bên SBC vuông góc với đáy. Tính theo a thể tích của khối chóp
S.ABC và khoảng cách từ điểm C đến mặt phẳng (SAB).
Câu 6 (1,0 điểm). Cho các số thực dương a, b, c thỏa mã√
n điều kiện (a + c)(b + c) = 4c2 . Tìm giá trò
32a3
32b3
a 2 + b2
nhỏ nhất của biểu thức P =
+

.
(b + 3c)3 (a + 3c)3
c
II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B)
A. Theo chương trình Chuẩn
Câu 7.a (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm C thuộc
đường thẳng d : 2x + y + 5 = 0 và A(−4; 8). Gọi M là điểm đối xứng của B qua C, N là hình chiếu
vuông góc của B trên đường thẳng MD. Tìm tọa độ các điểm B và C, biết rằng N(5; −4).

y+1
z+2
x−6
Câu 8.a (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ :
=
=
−3
−2
1
và điểm A(1; 7; 3). Viết phương
trình
mặ
t
phẳ
n
g
(P
)
đi
qua
A

vuô
n
g

c
vớ
i
∆.

Tìm
tọ
a
độ
điể
m

M thuộc ∆ sao cho AM = 2 30.
Câu 9.a (1,0 điểm). Gọi S là tập hợp tất cả các số tự nhiên gồm ba chữ số phân biệt được chọn từ
các chữ số 1; 2; 3; 4; 5; 6; 7. Xác đònh số phần tử của S. Chọn ngẫu nhiên một số từ S, tính xác suất
để số được chọn là số chẵn.
B. Theo chương trình Nâng cao
Câu 7.b (1,0 điểm). Trong √
mặt phẳng với hệ tọa độ Oxy, cho đường thẳng√∆ : x − y = 0. Đường
tròn (C) có bán kính R = 10 cắt ∆ tại hai điểm A và B sao cho AB = 4 2. Tiếp tuyến của (C)
tại A và B cắt nhau tại một điểm thuộc tia Oy. Viết phương trình đường tròn (C).
Câu 8.b (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P ) : 2x + 3y + z − 11 = 0
và mặt cầu (S) : x2 + y 2 + z 2 − 2x + 4y − 2z − 8 = 0. Chứng minh (P ) tiếp xúc với (S). Tìm tọa độ
tiếp điểm của (P ) và (S).

Câu 9.b (1,0 điểm). Cho số phức z = 1 + 3 i. Viết dạng lượng giác của z. Tìm phần thực và phần ảo
của số phức w = (1 + i)z5.
−−−−−−Hết−−−−−−
Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.

Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; Số báo danh: . . . . . . . . . . . . . . . . . . . . .


BỘ GIÁO DỤC VÀ ĐÀO TẠO
−−−−−−−−−−

ĐỀ CHÍNH THỨC

Câu 1 (2,0 điểm). Cho hàm số y =

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2014
Môn: TOÁN; Khối A và Khối A1
Thời gian làm bài: 180 phút, không kể thời gian phát đề
−−−−−−−−−−−−−−−−−−−
x+2
x−1

(1).

a) Khảo sát sự biến thiên và vẽ đồ thò (C) của hàm số (1).
b) Tìm tọa độ điểm M thuộc (C) sao cho khoảng cách từ M đến đường thẳng y = −x bằng
Câu 2 (1,0 điểm). Giải phương trình



2.

sin x + 4 cos x = 2 + sin 2x.

Câu 3 (1,0 điểm). Tính diện tích hình phẳng giới hạn bởi đường cong y = x2 − x + 3 và đường
thẳng y = 2x + 1.
Câu 4 (1,0 điểm).
a) Cho số phức z thỏa mãn điều kiện z + (2 + i) z = 3 + 5i. Tìm phần thực và phần ảo của z.
b) Từ một hộp chứa 16 thẻ được đánh số từ 1 đến 16, chọn ngẫu nhiên 4 thẻ. Tính xác suất
để 4 thẻ được chọn đều được đánh số chẵn.
Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P ) : 2x+y −2z −1 = 0

y
z+3
x−2
=
=
. Tìm tọa độ giao điểm của d và (P ). Viết phương
và đường thẳng d :
1
−2
3
trình mặt phẳng chứa d và vuông góc với (P ).
3a
,
2
hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Tính theo a
thể tích khối chóp S.ABCD và khoảng cách từ A đến mặt phẳng (SBD).
Câu 6 (1,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SD =

Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có điểm M
là trung điểm của đoạn AB và N là điểm thuộc đoạn AC sao cho AN = 3NC. Viết phương
trình đường thẳng CD, biết rằng M(1; 2) và N(2; −1).
Câu 8 (1,0 điểm). Giải hệ phương trình


x 12 − y +

y(12 − x2 ) = 12
(x, y ∈ R).

x3 − 8x − 1 = 2 y − 2


Câu 9 (1,0 điểm). Cho x, y, z là các số thực không âm và thỏa mãn điều kiện x2 + y 2 + z 2 = 2.
Tìm giá trò lớn nhất của biểu thức
P =

x2
y+z
1 + yz
+

.
x2 + yz + x + 1 x + y + z + 1
9
−−−−−−Hết−−−−−−

Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; Số báo danh: . . . . . . . . . . . . . . . . . . .


BỘ GIÁO DỤC VÀ ĐÀO TẠO

KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA NĂM 2015

ĐỀ THI CHÍNH THỨC

Môn thi: TOÁN

(Đề thi gồm 01 trang)

Thời gian làm bài: 180 phút, không kể thời gian phát đề

−−−−−−−−−−−−

Câu 1 (1,0 điểm). Khảo sát sự biến thiên và vẽ đồ thò của hàm số y = x3 − 3x.
Câu 2 (1,0 điểm). Tìm giá trò lớn nhất và giá trò nhỏ nhất của hàm số f(x) = x +

4
trên đoạn [1; 3].
x

Câu 3 (1,0 điểm).
a) Cho số phức z thỏa mãn (1 − i) z − 1 + 5i = 0. Tìm phần thực và phần ảo của z.
b) Giải phương trình log2 (x2 + x + 2) = 3.
1

Câu 4 (1,0 điểm). Tính tích phân I =

(x − 3)ex dx.
0

Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1; −2; 1), B(2; 1; 3) và
mặt phẳng (P ) : x − y + 2z − 3 = 0. Viết phương trình đường thẳng AB và tìm tọa độ giao điểm
của đường thẳng AB với mặt phẳng (P ).
Câu 6 (1,0 điểm).
2
a) Tính giá trò của biểu thức P = (1 − 3 cos 2α)(2 + 3 cos 2α), biết sin α = .
3
b) Trong đợt ứng phó dòch MERS-CoV, Sở Y tế thành phố đã chọn ngẫu nhiên 3 đội phòng chống
dòch cơ động trong số 5 đội của Trung tâm y tế dự phòng thành phố và 20 đội của các Trung tâm
y tế cơ sở để kiểm tra công tác chuẩn bò. Tính xác suất để có ít nhất 2 đội của các Trung tâm y
tế cơ sở được chọn.

Câu 7 (1,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc
với mặt phẳng (ABCD), góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45◦ . Tính theo
a thể tích của khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SB, AC.
Câu 8 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC vuông tại A. Gọi H
là hình chiếu vuông góc của A trên cạnh BC; D là điểm đối xứng của B qua H; K là hình chiếu
vuông góc của C trên đường thẳng AD. Giả sử H(−5; −5), K(9; −3) và trung điểm của cạnh AC
thuộc đường thẳng x − y + 10 = 0. Tìm tọa độ điểm A.
Câu 9 (1,0 điểm). Giải phương trình


x2 + 2x − 8
= (x + 1) x + 2 − 2 trên tập số thực.
2
x − 2x + 3

Câu 10 (1,0 điểm). Cho các số thực a, b, c thuộc đoạn [1; 3] và thỏa mãn điều kiện a + b + c = 6.
Tìm giá trò lớn nhất của biểu thức
P =

a2b2 + b2 c2 + c2a2 + 12abc + 72 1
− abc.
ab + bc + ca
2
−−−−−−−−Hết−−−−−−−−

Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . ; Số báo danh: . . . . . . . . . . . . . . . . . . . .


BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2010
Môn: TOÁN; Khối: B
Thời gian làm bài: 180 phút, không kể thời gian phát đề

PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
2x +1
Câu I (2,0 điểm) Cho hàm số y =
.
x +1
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
2. Tìm m để đường thẳng y = −2x + m cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho tam giác OAB
có diện tích bằng 3 (O là gốc tọa độ).
Câu II (2,0 điểm)
1. Giải phương trình (sin 2 x + cos 2 x) cos x + 2 cos 2 x − sin x = 0 .

2. Giải phương trình

3x + 1 − 6 − x + 3x 2 − 14 x − 8 = 0 (x ∈ R).
e

Câu III (1,0 điểm) Tính tích phân I =

ln x

∫ x ( 2 + ln x )2 dx .
1

Câu IV (1,0 điểm) Cho hình lăng trụ tam giác đều ABC. A ' B ' C ' có AB = a, góc giữa hai mặt phẳng

( A ' BC ) và ( ABC ) bằng 60o . Gọi G là trọng tâm tam giác A ' BC . Tính thể tích khối lăng trụ đã cho
và tính bán kính mặt cầu ngoại tiếp tứ diện GABC theo a.
Câu V (1,0 điểm) Cho các số thực không âm a, b, c thỏa mãn: a + b + c = 1. Tìm giá trị nhỏ nhất

của biểu thức M = 3( a 2b 2 + b 2 c 2 + c 2 a 2 ) + 3(ab + bc + ca ) + 2 a 2 + b 2 + c 2 .
PHẦN RIÊNG (3,0 điểm)
Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)
A. Theo chương trình Chuẩn
Câu VI.a (2,0 điểm)
1. Trong mặt phẳng toạ độ Oxy, cho tam giác ABC vuông tại A, có đỉnh C(− 4; 1), phân giác trong góc A có
phương trình x + y − 5 = 0. Viết phương trình đường thẳng BC, biết diện tích tam giác ABC bằng 24 và
đỉnh A có hoành độ dương.
2. Trong không gian toạ độ Oxyz, cho các điểm A(1; 0; 0), B(0; b; 0), C(0; 0; c), trong đó b, c dương
và mặt phẳng (P): y − z + 1 = 0. Xác định b và c, biết mặt phẳng (ABC) vuông góc với mặt phẳng
1
(P) và khoảng cách từ điểm O đến mặt phẳng (ABC) bằng .
3
Câu VII.a (1,0 điểm) Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn:
z − i = (1 + i ) z .
B. Theo chương trình Nâng cao
Câu VI.b (2,0 điểm)

x2
y2
+
= 1 . Gọi F1 và F2 là các
1. Trong mặt phẳng toạ độ Oxy, cho điểm A(2; 3 ) và elip (E):
3
2
tiêu điểm của (E) (F1 có hoành độ âm); M là giao điểm có tung độ dương của đường thẳng AF1 với

(E); N là điểm đối xứng của F2 qua M. Viết phương trình đường tròn ngoại tiếp tam giác ANF2.
x y −1 z
2. Trong không gian toạ độ Oxyz, cho đường thẳng Δ: =
= . Xác định tọa độ điểm M trên
2
1
2
trục hoành sao cho khoảng cách từ M đến Δ bằng OM.
⎧⎪log 2 (3 y − 1) = x
Câu VII.b (1,0 điểm) Giải hệ phương trình ⎨ x
(x, y ∈ R).
x
2
⎪⎩4 + 2 = 3 y
---------- Hết ---------Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh: .............................................; Số báo danh: ...................................


BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012
Môn: TOÁN; Khối B
Thời gian làm bài: 180 phút, không kể thời gian phát đề

ĐỀ CHÍNH THỨC

I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu 1 (2,0 điểm). Cho hàm số y = x3 − 3mx 2 + 3m3 (1), m là tham số thực.
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1.
b) Tìm m để đồ thị hàm số (1) có hai điểm cực trị A và B sao cho tam giác OAB có diện tích bằng 48.

Câu 2 (1,0 điểm). Giải phương trình 2(cos x + 3 sin x) cos x = cos x − 3 sin x + 1.
Câu 3 (1,0 điểm). Giải bất phương trình x + 1 + x 2 − 4 x + 1 ≥ 3 x .
1

Câu 4 (1,0 điểm). Tính tích phân I = ∫
0

x3
x 4 + 3x2 + 2

dx.

Câu 5 (1,0 điểm). Cho hình chóp tam giác đều S.ABC với SA = 2a, AB = a. Gọi H là hình chiếu
vuông góc của A trên cạnh SC. Chứng minh SC vuông góc với mặt phẳng (ABH). Tính thể tích của
khối chóp S.ABH theo a.
Câu 6 (1,0 điểm). Cho các số thực x, y, z thỏa mãn các điều kiện x + y + z = 0 và x 2 + y 2 + z 2 = 1.
Tìm giá trị lớn nhất của biểu thức P = x5 + y5 + z 5 .
II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần riêng (phần A hoặc phần B)
A. Theo chương trình Chuẩn
Câu 7.a (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho các đường tròn (C1 ): x 2 + y 2 = 4,
(C2 ): x 2 + y 2 − 12 x + 18 = 0 và đường thẳng d : x − y − 4 = 0. Viết phương trình đường tròn có tâm
thuộc (C2 ), tiếp xúc với d và cắt (C1 ) tại hai điểm phân biệt A và B sao cho AB vuông góc với d.
x −1 y
z
và hai
= =
2
1 −2
điểm A(2;1; 0), B (−2;3; 2). Viết phương trình mặt cầu đi qua A, B và có tâm thuộc đường thẳng d.


Câu 8.a (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

Câu 9.a (1,0 điểm). Trong một lớp học gồm có 15 học sinh nam và 10 học sinh nữ. Giáo viên gọi
ngẫu nhiên 4 học sinh lên bảng giải bài tập. Tính xác suất để 4 học sinh được gọi có cả nam và nữ.
B. Theo chương trình Nâng cao
Câu 7.b (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hình thoi ABCD có AC = 2 BD và
đường tròn tiếp xúc với các cạnh của hình thoi có phương trình x 2 + y 2 = 4. Viết phương trình chính
tắc của elip (E) đi qua các đỉnh A, B, C, D của hình thoi. Biết A thuộc Ox.
Câu 8.b (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho A(0; 0;3), M (1; 2; 0). Viết phương trình
mặt phẳng (P) qua A và cắt các trục Ox, Oy lần lượt tại B, C sao cho tam giác ABC có trọng tâm
thuộc đường thẳng AM.
Câu 9.b (1,0 điểm). Gọi z1 và z2 là hai nghiệm phức của phương trình z 2 − 2 3 i z − 4 = 0. Viết dạng
lượng giác của z1 và z2.
---------- HẾT ---------Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh: ................................................................... ; Số báo danh:............................................. .


BỘ GIÁO DỤC VÀ ĐÀO TẠO
ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011
Môn: TOÁN; Khối: B
Thời gian làm bài: 180 phút, không kể thời gian phát đề

PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I (2,0 điểm) Cho hàm số y = x 4 − 2(m + 1) x 2 + m (1), m là tham số.
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = 1.
2. Tìm m để đồ thị hàm số (1) có ba điểm cực trị A, B, C sao cho OA = BC; trong đó O là gốc
tọa độ, A là điểm cực trị thuộc trục tung, B và C là hai điểm cực trị còn lại.
Câu II (2,0 điểm)

1. Giải phương trình sin2xcosx + sinxcosx = cos2x + sinx + cosx.
2. Giải phương trình 3 2 + x − 6 2 − x + 4 4 − x 2 = 10 − 3 x ( x ∈ \).
π

Câu III (1,0 điểm) Tính tích phân I =

3

1 + x sin x
dx.
cos 2 x
0



Câu IV (1,0 điểm) Cho lăng trụ ABCD.A1B1C1D1 có đáy ABCD là hình chữ nhật, AB = a,
AD = a 3. Hình chiếu vuông góc của điểm A1 trên mặt phẳng (ABCD) trùng với giao điểm
của AC và BD. Góc giữa hai mặt phẳng (ADD1A1) và (ABCD) bằng 60o. Tính thể tích khối
lăng trụ đã cho và khoảng cách từ điểm B1 đến mặt phẳng (A1BD) theo a.
Câu V (1,0 điểm) Cho a và b là các số thực dương thỏa mãn 2(a2 + b2) + ab = (a + b)(ab + 2).
⎛ a 3 b3 ⎞
⎛ a 2 b2 ⎞
Tìm giá trị nhỏ nhất của biểu thức P = 4 ⎜ 3 + 3 ⎟ − 9 ⎜ 2 + 2 ⎟ ⋅
a ⎠
a ⎠
⎝b
⎝b
PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)
A. Theo chương trình Chuẩn
Câu VI.a (2,0 điểm)

1. Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng ∆: x – y – 4 = 0 và d: 2x – y – 2 = 0.
Tìm tọa độ điểm N thuộc đường thẳng d sao cho đường thẳng ON cắt đường thẳng ∆ tại
điểm M thỏa mãn OM.ON = 8.
x − 2 y +1 z
2. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Δ :
và mặt
=
=
1
−2
−1
phẳng (P): x + y + z – 3 = 0. Gọi I là giao điểm của ∆ và (P). Tìm tọa độ điểm M thuộc (P)
sao cho MI vuông góc với ∆ và MI = 4 14.
5+i 3
Câu VII.a (1,0 điểm) Tìm số phức z, biết: z −
− 1 = 0.
z
B. Theo chương trình Nâng cao
Câu VI.b (2,0 điểm)
⎛1 ⎞
1. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh B ⎜ ; 1⎟ . Đường tròn nội tiếp
⎝2 ⎠
tam giác ABC tiếp xúc với các cạnh BC, CA, AB tương ứng tại các điểm D, E, F. Cho
D (3; 1) và đường thẳng EF có phương trình y – 3 = 0. Tìm tọa độ đỉnh A, biết A có tung
độ dương.
x + 2 y −1 z + 5
2. Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ∆:
và hai
=
=

−2
1
3
điểm A(– 2; 1; 1), B(– 3; – 1; 2). Tìm toạ độ điểm M thuộc đường thẳng ∆ sao cho tam
giác MAB có diện tích bằng 3 5.
B

B

3

⎛1+ i 3 ⎞
Câu VII.b (1,0 điểm) Tìm phần thực và phần ảo của số phức z = ⎜⎜
⎟⎟ .
⎝ 1+ i ⎠

----------- Hết ---------Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh:.............................................; Số báo danh:................................


BỘ GIÁO DỤC VÀ ĐÀO TẠO
−−−−−−−−−−
ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013
Môn: TOÁN; Khối B
Thời gian làm bài: 180 phút, không kể thời gian phát đề
−−−−−−−−−−−−−−−−−−−

I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)


Câu 1 (2,0 điểm). Cho hàm số y = 2x3 − 3(m + 1)x2 + 6mx (1), với m là tham số thực.
a) Khảo sát sự biến thiên và vẽ đồ thò của hàm số (1) khi m = −1.
b) Tìm m để đồ thò hàm số (1) có hai điểm cực trò A và B sao cho đường thẳng AB vuông góc với
đường thẳng y = x + 2.
Câu 2 (1,0 điểm). Giải phương trình sin 5x + 2 cos2 x = 1.
Câu 3 (1,0 điểm). Giải hệ phương trình
1

Câu 4 (1,0 điểm). Tính tích phân

2x2 + y 2 − 3xy + 3x − 2y + 1 = 0
(x, y ∈ R).


4x2 − y 2 + x + 4 = 2x + y + x + 4y

x 2 − x2 dx.

I=
0

Câu 5 (1,0 điểm). Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác
đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính theo a thể tích của khối chóp
S.ABCD và khoảng cách từ điểm A đến mặt phẳng (SCD).
Câu 6 (1,0 điểm). Cho a, b, c là các số thực dương. Tìm giá trò lớn nhất của biểu thức
4
9
P =√


.
a 2 + b 2 + c2 + 4
(a + b) (a + 2c)(b + 2c)
II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B)
A. Theo chương trình Chuẩn
Câu 7.a (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang cân ABCD có hai đường
chéo vuông góc với nhau và AD = 3BC. Đường thẳng BD có phương trình x + 2y − 6 = 0 và tam
giác ABD có trực tâm là H(−3; 2). Tìm tọa độ các đỉnh C và D.
Câu 8.a (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho điểm A(3; 5; 0) và mặt phẳng
(P ) : 2x + 3y − z − 7 = 0. Viết phương trình đường thẳng đi qua A và vuông góc với (P ). Tìm tọa
độ điểm đối xứng của A qua (P ).
Câu 9.a (1,0 điểm). Có hai chiếc hộp chứa bi. Hộp thứ nhất chứa 4 viên bi đỏ và 3 viên bi trắng,
hộp thứ hai chứa 2 viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên từ mỗi hộp ra 1 viên bi, tính xác
suất để 2 viên bi được lấy ra có cùng màu.
B. Theo chương trình Nâng cao
Câu 7.b (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có chân đường cao hạ
17 1
từ đỉnh A là H
; − , chân đường phân giác trong của góc A là D(5; 3) và trung điểm của cạnh
5
5
AB là M(0; 1). Tìm tọa độ đỉnh C.
Câu 8.b (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1; −1; 1), B(−1; 2; 3) và
x+1
y−2
z −3
đường thẳng ∆ :
=
=
. Viết phương trình đường thẳng đi qua A, vuông góc với

−2
1
3
hai đường thẳng AB và ∆.
Câu 9.b (1,0 điểm). Giải hệ phương trình

x2 + 2y = 4x − 1

2 log 3 (x − 1) − log√3(y + 1) = 0.
−−−−−−Hết−−−−−−
Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; Số báo danh: . . . . . . . . . . . . . . . . . . . . .


BỘ GIÁO DỤC VÀ ĐÀO TẠO
−−−−−−−−−

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2014
Môn: TOÁN; Khối B
Thời gian làm bài: 180 phút, không kể thời gian phát đề
−−−−−−−−−−−−−−−−−−−

Câu 1 (2,0 điểm). Cho hàm số y = x 3 − 3mx + 1

(1), với m là tham số thực.

a) Khảo sát sự biến thiên và vẽ đồ thò của hàm số (1) khi m = 1.


b) Cho điểm A(2; 3). Tìm m để đồ thò hàm số (1) có hai điểm cực trò B và C sao cho
tam giác ABC cân tại A.

Câu 2 (1,0 điểm). Giải phương trình
2(sin x − 2 cos x) = 2 − sin 2x.
2

x2 + 3x + 1
dx.
x2 + x

Câu 3 (1,0 điểm). Tính tích phân I =
1

Câu 4 (1,0 điểm).
a) Cho số phức z thỏa mãn điều kiện 2z + 3(1 − i) z = 1 − 9i. Tính môđun của z.

b) Để kiểm tra chất lượng sản phẩm từ một công ty sữa, người ta đã gửi đến bộ phận
kiểm nghiệm 5 hộp sữa cam, 4 hộp sữa dâu và 3 hộp sữa nho. Bộ phận kiểm nghiệm
chọn ngẫu nhiên 3 hộp sữa để phân tích mẫu. Tính xác suất để 3 hộp sữa được chọn
có cả 3 loại.
Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 0; −1) và đường
y+1
z
x−1
=
=
. Viết phương trình mặt phẳng qua A và vuông góc với d.
thẳng d :
2

2
−1
Tìm tọa độ hình chiếu vuông góc của A trên d.
Câu 6 (1,0 điểm). Cho lăng trụ ABC.A B C có đáy là tam giác đều cạnh a. Hình chiếu
vuông góc của A trên mặt phẳng (ABC) là trung điểm của cạnh AB, góc giữa đường
thẳng A C và mặt đáy bằng 60 ◦ . Tính theo a thể tích của khối lăng trụ ABC.A B C và
khoảng cách từ điểm B đến mặt phẳng (ACC A ).
Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD. Điểm
M (−3; 0) là trung điểm của cạnh AB, điểm H(0; −1) là hình chiếu vuông góc của B trên
4
AD và điểm G ; 3 là trọng tâm của tam giác BCD. Tìm tọa độ các điểm B và D.
3
Câu 8 (1,0 điểm). Giải hệ phương trình


(1 − y) x − y + x = 2 + (x − y − 1) y
(x, y ∈ R).


2y 2 − 3x + 6y + 1 = 2 x − 2y − 4x − 5y − 3
Câu 9 (1,0 điểm). Cho các số thực a, b, c không âm và thỏa mãn điều kiện (a + b)c > 0.
Tìm giá trò nhỏ nhất của biểu thức
P =

a
+
b+c

b
c

+
.
a + c 2(a + b)

−−−−−
−Hết−−−−−

Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh: . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . ; Số báo danh: . . . . . . . . . . . . . . . . . .


ĐÁP ÁN – THANG ĐIỂM
ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2010
Môn: TOÁN; Khối A
(Đáp án - thang điểm gồm 04 trang)

BỘ GIÁO DỤC VÀ ĐÀO TẠO
⎯⎯⎯⎯⎯⎯⎯⎯
ĐỀ CHÍNH THỨC

ĐÁP ÁN − THANG ĐIỂM
Câu
I
(2,0 điểm)

Đáp án

Điểm

1. (1,0 điểm)

Khi m = 1, ta có hàm số y = x3 − 2x2 + 1.
• Tập xác định: R.
0,25

• Sự biến thiên:
- Chiều biến thiên: y ' = 3x2 − 4x;

y '( x) = 0 ⇔ x = 0 hoặc x =

4
.
3

⎛4

Hàm số đồng biến trên các khoảng (−∞; 0) và ⎜ ; + ∞ ⎟ ; nghịch biến trên khoảng
3


4
5
- Cực trị: Hàm số đạt cực đại tại x = 0; yCĐ = 1, đạt cực tiểu tại x = ; yCT = − .
3
27
- Giới hạn: lim y = − ∞ ; lim y = + ∞.
x→ − ∞

- Bảng biến thiên:

⎛ 4⎞

⎜ 0; ⎟ .
⎝ 3⎠

0,25

x→ + ∞

x −∞
+

y'

4
3

0
0
1

y



0

• Đồ thị:

+

0,25


+∞


−∞

+∞

5
27

y
1

0,25
O


4
3

5
27

2

x

2. (1,0 điểm)
Phương trình hoành độ giao điểm: x3 − 2x2 + (1 − m)x + m = 0

⇔ (x − 1)(x2 − x − m) = 0 ⇔ x = 1 hoặc x2 − x − m = 0 (*)

0,25

Đồ thị của hàm số (1) cắt trục hoành tại 3 điểm phân biệt, khi và chỉ khi phương trình (*) có 2 nghiệm
phân biệt, khác 1.

0,25

Ký hiệu g(x) = x2 − x − m; x1 = 1; x2 và x3 là các nghiệm của (*).
⎧∆ > 0

Yêu cầu bài toán thỏa mãn khi và chỉ khi: ⎨ g (1) ≠ 0
⎪ 2
2
⎩ x2 + x3 < 3
⎧1 + 4m > 0
1

⇔ ⎨−m ≠ 0
⇔ − < m < 1 và m ≠ 0.
4
⎪1 + 2m < 3

Trang 1/4

0,25

0,25



Câu
II
(2,0 điểm)

Đáp án

Điểm

1. (1,0 điểm)
Điều kiện: cosx ≠ 0 và 1 + tanx ≠ 0.
Khi đó, phương trình đã cho tương đương:

π⎞

2 sin ⎜ x + ⎟ (1 + sinx + cos2x) = (1 + tanx)cosx
4⎠

sin x + cos x
cos x ⇔ sinx + cos2x = 0
cos x

⇔ (sinx + cosx)(1 + sinx + cos2x) =

⇔ 2sin2x − sinx − 1 = 0 ⇔ sinx = 1 (loại) hoặc sinx = −
⇔ x=−

π

+ k2π hoặc x =


6

1
2

0,25

0,25
0,25


+ k2π (k ∈ Z).
6

0,25

2. (1,0 điểm)
Điều kiện: x ≥ 0.
2( x 2 − x + 1) =

Ta có:

x 2 + ( x − 1) 2 + 1 > 1, suy ra 1 −

Do đó, bất phương trình đã cho tương đương với:
Mặt khác

2( x 2 − x + 1) =


2( x 2 − x + 1) ≤ 1 − x +

2(1 − x) 2 + 2( x ) 2 ≥ 1 − x +

2( x 2 − x + 1) = 1 − x +

(1) ⇔

x

0,25
(1)
0,25

x (2), do đó:

x (3)

Để ý rằng: + Dấu bằng ở (2) xảy ra chỉ khi: 1 − x =
+ 1−x =

2( x 2 − x + 1) < 0.

x kéo theo 1 − x +

x đồng thời 1 − x +

x ≥ 0.

x ≥ 0, do đó:


(3) ⇔ 1 − x = x
⎧⎪1 − x ≥ 0
⎧⎪ x ≤ 1

⇔ ⎨
⎨ 2
2
⎪⎩(1 − x) = x
⎪⎩ x − 3 x + 1 = 0

III
(1,0 điểm)

0,25

3− 5
⇔ x =
, thỏa mãn điều kiện x ≥ 0.
2
1
1
1

ex ⎞
ex
2
I = ∫ ⎜⎜ x 2 +
d
x

=
x
d
x
+


∫ 1 + 2e x dx .
1 + 2e x ⎟⎠
0 ⎝
0
0
1

Ta có:



x 2 dx =

0

1 3
x
3

1




ex
1
∫ 1 + 2e x dx = 2
0

1


0

1

=
0

0,25

0,25

1
3

0,25

d(1 + 2e x )
, suy ra:
1 + 2e x

0,25


1

1
1
1 1 1 + 2e 1 1 1 + 2e
I =
+ ln(1 + 2e x ) = + ln
= + ln
.
3
3 2
3 2
2
3
3
0

S

IV
(1,0 điểm)

K
N

A
M

H


D

• Thể tích khối chóp S.CDNM.
SCDNM = SABCD − SAMN − SBCM
1
1
= AB2 − AM.AN − BC.BM
2
2
2
2
a
a
5a 2
= a2 −

=
.
8
4
8
VS.CDNM =

1
5 3 a3
SCDNM.SH =
.
3
24


C
B
• Khoảng cách giữa hai đường thẳng DM và SC.
n ⇒ DM ⊥ CN, kết hợp với DM ⊥ SH, suy ra DM ⊥ (SHC).
∆ADM = ∆DCN ⇒ n
ADM = DCN
Hạ HK ⊥ SC (K ∈ SC), suy ra HK là đoạn vuông góc chung của DM và SC, do đó:
d(DM, SC) = HK.
Trang 2/4

0,25

0,25

0,25

0,25


Câu

Đáp án
Ta có: HC =

V
(1,0 điểm)

2a
CD 2
=

và HK =
CN
5

SH .HC
2

SH + HC

2

Điểm
=

2 3a
2 3a
, do đó: d(DM, SC) =
.
19
19

3
5
; y≤ .
4
2
Phương trình thứ nhất của hệ tương đương với: (4x2 + 1).2x = (5 − 2y + 1) 5 − 2 y (1)

Điều kiện: x ≤


0,25

0,25

Nhận xét: (1) có dạng f(2x) = f( 5 − 2 y ), với f(t) = (t2 + 1)t.
Ta có f ' (t) = 3t2 + 1 > 0, suy ra f đồng biến trên R.
Do đó: (1) ⇔ 2x =

0,25

⎧x ≥ 0

5 − 2y ⇔ ⎨
5 − 4 x2
.
⎪y =

2
2

⎛5

Thế vào phương trình thứ hai của hệ, ta được: 4x + ⎜ − 2 x 2 ⎟ + 2 3 − 4x −7 = 0 (3).
⎝2

3
Nhận thấy x = 0 và x = không phải là nghiệm của (3).
4
2


0,25

2

⎛5

⎛ 3⎞
Xét hàm g(x) = 4x + ⎜ − 2 x 2 ⎟ + 2 3 − 4x − 7, trên khoảng ⎜ 0; ⎟ .
⎝2

⎝ 4⎠
2

⎛5

g '( x) = 8x − 8x ⎜ − 2 x 2 ⎟ −
2



4
3 − 4x

= 4x (4x2 − 3) −

4
3 − 4x

< 0, suy ra hàm g(x) nghịch biến.


1
⎛1⎞
Mặt khác g ⎜ ⎟ = 0, do đó (3) có nghiệm duy nhất x = ; suy ra y = 2.
2
⎝2⎠
⎛1 ⎞
Vậy, hệ đã cho có nghiệm: (x; y) = ⎜ ; 2 ⎟ .
⎝2 ⎠

VI.a

0,25

1. (1,0 điểm)

(2,0 điểm)

| 3. 3 − 1.1| 1
= và tam giác
3 + 1. 3 + 1 2
n = 60D .
OAB vuông tại B, do đó n
AOB = 60D ⇒ BAC

y
d1
O
B

d1 và d2 cắt nhau tại O, cos(d1, d2) =

d2

1
3
AB.AC.sin 60D =
(OA.sin 60D ).(OA.tan 60D )
2
4
A
3 3
=
OA2.
8
I
C
4
3
Do đó: SABC =
, suy ra OA2 = .
2
3
⎧ 3x + y = 0
⎛ 1


Tọa độ A(x; y) với x > 0, thỏa mãn hệ: ⎨ 2
; − 1⎟ .
4 ⇒ A⎜
2
⎝ 3


⎪x + y =
3

Đường thẳng AC đi qua A và vuông góc với d2, suy ra AC có phương trình: 3 x − 3y − 4 = 0.
⎧⎪ 3 x − y = 0
⎛ −2

Tọa độ C(x; y) thỏa mãn hệ: ⎨
⇒ C⎜
; − 2⎟ .
⎝ 3

⎪⎩ 3 x − 3 y − 4 = 0
3⎞
⎛ −1
Đường tròn (T) có đường kính AC, suy ra tâm của (T) là I ⎜
; − ⎟ và bán kính IA = 1.
2⎠
⎝2 3

x

0,25

Ta có: SABC =

2

2


1 ⎞ ⎛
3⎞

Phương trình (T): ⎜ x +
⎟ + ⎜ y + 2 ⎟ =1.
2 3⎠ ⎝



Trang 3/4

0,25

0,25

0,25


Câu

Đáp án

Điểm

2. (1,0 điểm)
G
Đường thẳng ∆ có vectơ chỉ phương v = (2; 1; −1) và mặt phẳng (P) có
G
vectơ pháp tuyến n = (1; −2; 1).

G G
n = cos v, n .
Gọi H là hình chiếu của M trên (P), ta có cos HMC

M

( )

C

P

G G
n = MC. cos v, n
d(M, (P)) = MH = MC.cos HMC

( )

H

=


Ta có: z = (1 + 2 2 i) (1 −

VII.a
(1,0 điểm)

= 5+
z = 5−


6.

| 2 − 2 − 1|
1
=
.
6. 6
6

2 i)

0,25
0,25
0,25
0,25

2 i, suy ra:

0,25

2 i.

0,25

Phần ảo của số phức z bằng: − 2 .
VI.b

0,25


0,25

1. (1,0 điểm)

(2,0 điểm)

Gọi H là trung điểm của BC, D là trung điểm AH, ta có AH ⊥ BC.
Do đó tọa độ D(x; y) thỏa mãn hệ:

A
D

•E

d

B

C

⎧x + y − 4 = 0
⇒ D(2; 2) ⇒ H(− 2; − 2).

⎩x − y = 0

0,25

Đường thẳng BC đi qua H và song song d, suy ra BC có phương
trình: x + y + 4 = 0.


0,25

Điểm B, C thuộc đường thẳng BC: x + y + 4 = 0 và B, C đối xứng nhau qua H(− 2; − 2), do đó
tọa độ B, C có dạng: B(t; − 4 − t), C(− 4 − t; t).
JJJG JJJG
Điểm E(1; −3) nằm trên đường cao đi qua đỉnh C của tam giác ABC, suy ra: AB . CE = 0
⇔ (t − 6)(5 + t) + (− 10 − t)(− 3 − t) = 0

0,25

⇔ 2t2 + 12t = 0 ⇔ t = 0 hoặc t = − 6.
Ta được: B(0; − 4), C(− 4; 0) hoặc B(− 6; 2), C(2; − 6).

0,25

H

2. (1,0 điểm)

A






B

C


M

VII.b
(1,0 điểm)

G
Đường thẳng ∆ đi qua điểm M(−2; 2; −3), nhận v = (2; 3; 2) làm
vectơ chỉ phương.
JJJG
G JJJG
Ta có: MA = (2; −2; 1), ⎡⎣v, MA⎤⎦ = (7; 2; −10).
G JJJG
⎡v, MA⎤
49 + 4 + 100


Suy ra: d(A, ∆) =
=
= 3.
G
4+9+4
v

0,25

0,25

Gọi (S) là mặt cầu tâm A, cắt ∆ tại B và C sao cho BC = 8. Suy ra bán kính của (S) là: R = 5.

0,25


Phương trình (S): x2 + y2 + (z + 2)2 = 25.

0,25

Ta có: (1 − 3i )3 = − 8.

0,25

Do đó z =

−8
= − 4 − 4i, suy ra z = − 4 + 4i.
1− i

0,25

⇒ z + i z = − 4 − 4i + (− 4 + 4i)i = − 8 − 8i.

0,25

Vậy: z + iz = 8 2 .

0,25
------------- Hết -------------

Trang 4/4


BỘ GIÁO DỤC VÀ ĐÀO TẠO

⎯⎯⎯⎯⎯⎯⎯⎯
ĐỀ CHÍNH THỨC

ĐÁP ÁN – THANG ĐIỂM
ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011
Môn: TOÁN; Khối A
(Đáp án - thang điểm gồm 05 trang)
ĐÁP ÁN − THANG ĐIỂM

Câu
I
(2,0 điểm)

Đáp án

Điểm

1. (1,0 điểm)

⎧1 ⎫
• Tập xác định: D = \ \ ⎨ ⎬ .
⎩2⎭
• Sự biến thiên:
Chiều biến thiên: y ' =

−1

( 2 x −1)

0,25


< 0, ∀x ∈ D.

2

1⎞
⎛1


Hàm số nghịch biến trên các khoảng ⎜ − ∞; ⎟ và ⎜ ; + ∞ ⎟ .
2⎠
⎝2



1
1
Giới hạn và tiệm cận: lim y = lim y = − ; tiệm cận ngang: y = − .
x → −∞
x → +∞
2
2
1
lim − y = − ∞, lim + y = + ∞; tiệm cận đứng: x = .
⎛1⎞
⎛1⎞
2
x →⎜ ⎟
x →⎜ ⎟
⎝2⎠


Bảng biến thiên:

⎝2⎠

1
2

x −∞
y’
y

1

2

0,25



+∞


0,25

+∞


−∞
y


• Đồ thị:

1
2

(C)
O 1


1
2

2

1

x
0,25

–1

2. (1,0 điểm)

Hoành độ giao điểm của d: y = x + m và (C) là nghiệm phương trình: x + m =

−x +1
2x −1

1

2
⇔ (x + m)(2x – 1) = – x + 1 (do x = không là nghiệm) ⇔ 2x + 2mx – m – 1 = 0 (*).
2
∆' = m2 + 2m + 2 > 0, ∀m. Suy ra d luôn cắt (C) tại hai điểm phân biệt với mọi m.

0,25

0,25

Gọi x1 và x2 là nghiệm của (*), ta có:
k1 + k2 = –

4( x1 + x2 ) 2 − 8 x1 x2 − 4( x1 + x2 ) + 2
1
1

=

.
(2 x1 − 1) 2 (2 x2 − 1) 2
(4 x1 x2 − 2( x1 + x2 ) + 1) 2

Theo định lý Viet, suy ra: k1 + k2 = – 4m2 – 8m – 6 = – 4(m + 1)2 – 2 ≤ – 2.
Suy ra: k1 + k2 lớn nhất bằng – 2, khi và chỉ khi m = – 1.
Trang 1/5

0,25

0,25



Câu
II
(2,0 điểm)

Đáp án

Điểm

1. (1,0 điểm)

Điều kiện: sin x ≠ 0 (*).
Phương trình đã cho tương đương với: (1 + sin2x + cos2x)sin2x = 2 2 sin2xcosx
⇔ 1 + sin2x + cos2x = 2 2 cosx (do sinx ≠ 0) ⇔ cosx (cosx + sinx –
• cosx = 0 ⇔ x =

2 ) = 0.

π
+ kπ, thỏa mãn (*).
2

0,25
0,25
0,25

π
π
) = 1 ⇔ x = + k2π, thỏa mãn (*).
4

4
π
π
Vậy, phương trình có nghiệm: x = + kπ; x = + k2π (k ∈ Z).
2
4
• cosx + sinx = 2 ⇔ sin(x +

0,25

2. (1,0 điểm)

⎧⎪5 x 2 y − 4 xy 2 + 3 y 3 − 2( x + y ) = 0 (1)

2
2
2
(2).
⎪⎩ xy ( x + y ) + 2 = ( x + y )
Ta có: (2) ⇔ (xy – 1)(x2 + y2 – 2) = 0 ⇔ xy = 1 hoặc x2 + y2 = 2.
• xy = 1; từ (1) suy ra: y4 – 2y2 + 1 = 0 ⇔ y = ± 1.
Suy ra: (x; y) = (1; 1) hoặc (x; y) = (–1; –1).
• x2 + y2 = 2; từ (1) suy ra: 3y(x2 + y2) – 4xy2 + 2x2y – 2(x + y) = 0
2
2
⇔ 6y – 4xy + 2x y – 2(x + y) = 0
⇔ (1 – xy)(2y – x) = 0 ⇔ xy = 1 (đã xét) hoặc x = 2y.
Với x = 2y, từ x2 + y2 = 2 suy ra:
⎛ 2 10 10 ⎞
⎛ 2 10

10 ⎞
(x; y) = ⎜⎜
;
;−
⎟⎟ hoặc (x; y) = ⎜⎜ −
⎟.
5 ⎠
5
5 ⎟⎠
⎝ 5

⎛ 2 10 10 ⎞ ⎛ 2 10
10 ⎞
Vậy, hệ có nghiệm: (1; 1), (– 1; – 1), ⎜⎜
;
;−
⎟⎟ , ⎜⎜ −
⎟.
5 ⎠ ⎝
5
5 ⎟⎠
⎝ 5
III
(1,0 điểm)

I =

π

π


π

4

4

4

( x sin x + cos x) + x cos x
dx =
∫0
x sin x + cos x

∫ dx +
0

x cos x

∫ x sin x + cos x dx.

0,25

0,25
0,25

0,25

0,25


0

π
4

π

Ta có: ∫ dx = x 04 =
0

π
4

π
4




0

IV
(1,0 điểm)

0,25
π

x cos x
dx =
x sin x + cos x


d(x sin x + cos x)
∫0 x sin x + cos x = ( ln x sin x + cos x
4

)

π
4

⎛ 2 ⎛ π ⎞⎞
⎛ 2 ⎛ π ⎞⎞
π
= ln ⎜⎜
⎜ + 1⎟ ⎟⎟ . Suy ra: I = + ln ⎜⎜
⎜ + 1⎟ ⎟⎟ .
2
4
2
4


⎝ 4 ⎠⎠



(SAB) và (SAC) cùng vuông góc với (ABC) ⇒ SA ⊥ (ABC).
S
n là góc giữa (SBC) và
AB ⊥ BC ⇒ SB ⊥ BC ⇒ SBA

n = 60o ⇒ SA = AB tan SBA
n = 2a 3.
(ABC) ⇒ SBA
Mặt phẳng qua SM và song song với BC, cắt AC tại N
H
⇒ MN //BC và N là trung điểm AC.
D N
C
A
BC
AB
MN =
= a, BM =
= a.
M
2
2
B
( BC + MN ) BM 3a 2
1
=
⋅ Thể tích: VS.BCNM = S BCNM ⋅ SA = a 3 3 ⋅
Diện tích: SBCNM =
2
2
3
Trang 2/5

0,25


0

0,25

0,25

0,25


Câu

Đáp án

Điểm

Kẻ đường thẳng ∆ đi qua N, song song với AB. Hạ AD ⊥ ∆ (D ∈ ∆) ⇒ AB // (SND)
⇒ d(AB, SN) = d(AB, (SND)) = d(A, (SND)).
Hạ AH ⊥ SD (H ∈ SD) ⇒ AH ⊥ (SND) ⇒ d(A, (SND)) = AH.
Tam giác SAD vuông tại A, có: AH ⊥ SD và AD = MN = a
⇒ d(AB, SN) = AH =
V
(1,0 điểm)

SA. AD

=

2a 39

13


0,25

0,25

SA2 + AD 2
1
1
2
+

(*), với a và b dương, ab ≥ 1.
Trước hết ta chứng minh:
1 + a 1 + b 1 + ab
Thật vậy, (*) ⇔ (a + b + 2)(1 +

ab ) ≥ 2(1 + a)(1 + b)

⇔ (a + b) ab + 2 ab ≥ a + b + 2ab

b )2 ≥ 0, luôn đúng với a và b dương, ab ≥ 1.
Dấu bằng xảy ra, khi và chỉ khi: a = b hoặc ab = 1.
Áp dụng (*), với x và y thuộc đoạn [1; 4] và x ≥ y, ta có:
x
1
1
1
2
P=
+

+

+
.
3y
2x + 3y 1 + z 1 + x
x
2+
1+
y
z
x
y

0,25

⇔ ( ab – 1)( a –

Dấu " = " xảy ra khi và chỉ khi:

x
z
x
= hoặc = 1
y
y
z

0,25


(1)

x
t2
2
+

= t, t ∈ [1; 2]. Khi đó: P ≥ 2
2t + 3 1 + t
y

Đặt

− 2 ⎡⎣t 3 (4t − 3) + 3t (2t − 1) + 9) ⎤⎦
2
t2
Xét hàm f(t) = 2
< 0.
+
, t ∈ [1; 2]; f '(t ) =
2t + 3 1 + t
(2t 2 + 3) 2 (1 + t ) 2
⇒ f(t) ≥ f(2) =

0,25

34
x
= 4 ⇔ x = 4, y = 1 (2).
; dấu " = " xảy ra khi và chỉ khi: t = 2 ⇔

y
33

34
. Từ (1) và (2) suy ra dấu " = " xảy ra khi và chỉ khi: x = 4, y = 1 và z = 2.
33
34
Vậy, giá trị nhỏ nhất của P bằng
; khi x = 4, y = 1, z = 2.
33

⇒P≥

VI.a

0,25

1. (1,0 điểm)

(2,0 điểm)

A

Đường tròn (C) có tâm I(2; 1), bán kính IA = 5.
n = MBI
n = 90o và MA = MB
Tứ giác MAIB có MAI

I


⇒ SMAIB = IA.MA

B
M



0,25

⇒ MA = 2 5 ⇒ IM = IA2 + MA2 = 5.
M ∈ ∆, có tọa độ dạng M(t; – t – 2).
IM = 5 ⇔ (t – 2)2 + (t + 3)2 = 25 ⇔ 2t2 + 2t – 12 = 0

0,25

⇔ t = 2 hoặc t = – 3. Vậy, M(2; – 4) hoặc M(– 3; 1).

0,25

0,25

2. (1,0 điểm)

⎧2 x − y − z + 4 = 0

Gọi M(x; y; z), ta có: M ∈ (P) và MA = MB = 3 ⇔ ⎨( x − 2) 2 + y 2 + ( z − 1) 2 = 9
⎪ x 2 + ( y + 2) 2 + ( z − 3) 2 = 9


Trang 3/5


0,25


Câu

Đáp án

Điểm

⎧2 x − y − z + 4 = 0

⇔ ⎨x + y − z + 2 = 0
⎪( x − 2) 2 + y 2 + ( z − 1) 2 = 9


0,25

⎧x = 2 y − 2

⇔ ⎨z = 3y
⎪7 y 2 − 11y + 4 = 0


0,25

⎛ 6 4 12 ⎞
⎛ 6 4 12 ⎞
; ⎟ . Vậy có: M(0; 1; 3) hoặc M ⎜ − ; ; ⎟ .
⎝ 7 7 7⎠

⎝ 7 7 7⎠

⇔ (x; y; z) = (0; 1; 3) hoặc ⎜ − ;
VII.a

2

Gọi z = a + bi (a, b ∈ R), ta có: z 2 = z + z ⇔ (a + bi)2 = a2 + b2 + a – bi

(1,0 điểm)
2

2

2

⎧a 2 − b 2 = a 2 + b 2 + a

2

⇔ a – b + 2abi = a + b + a – bi ⇔ ⎨

⎧a = − 2b 2
⎩b(2a + 1) = 0

⇔ ⎨

0,25

⎛ 1 1⎞

⎟ hoặc (a; b) =
⎝ 2 2⎠
1
1
1 1
Vậy, z = 0 hoặc z = − + i hoặc z = − – i.
2
2
2 2
⇔ (a; b) = (0; 0) hoặc (a; b) = ⎜ − ;

(2,0 điểm)

0,25
0,25

⎩2ab = − b

VI.b

0,25

1⎞
⎛ 1
⎜ − ; − ⎟.
2⎠
⎝ 2

0,25


1. (1,0 điểm)

Gọi A(x; y). Do A, B thuộc (E) có hoành độ dương và tam giác OAB cân tại O, nên:

y
A
H

O

B

0,25

4 − x2 .

B(x; – y), x > 0. Suy ra: AB = 2| y | =

Gọi H là trung điểm AB, ta có: OH ⊥ AB và OH = x.
1
Diện tích: SOAB = x 4 − x 2
2
x
1 2
=
x (4 − x 2 ) ≤ 1.
2
Dấu " = " xảy ra, khi và chỉ khi x =

0,25


0,25

2.





2⎞
2⎞
2⎞
2⎞
Vậy: A ⎜⎜ 2;
⎟⎟ hoặc A ⎜⎜ 2; −
⎟⎟ và B ⎜⎜ 2;
⎟⎟ và B ⎜⎜ 2; −
⎟.
2 ⎠
2 ⎠
2 ⎠
2 ⎟⎠





0,25

2. (1,0 điểm)


(S) có tâm I(2; 2; 2), bán kính R = 2 3. Nhận xét: O và A cùng thuộc (S).
Tam giác OAB đều, có bán kính đường tròn ngoại tiếp r =

OA 4 2
=
.
3
3

2
.
3
(P) đi qua O có phương trình dạng: ax + by + cz = 0, a2 + b2 + c2 ≠ 0 (*).
(P) đi qua A, suy ra: 4a + 4b = 0 ⇒ b = – a.
Khoảng cách: d(I, (P)) =

d(I, (P)) =

2(a + b + c)
2

2

a +b +c

2

0,25


R2 − r 2 =

=

2c
2

2a + c

2



2c
2

2a + c

2

=

2
3

⇒ 2a2 + c2 = 3c2 ⇒ c = ± a. Theo (*), suy ra (P): x – y + z = 0 hoặc x – y – z = 0.
Trang 4/5

0,25


0,25
0,25


Câu
VII.b
(1,0 điểm)

Đáp án

Gọi z = a + bi (a, b ∈ R), ta có: (2z – 1)(1 + i) + ( z + 1)(1 – i) = 2 – 2i
⇔ [(2a – 1) + 2bi](1 + i) + [(a + 1) – bi](1 – i) = 2 – 2i
⇔ (2a – 2b – 1) + (2a + 2b – 1)i + (a – b + 1) – (a + b + 1)i = 2 – 2i

⎧3a − 3b = 2
⎩a + b − 2 = −2

⇔ (3a – 3b) + (a + b – 2)i = 2 – 2i ⇔ ⎨
⇔ a=

1
1
2
, b = − ⋅ Suy ra môđun: | z | = a 2 + b 2 =

3
3
3
------------- Hết -------------


Trang 5/5

Điểm
0,25
0,25
0,25
0,25


BỘ GIÁO DỤC VÀ ĐÀO TẠO
⎯⎯⎯⎯⎯⎯⎯⎯
ĐỀ CHÍNH THỨC

ĐÁP ÁN – THANG ĐIỂM
ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012
Môn: TOÁN; Khối A và khối A1
(Đáp án – thang điểm gồm 04 trang)

Câu

Đáp án

Điểm

1
a) (1,0 điểm)
(2,0 điểm)
Khi m = 0, ta có: y = x 4 − 2 x 2 .
• Tập xác định: D = \.
• Sự biến thiên:


0,25

− Chiều biến thiên: y ' = 4 x3 − 4 x; y ' = 0 ⇔ x = 0 hoặc x = ±1.

Các khoảng nghịch biến: (− ∞; −1) và (0; 1); các khoảng đồng biến: (−1; 0) và (1; + ∞).
− Cực trị: Hàm số đạt cực tiểu tại x = ±1, yCT = −1; đạt cực đại tại x = 0, yCĐ = 0.
− Giới hạn: lim y = lim y = + ∞.
x→−∞

− Bảng biến thiên:

0,25

x→+∞

x −∞
y'

–1


0

0

+

0


+∞

+∞

1


0

+

+∞

0

0,25

y

–1

–1
• Đồ thị:

y

8

0,25


–1 O
–2

1
2

x

–1
b) (1,0 điểm)

Ta có y ' = 4 x 3 − 4( m + 1) x = 4 x ( x 2 − m − 1).
Đồ thị hàm số có 3 điểm cực trị khi và chỉ khi m + 1 > 0 ⇔ m > −1 (*).
Các điểm cực trị của đồ thị là A(0; m 2 ), B(− m + 1; − 2m − 1) và C ( m + 1; − 2m − 1).
JJJG
JJJG
Suy ra: AB = ( − m + 1; − ( m + 1) 2 ) và AC = ( m + 1; − ( m + 1) 2 ).
JJJG JJJG
Ta có AB = AC nên tam giác ABC vuông khi và chỉ khi AB. AC = 0
⇔ ( m + 1) 4 − ( m + 1) = 0. Kết hợp (*), ta được giá trị m cần tìm là m = 0.
Trang 1/4

0,25

0,25
0,25
0,25


Câu


Đáp án

Điểm

2
Phương trình đã cho tương đương với ( 3 sin x + cos x − 1) cos x = 0.
(1,0 điểm)
π
• cos x = 0 ⇔ x = + kπ (k ∈ ]).
2
π
π
• 3 sin x + cos x − 1 = 0 ⇔ cos x − = cos
3
3

+ k 2π (k ∈ ]).
⇔ x = k 2π hoặc x =
3
π

+ k 2π (k ∈ ]).
Vậy nghiệm của phương trình đã cho là x = + kπ, x = k 2π và x =
2
3
3
3
3
⎧( x − 1) − 12( x − 1) = ( y + 1) − 12( y + 1) (1)


(1,0 điểm) Hệ đã cho tương đương với: ⎨
1 2
12
+ y+
= 1.
(2)
⎪⎩ x −
2
2
1
1
3
1
1
3
Từ (2), suy ra −1 ≤ x − ≤ 1 và −1 ≤ y + ≤ 1 ⇔ − ≤ x − 1 ≤ và − ≤ y + 1 ≤ .
2
2
2
2
2
2
3 3
Xét hàm số f (t ) = t 3 − 12t trên ⎡⎢− ; ⎤⎥ , ta có f '(t ) = 3(t 2 − 4) < 0 , suy ra f(t) nghịch biến.
⎣ 2 2⎦
Do đó (1) ⇔ x – 1 = y + 1 ⇔ y = x – 2 (3).
2
2
1

3
1
3
Thay vào (2), ta được x −
+ x−
= 1 ⇔ 4 x 2 − 8 x + 3 = 0 ⇔ x = hoặc x = .
2
2
2
2
1
3
3 1
Thay vào (3), ta được nghiệm của hệ là ( x; y ) = ; −
hoặc ( x; y ) = ; − .
2 2
2 2
dx
1
4
dx
Đặt u = 1 + ln( x + 1) và dv = 2 , suy ra du =
và v = − .
(1,0 điểm)
x +1
x
x

( )


( ) ( )

( ) ( )

)

(

3

1 + ln( x + 1)
I=−
+
x
1

=

2 + ln 2
+
3

3

∫(
1

3

(


)

dx

∫ x( x + 1)

0,25
0,25

0,25

0,25

0,25

0,25
0,25
0,25
0,25

1

)

2 + ln 2
x
1
1
+ ln


dx =
3
x +1
x x +1

3

0,25
1

2
2
= + ln 3 − ln 2.
3
3
5
(1,0 điểm)

0,25

0,25

S

n là góc giữa SC và (ABC), suy ra SCH
n = 60o.
Ta có SCH
a
a 3

Gọi D là trung điểm của cạnh AB. Ta có: HD= , CD =
,
6
2
a 7
a 21
HC = HD 2 + CD 2 =
, SH = HC.tan60o =
.
3
3

0,25

1
1 a 21 a 2 3 a 3 7
VS . ABC = .SH .S ∆ABC = .
.
=
.
3
3 3
4
12

0,25

Kẻ Ax//BC. Gọi N và K lần lượt là hình chiếu vuông góc
3
của H trên Ax và SN. Ta có BC//(SAN) và BA = HA nên

2
3
d ( SA, BC ) = d ( B,( SAN )) = d ( H ,( SAN )).
2
Ta cũng có Ax ⊥ ( SHN ) nên Ax ⊥ HK . Do đó
HK ⊥ ( SAN ). Suy ra d ( H ,( SAN )) = HK .

0,25

K

A
x

N

D

C
H
B

AH =

2a
a 3
, HN = AH sin 60o =
, HK =
3
3


SH .HN
2

SH + HN

Trang 2/4

2

=

a 42
a 42
. Vậy d ( SA, BC ) =
.
8
12

0,25


Câu

Đáp án

Điểm

6
Ta chứng minh 3t ≥ t + 1, ∀t ≥ 0 (*).

(1,0 điểm)
Xét hàm f (t ) = 3t − t − 1 , có f '(t ) = 3t ln 3 − 1 > 0, ∀t ≥ 0 và f (0) = 0 , suy ra (*) đúng.

0,25

Áp dụng (*), ta có 3 | x− y | + 3 | y− z | + 3 | z− x | ≥ 3+ | x − y | + | y − z | + | z − x |.
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | , ta có:
(| x − y | + | y − z | + | z − x |) 2 = | x − y |2 + | y − z |2 + | z − x |2 + | x − y |(| y − z | + | z − x |) + | y − z |(| z − x | + | x − y |)

(

2

2

2

)

0,25

+ | z − x |(| x − y | + | y − z |) ≥ 2 | x − y | + | y − z | + | z − x | .

(

)

2

Do đó | x − y | + | y − z | + | z − x | ≥ 2 | x − y |2 + | y − z |2 + | z − x |2 = 6 x 2 + 6 y 2 + 6 z 2 − 2 ( x + y + z ) .

2

2

0,25

2

Mà x + y + z = 0, suy ra | x − y | + | y − z | + | z − x | ≥ 6 x + 6 y + 6 z .
Suy ra P = 3 | x− y | + 3 | y−z | + 3 | z−x | − 6 x 2 + 6 y 2 + 6 z 2 ≥3.
Khi x = y = z = 0 thì dấu bằng xảy ra. Vậy giá trị nhỏ nhất của P bằng 3.
Gọi H là giao điểm của AN và BD. Kẻ đường thẳng qua H
7.a
và song song với AB, cắt AD và BC lần lượt tại P và Q.
(1,0 điểm)
Đặt HP = x. Suy ra PD = x, AP = 3x và HQ = 3x.
A
B
Ta có QC = x, nên MQ = x. Do đó ∆AHP = ∆HMQ, suy ra
AH ⊥ HM .
Hơn nữa, ta cũng có AH = HM .
M
3 10
Do đó AM = 2 MH = 2d ( M ,( AN )) =
.
H
2
Q
P
A∈AN, suy ra A(t; 2t – 3).

C
D
11 2
7 2 45
3 10
N
+ 2t −
=
MA =
⇔ t−
2
2
2
2

) (

(

)

⇔ t 2 − 5t + 4 = 0 ⇔ t = 1 hoặc t = 4.
Vậy: A(1; −1) hoặc A(4;5).

)

JJJG
JJJG JJG
1
2 2

2
IH ⊥ AB ⇔ IH . a = 0 ⇔ t − 1 + 4t + t − 1 = 0 ⇔ t = ⇒ IH = − ; ; − .
3
3 3
3
Tam giác IAH vuông cân tại H, suy ra bán kính mặt cầu (S) là R = IA = 2 IH =

8
Do đó phương trình mặt cầu cần tìm là ( S ): x 2 + y 2 + ( z − 3)2 = .
3

0,25

0,25

0,25
0,25

2 6
.
3

0,25
0,25

9.a
n(n − 1)(n − 2)
n −1
3
(1,0 điểm) 5Cn = Cn ⇔ 5n =

6

0,25

⇔ n = 7 (vì n nguyên dương).
n

0,25

0,25

JJG
8.a
Véc tơ chỉ phương của d là a = (1; 2; 1). Gọi H là trung điểm của AB, suy ra IH ⊥ AB.
JJJG
(1,0 điểm)
Ta có H ∈d nên tọa độ H có dạng H (t −1; 2t ; t + 2) ⇒ IH = (t −1; 2t ; t −1).

(

0,25

0,25
7

7
2
2
1 ⎞ ⎛ x2 1 ⎞
⎛ nx

⎛x ⎞
Khi đó ⎜
− ⎟ =⎜
− ⎟ = C7k ⎜ ⎟
x⎠ ⎝ 2
x ⎠ k =0 ⎝ 2 ⎠
⎝ 14



7−k

7

(− 1x ) = ∑ (−21)7−kC7 x14−3k .
k

k

k

0,25

k=0

Số hạng chứa x5 tương ứng với 14 − 3k = 5 ⇔ k = 3 .
Do đó số hạng cần tìm là

(−1)3 .C73 5
35

x = − x5 .
4
16
2
Trang 3/4

0,25


Câu

Đáp án

7.b
(1,0 điểm)

Điểm

Phương trình chính tắc của (E) có dạng:
y

2
O

x2
a2

+

y2

b2

= 1,

0,25

với a > b > 0 và 2a = 8. Suy ra a = 4.
A

2

x

Do (E) và (C) cùng nhận Ox và Oy làm trục đối xứng và
các giao điểm là các đỉnh của một hình vuông nên (E) và
(C) có một giao điểm với tọa độ dạng A(t ; t ), t > 0.

0,25

A∈(C) ⇔ t 2 + t 2 = 8, suy ra t = 2.

0,25

A(2;2) ∈ ( E ) ⇔

16
4
4
+
= 1 ⇔ b2 = .

2
3
16 b

Phương trình chính tắc của (E) là
8.b
(1,0 điểm) M thuộc d, suy ra tọa độ của M có dạng M(2t – 1; t; t + 2).

x2 y 2
+
= 1.
16 16
3

0,25

0,25

MN nhận A là trung điểm, suy ra N(3 – 2t; – 2 – t; 2 – t).

0,25

N∈(P) ⇔ 3 − 2t − 2 − t − 2(2 − t ) + 5 = 0 ⇔ t = 2, suy ra M(3; 2; 4).

0,25

Đường thẳng ∆ đi qua A và M có phương trình ∆ :

x −1 y + 1 z − 2
=

=
.
2
3
2

9.b
Đặt z = a + bi (a, b ∈ \), z ≠ −1.
(1,0 điểm)
5( z + i)
= 2 − i ⇔ (3a − b − 2) + (a − 7b + 6)i = 0
Ta có
z +1

0,25

0,25

⎧3a − b − 2 = 0
⎧a = 1
⇔ ⎨
⇔ ⎨
⎩ a − 7b + 6 = 0
⎩b = 1.

0,25

Do đó z =1+i. Suy ra w = 1 + z + z 2 =1+1+ i + (1+ i )2 = 2 + 3i.

0,25


Vậy w = 2 + 3i = 13.

0,25

------------- HẾT -------------

Trang 4/4


×