Tải bản đầy đủ (.pdf) (434 trang)

A concise review of clinical laboratory science 2010

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.75 MB, 434 trang )



P1: PBU
LWBK192-FM

LWBK192-Hubbard

December 2, 2008

A Concise Review
of Clinical
Laboratory Science
Second Edition

i

13:43


P1: PBU
LWBK192-FM

LWBK192-Hubbard

December 2, 2008

ii

13:43



P1: PBU
LWBK192-FM

LWBK192-Hubbard

December 2, 2008

A Concise Review
of Clinical
Laboratory Science
Second Edition

Joel D. Hubbard, PhD, MT (ASCP)
Associate Professor, Program of Clinical Laboratory Science
Department of Laboratory Sciences and Primary Care
School of Allied Health Sciences
Texas Tech University Health Sciences Center
Lubbock, Texas

iii

13:43


P1: PBU
LWBK192-FM

LWBK192-Hubbard

December 2, 2008


Acquisitions Editor: John Goucher
Managing Editor: Meredith Brittain
Project Manager: Rosanne Hallowell
Manufacturing Manager: Margie Orzech
Marketing Manager: Allison Noplock
Cover Designer: Melissa Walter
Design Coordinator: Stephen Druding
Production Services: Aptara, Inc.
c 2010 by LIPPINCOTT WILLIAMS & WILKINS, a Wolters Kluwer business
c 1997 by WILLIAMS & WILKINS
530 Walnut Street
Philadelphia, PA 19106
All rights reserved. This book is protected by copyright. No part of this book may be reproduced in any form or by
any means, including photocopying, or utilized by any information storage and retrieval system without written
permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. To
request permission, please contact Lippincott Williams & Wilkins at 530 Walnut Street, Philadelphia, PA 19016, via
email at or via our website at lww.com (products and services).
Printed in the United States of America.
Library of Congress Cataloging-in-Publication Data
A concise review of clinical laboratory science / [edited by] Joel Hubbard.—2nd ed.
p. ; cm.
Includes index.
ISBN 978-0-7817-8202-9
1. Medical laboratory technology—Examinations, questions, etc. 2. Medical laboratory technology—Outlines,
syllabi, etc. I. Hubbard, Joel D. (Joel David), 1952[DNLM: 1. Laboratory Techniques and Procedures–Examination Questions. QY 18.2 C744 2010]
RB38.25.H83 2010
616.07 56—dc22
2008043981
DISCLAIMER

Care has been taken to confirm the accuracy of the information presented and to describe generally accepted
practices. However, the authors, editors, and publisher are not responsible for errors or omissions or for any
consequences from application of the information in this book and make no warranty, expressed or implied, with
respect to the currency, completeness, or accuracy of the contents of the publication. Application of this information
in a particular situation remains the professional responsibility of the practitioner; the clinical treatments described
and recommended may not be considered absolute and universal recommendations.
The authors, editors, and publisher have exerted every effort to ensure that drug selection and dosage set forth in this
text are in accordance with recommendations and practice at the time of publication. However, in view of ongoing
research, changes in government regulations, and the constant flow of information relating to drug therapy and drug
reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and
for added warnings and precautions. This is particularly important when the recommended agent is a new or
infrequently employed drug.
Some drugs and medical devices presented in this publication have Food and Drug Administration (FDA) clearance
for limited use in restricted research settings. It is the responsibility of the clinician to ascertain the FDA status of
each drug or device planned for use in their clinical practice.
The publishers have made every effort to trace copyright holders for borrowed material. If they have inadvertently
overlooked any, they will be pleased to make the necessary arrangements at the first opportunity.
To purchase additional copies of this book, call our customer service department at (800) 638-3030 or fax orders to
(301) 223-2320. International customers should call (301) 223-2300. Visit Lippincott Williams & Wilkins on the
Internet at: LWW.com. Lippincott Williams & Wilkins customer service representatives are available from 8:30 am
to 6:00 pm, EST.
10 9 8 7 6 5 4 3 2 1

iv

13:43


P1: PBU
LWBK192-FM


LWBK192-Hubbard

December 2, 2008

This book is dedicated to clinical laboratory science students everywhere.
In your upcoming role as professionals, remember that your job is
important to the medical world as well as to the individual patient.
Be proud of the fact that you will be making a difference
in people’s lives. Always be excited about the unlimited opportunities
available in your chosen profession and help lead the field
of Clinical Laboratory Science well into the 21st century.

v

13:43


P1: PBU
LWBK192-FM

LWBK192-Hubbard

December 2, 2008

vi

13:43



P1: PBU
LWBK192-FM

LWBK192-Hubbard

December 2, 2008

PREFACE

The arrival of the second edition of A Concise Review of Clinical Laboratory Science
has long been anticipated by students and educators alike. This review text is a valuable
educational tool for both the novice and the experienced clinical laboratory scientist. It
is designed to be an updated and concise review of all disciplines of clinical laboratory
science and will also serve as a tool for students of clinical laboratory science studying for
national certification examinations, including the American Society of Clinical Pathologists
Board of Registry exam, the National Certification Agency (NCA) exam, and the American
Medical Technologist (AMT) exam. Practicing clinical laboratory scientists and medical
residents will also find this book to be an excellent source for review.
This book represents a culmination of the efforts and expertise of the faculty of the
Clinical Laboratory Science program at Texas Tech University Health Sciences Center in
Lubbock, Texas, and reflects over 100 years of combined medical technology experience.
All contributing authors reflect their professional excellence in their contributed chapters,
not only as educators, but also as outstanding professionals in their field. I encourage readers
to send me feedback on this book at the following email address:

Text Format and Features
Each chapter presents a concise summary of the most important facts and concepts in that
subject area in an outline format. Key points appear in bold for easy reference. Boxes,
tables, and figures throughout distill concepts and make them easier to comprehend. Online
menus at the end of each chapter point readers to supplementary Web-based materials.


What’s New in This Edition
The second edition includes the most current and updated information. An expanded chapter dealing with laboratory operations (Chapter 11) addresses topics such as management
and organizational theory, professionalism, quality assurance, laboratory regulations, and
delivery of an educational unit. In addition, a new chapter on molecular pathology (Chapter
10) focuses on molecular laboratory methods and an overview on the testing of genetic
diseases.

Additional Resources
A Concise Review of Clinical Laboratory Science, second edition, includes additional resources for both instructors and students that are available on the book’s companion Web
site at thePoint.lww.com/Hubbard2e.

vii

13:43


P1: PBU
LWBK192-FM

LWBK192-Hubbard

viii

December 2, 2008

Preface

Instructors
Approved adopting instructors will be given access to the following additional resources:


r Image Bank (including color images referenced in the text)
r Quiz Bank
r Web Case Studies (including those referenced in the text)
Students
Students who have purchased A Concise Review of Clinical Laboratory Science, second
edition, have access to the following additional resources:

r Image Bank (including color images referenced in the text)
r Quiz Bank
r Web Case Studies (including those referenced in the text)
In addition, purchasers of the text can access the searchable Full Text Online by going
to the A Concise Review of Clinical Laboratory Science, second edition, Web site at
thePoint.lww.com/Hubbard2e. See the inside front cover of this text for more details, including the pass code you will need to gain access to the Web site.

13:43


P1: PBU
LWBK192-FM

LWBK192-Hubbard

December 2, 2008

ACKNOWLEDGMENTS

I would like to thank all of the following contributing authors—Dr. Lynne Hamilton, Dr.
Hal Larsen, Dr. Barbara Sawyer, Mr. Wade Redman, Ms. Lori Rice-Spearman, and Dr.
Tootie Tatum—for making this book possible. Their individual expertise, willingness to

present the highest quality of material, and high level of professionalism made the task of
producing this text easy. I would also like to thank my wife, Kathy, who patiently listened
to my endless rambling about the project.

ix

13:43


P1: PBU
LWBK192-FM

LWBK192-Hubbard

December 2, 2008

x

13:43


P1: PBU
LWBK192-FM

LWBK192-Hubbard

December 2, 2008

CONTRIBUTORS


Lynne Hamilton, PhD, MT (ASCP)
Assistant Professor, Program of Clinical Laboratory
Science
Department of Laboratory Sciences and Primary
Care
School of Allied Health Sciences
Texas Tech University Health Sciences Center
Lubbock, Texas
Joel D. Hubbard, PhD, MT (ASCP)
Associate Professor, Program of Clinical Laboratory
Science
Department of Laboratory Sciences and Primary
Care
School of Allied Health Sciences
Texas Tech University Health Sciences Center
Lubbock, Texas
Hal S. Larsen, MT (ASCP), CLS (NCA), PhD
Professor and Chair, Department of Diagnostic and
Primary Care
School of Allied Health Sciences
Texas Tech University Health Sciences Center
Lubbock, Texas
Wade Redman, MT (ASCP), MBA
Assistant Professor, Program of Clinical Laboratory
Science
Department of Laboratory Sciences and Primary
Care
School of Allied Health Sciences
Texas Tech University Health Sciences Center
Lubbock, Texas


Lori Rice-Spearman, MS, MT (ASCP)
Associate Professor and
Program Director of Clinical Laboratory Science
Department of Laboratory Sciences and Primary
Care
School of Allied Health Sciences
Texas Tech University Health Sciences Center
Lubbock, Texas

Barbara Sawyer, PhD, MT (ASCP),
CLS (NCA), CLSp (MB)
Professor, Department of Laboratory Sciences and
Primary Care
School of Allied Health Sciences
Texas Tech University Health Sciences Center
Lubbock, Texas

Owatha L. Tatum, PhD, CLSp (MB),
MP (ASCP)
Assistant Professor, Program of Clinical Laboratory
Science
Department of Laboratory Sciences and Primary
Care
School of Allied Health Sciences
Texas Tech University Health Sciences Center
Lubbock, Texas

xi


13:43


P1: PBU
LWBK192-FM

LWBK192-Hubbard

December 2, 2008

xii

13:43


P1: PBU
LWBK192-FM

LWBK192-Hubbard

December 2, 2008

CONTENTS

CHAPTER 1

CHAPTER 2

Clinical Chemistry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


1

Barbara Sawyer
I. Clinical Chemistry Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
II. Special Methods in Clinical Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
III. Basic Anatomy and Physiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IV. Analytes and Pathophysiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
V. Enzymology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VI. Endocrinology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VII. Toxic and Therapeutic Drugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1
7
10
14
30
35
46

Hemostasis and Coagulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Joel Hubbard
I. Platelet Physiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
II. Platelet Pathophysiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
III. Blood Coagulation and Fibrinolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IV. Coagulation Disorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CHAPTER 3

52
55

66
76

Routine Hematology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Joel Hubbard
I. Laboratory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
II. Hematopoietic Tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
III. Hemoglobin Synthesis, Structure, and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
IV. Erythrocytes and Erythropoiesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

CHAPTER 4

Hematologic Disorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Joel Hubbard
I. Red Blood Cell Indices and Their Use in the Diagnosis of Anemia . . . . . . . . . . . . .
II. Red Blood Cell (RBC) Disorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
III. Anemias and Polycythemias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IV. Leukocyte Disorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
V. Lymphocyte Physiology and Disorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

117
118
120
145
164

xiii

13:43



P1: PBU
LWBK192-FM

LWBK192-Hubbard

xiv

December 2, 2008

Contents

CHAPTER 5

Immunology and Serology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Wade Redman and Joel Hubbard
I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
II. Cells and Tissues of the Immune System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
III. Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IV. Immune Response (IR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
V. Major Histocompatibility Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VI. Hypersensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VII. Autoimmunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VIII. Immunodeficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IX. Techniques in Immunology and Serology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
X. Syphilis Serology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XI. Acute Phase Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XII. Hepatitis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XIII. Streptococcal Serology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XIV. Epstein-Barr Virus (EBV) Serology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XV. Rubella Serology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XVI. Febrile Disease Serology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XVII. Borrelia Burdorferi Serology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XVIII. Transplant Immunology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XIX. Tumor Immunology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CHAPTER 6

Immunohematology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Wade Redman
I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
II. Blood Group Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
III. Donor Selection and Blood Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IV. Donor Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
V. Blood Components and Component Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VI. Antiglobulin Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VII. Unexpected Antibodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VIII. Compatibility Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IX. Transfusion Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
X. Hemolytic Disease of the Newborn (HDN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XI. Autoimmune Hemolytic Anemias (AIHA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XII. Transfusion-Transmitted Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XIII. The Major Histocompatibility Complex (MHC) and Human Leukocyte
Antigens (HLA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XIV. Alternative Methodologies in Blood Bank Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . .

CHAPTER 7

177
181

183
183
184
187
188
191
193
196
197
198
200
201
202
202
202
203
205

207
208
217
219
221
224
225
228
230
231
233
234

235
236

Clinical Microbiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Lynne Hamilton and Hal Larsen
I. Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
II. Bacterial Cell Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
III. Stains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IV. Normal Flora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
V. Pathogenesis of Infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VI. Collection and Handling of Clinical Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VII. Micrococcaceae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VIII. Streptococcus, Enterococcus, and Related Genera . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IX. Aerobic Gram-Positive Bacilli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
X. Neisseria and Moraxella Catarrhalis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XI. Miscellaneous Gram-Negative Bacilli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XII. Enterobacteriaceae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

238
239
241
241
242
243
246
249
254
256
258
262


13:43


P1: PBU
LWBK192-FM

LWBK192-Hubbard

December 2, 2008

Contents

XIII.
XIV.
XV.
XVI.
XVII.
XVIII.
XIX.
XX.
XXI.
XXII.
XXIII.
XXIV.
CHAPTER 8

Campylobacter, Helicobacter, and Vibrionaceae . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gram-Negative Nonfermentative Bacilli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Miscellaneous Genera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mycoplasma, Ureaplasma, and the Chlamydiaceae . . . . . . . . . . . . . . . . . . . . . . . . . . .
Spirochetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mycobacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Anaerobes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Zoonotic and Rickettsial Infections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Agents of Bioterrorism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Antimicrobial Susceptibility Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Disinfection and Sterilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Molecular Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xv
265
268
271
272
273
274
277
282
283
284
287
288

Clinical Parasitology, Mycology, and Virology . . . . . . . . 289
Lori Rice-Spearman and Lynne Hamilton
I. Parasitology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
II. Mycology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
III. Virology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305


CHAPTER 9

Urinalysis and Body Fluids Analysis . . . . . . . . . . . . . . . . . . . . . 313
Barbara Sawyer
I. The Renal System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
II. The Urine Specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
III. Physical Examination of Urine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IV. Chemical Examination of Urine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
V. Microscopic Examination of the Urine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VI. Automation in the Urinalysis Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VII. Metabolic Products in the Urine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VIII. Diseases of the Kidney . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IX. Renal Synthetic Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
X. Urine Pregnancy Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XI. Serous Body Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XII. Synovial Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XIII. Seminal Fluid Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XIV. Cerebrospinal Fluid (CSF) Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XV. Gastric Fluid Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XVI. Fecal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CHAPTER 10

Molecular Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
Tootie Tatum
I. Biology of the Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
II. Molecular Diagnostic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
III. Inherited Genetic Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IV. Molecular Oncology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
V. Molecular Infectious Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VI. DNA-Based Human Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CHAPTER 11

313
314
319
322
327
335
335
338
343
344
345
347
348
351
354
355

360
362
365
365
366
366

Current Issues in Laboratory Management . . . . . . . . . . . . . 368
Wade Redman, Lori Rice-Spearman, and Hal S. Larsen

I. Management and Organizational Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
II. Professionalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
III. Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IV. Laboratory Regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

368
370
371
372

13:43


P1: PBU
LWBK192-FM

LWBK192-Hubbard

xvi

December 2, 2008

Contents

V.
VI.
VII.
VIII.
IX.
X.

Index 385

Financial Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laboratory Information Systems (LIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Instrument Selection Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Delivery of Education Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Outreach Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

381
382
382
383
383
383

13:43


P1: PBU
LWBK192-FM

LWBK192-Hubbard

December 5, 2008

A Concise Review
of Clinical
Laboratory Science
Second Edition


xvii

4:24


P1: PBU
LWBK192-FM

LWBK192-Hubbard

December 5, 2008

xviii

4:24


P1: OSO
LWBK192-01

LWBK192-Hubbard

November 23, 2008

CHAPTER 1

Clinical Chemistry
BARBARA SAWYER, PhD, MT (ASCP), CLS (NCA)


I.

CLINICAL CHEMISTRY BASICS

A.

Laboratory math and statistical concepts
1. Concentration. Solutions can be described in terms of the concentration of the components of the solution.
a. A percent solution can be described as:
(1) w/w, which is expressed as weight (mass) per 100 units of weight (g/g).
(2) w/v, which is expressed as weight (mass) per 100 units of volume (g/dL).
(3) v/v, which is expressed as volume (mL) per unit of volume (mL).
b. Molarity (M) is expressed as moles per liter (mol/L) or millimoles per milliliter
(mmol/mL).
(1) A mole is one formula weight, in grams, of a compound. For example, one
mole of NaOH equals 40 g, because one molecule of sodium equals 23 g, one
molecule of oxygen equals 16 g, and one molecule of hydrogen equals 1 g.
(2) Molarity is calculated by determining what units are given in the problem,
then determining the final units needed, and setting up an equation (Boxes 1–1
and 1–2).
(3) A simple calculation for molarity problems can be performed with the following
formula:
Grams in solution
= Formula weight × molarity
Volume in liters
Using the information from the first problem, the variables can be plugged in:
Grams in solution
= 40 g (2 M)
1L
x

= 80 g
1
x = 80 g
Using the information given in the second problem, the variables can be plugged
in:
32 g in solution
= 36.5 (M)
0.3 L
106.7 = 36.5 (M)
106.7/36.5 = M
2.9 = M
1

17:19


P1: OSO
LWBK192-01

LWBK192-Hubbard

2

November 23, 2008

A Concise Review of Clinical Laboratory Science

Box 1–1

Molarity


PROBLEM:
How many grams of NaOH are needed to make 1 L of 2 M solution?
ANSWER:
Final units needed: g/L
Units of measure given: M, L
By definition, a molar solution is the number of moles per liter of solution. For a 2 M solution:
40 g NaOH 2 mole
×
= 80 g/L = 2 M NaOH
1 mole
L
Eighty grams NaOH are required. To prepare the solution, 80 g NaOH are placed in a 1 L
volumetric flask, and deionized water is added to make a volume of 1 L.

c. Normality (N) is expressed as equivalent weight (Eq wt) per liter of volume (Eq/L

or mEq/mL).
d. Dilutions are solutions formed by making a less concentrated solution from a

concentrated solution. They are stated as a part (concentrate) of the concentrated
substance used plus the volume of diluent used.
EXAMPLE: 100 μl of serum in 400 μl of saline = 100 in a total of 100 + 400 =
100/500 = 1:5 dilution.
2. Hydration is the process of adding water molecules to the chemical structure of a
compound. It is important to consider the molecular weight of these molecules when
making solutions (Box 1–3).
B.

Statistical concepts. Statistics is the science of gathering, analyzing, interpreting, and

presenting data. A statistic is a number summarizing data.
1. Descriptive statistics are data that can be described by their location and dispersion
compared with the average. After data are plotted on a histogram, the values typically
form a symmetric curve referred to as normal or gaussian distribution (Figure 1–1).
a. The mean (x) is the arithmetic average of a set of data calculated as follows:
x = x1 + x2 + x3 + · · · xn /n
where x is each individual value, and n is the number of data points or observations
made.
b. Range (dispersion) is the simplest statistic used to describe the spread of data
about the mean. It is calculated by subtracting the smallest observation or value
from the largest.
c. Standard deviation (SD) is the most commonly used statistic in the laboratory
describing dispersion of groups of single observations. SD is the square root of
Box 1–2

Determining the Molarity of a Solution

PROBLEM:
What is the molarity of solution that contains 32 g of HCl in 300 mL of water?
ANSWER:
Final unit of measure needed: mol/L
Units of measure used: g/mL
Grams of HCl in 1 mole: 36.5
32 g HCl 1000 ml
1 mole
×
×
= 2.9 mol/L
300 ml
1L

36.5 g HCl

17:19


P1: OSO
LWBK192-01

LWBK192-Hubbard

November 23, 2008

CHAPTER 1 Clinical Chemistry

Box 1–3

3

Calculating Molecular Weight for Hydration

PROBLEM:
How much CuSO4 · 5H2 O must be weighed in order to make 1 L of 0.5 M CuSO4 ?
ANSWER:
CuSO4 · H2 O has five water molecules, which add 90 g to the original 160 gmw. Therefore,
CuSO4 · 5H2 O has a gmw = 250 g.
250 g CuSO4 · 5H2 O 0.5 mol
×
= 125 g/L
mol
1L


the variance. It is calculated by adding the squares of the differences between the
individual results and the mean, dividing by n-1, and calculating the square root.
d. The coefficient of variation (CV) is a comparison of the relative variability in
two sets of values, because not all laboratory data are expressed in similar units
of measure or concentrations. It is expressed as a percentage and is calculated as
follows:
CV% =

SD
× 100%
mean

or
SD (100%)
mean
C.

Laboratory automation and computer systems
1. Automation in the clinical chemistry laboratory context is the mechanization of chemical analysis to minimize manual manipulation. For example, one chemistry analyzer
uses a dry slide technology for sample handling and measurement, whereas another
uses a closed-system cuvette for holding and mixing sample and reagent.
a. The advantages and disadvantages associated with automation are shown in Table
1–1.
2. There are two basic approaches to automation in use today.
a. Continuous flow analyzers use liquid reagents pumped through a continuous
system of tubing. Each sample is introduced in a sequential manner.
b. Discrete analyzers house samples and reagents in separate containers. Multiple
tests can be performed on a single sample (random access analysis), or one test
can be selected to perform on multiple samples (batch analysis).

3. Laboratory information system (LIS) is a system of computer software designed to
handle laboratory data.
a. The functions of an LIS include:
(1) Database of patient information
(2) Compilation of specimen test results
(3) Production of patient reports

■ Figure 1–1 Gaussian or normal
distribution, SD = standard deviation.

17:19


P1: OSO
LWBK192-01

LWBK192-Hubbard

4

November 23, 2008

A Concise Review of Clinical Laboratory Science

Table 1–1

Advantages and Disadvantages of Automation

Advantages


Disadvantages

Increased work capacity per unit of time
Minimized variability
Reduced errors caused by manual manipulations
Reduced sample volumes
Reduced consumable costs

Initial costs
Discontinuity of product
Technical skill required

(4) Production of ancillary reports
(5) Data storage
b. An LIS achieves its function via a central computer, a number of input/output

devices, and the computer software.
D.

Spectrophotometry and light emission techniques
1. A spectrophotometer is an instrument that measures the transmitted light of a solution and allows the operator to read the absorbance of the solution on a meter. The
components of a spectrophotometer include the following:
a. The light source provides radiant energy.
(1) Tungsten lamps are the typical source in most spectrophotometers.
(2) Deuterium (and hydrogen) lamps are used in spectrophotometers that examine the ultraviolet (UV) spectrum.
(3) Mercury lamps are used in high-performance liquid chromatography spectrophotometers.
b. The monochromator isolates the wavelength of interest. Examples include:
(1) Colored glass filters
(2) Interference filters
(3) Prisms

(4) Diffraction gratings
c. The sample cell contains the solution in:
(1) Cuvettes
(2) Tubing (typical in automated equipment)
(3) Plastic packs
d. The photodetector converts radiant energy to electrical energy. Three types of
photodetectors are:
(1) Photocell (barrier-layer cell)
(2) Phototube
(3) Photomultiplier tube
2. Background
a. Photons. Electromagnetic radiant energy is described in terms of wavelike properties, specifically as photons, which are discrete packets of energy traveling in
waves.
b. Wavelengths. A wavelength (λ) of electromagnetic energy is the linear distance
between successive wave peaks and is usually measured in units of nanometers
(10−9 m).
(1) Frequency is the number of wave peaks per given unit of time.
(2) Amplitude is the height of the peak.
c. The electromagnetic spectrum has a large range of wavelengths. Gamma rays
and x-rays have very long wavelengths, whereas UV rays inhabit the portion of the
electromagnetic spectrum from 10 to 400 nm. The visible spectrum lies between
400 and 800 nm. Violet light has the longest wavelength of the visible spectrum,
followed by blue, green, yellow, orange, and red (VIBGYOR; ROY G. BIV). The
infrared spectrum lies above 800 nm, and the shortest wavelengths are microwaves.
d. Excitation. Interactions of light with matter occur when a photon intercepts an
atom, ion, or molecule. The photon is absorbed, and the energy of the photon
changes the matter (excitation). Some compounds are able to dissipate the absorbed

17:19



P1: OSO
LWBK192-01

LWBK192-Hubbard

November 23, 2008

CHAPTER 1 Clinical Chemistry

5

energy as radiant energy upon return to a nonexcited state. Excitation can involve
any of the following:
(1) Movement of an electron to a higher energy state
(2) Change in covalent bond vibrations
(3) Change in covalent bond rotations
e. Beer’s law states that the concentration of a substance is directly proportional to
the amount of radiant energy absorbed:
A = abc or ebc
where a (or e) is molar absorptivity (a constant for a given molecule); b is the
length of the path traveled by the light; and c is the concentration of absorbing
molecules.
f. Standard curve. In clinical chemistry, concentrations of unknown solutions are determined by plotting the absorbance of standard solutions (concentrations known)
versus the concentrations of the standard solution, which creates a standard curve.
3. Types of spectrophotometry
a. Absorption spectrophotometry is defined as the measurement of radiant energy
absorbed by a solution. This measurement can be related to the concentration of a
substance in the solution.
(1) Every solution has an ability to absorb and transmit light, and only transmitted

light can be measured. Transmittance is defined as the proportion of incident
light that is transmitted and is usually expressed as a percentage:
%T = I/I0 × 100
where I is the transmitted radiant energy, and I0 is the original incident radiation.
Transmittance varies inversely and logarithmically with the concentration
of the solution.
(2) Absorbance is calculated as follows:
A = 2 − log% T

b.

c.

d.

e.

The absorbance is the critical measure used in the calculation of concentration
(Beer’s law).
Atomic absorption spectrophotometry (AAS) measures concentration through
the detection of absorbance of electromagnetic radiation by atoms instead of
molecules. It is used to measure concentration of metals that are not easily excited.
(1) Principle. An element of interest is dissociated from its chemical bonds in the
flame; then it is in an unexcited state. At this low energy, the atom can absorb
radiation at a narrow specific bandwidth. A wavelength of light (emitted by
a light source) specific for the atom is absorbed by the low-energy atoms in
the flame, resulting in a decrease in the intensity of the light measured by the
detector.
(2) Components
(a) The light source (hollow cathode lamp)

(b) Flame (produced by a burner head)
(c) Monochromator
(d) Photodetector (photomultiplier tube)
Nephelometry is a method of measuring concentration in terms of light energy
scattered in a forward direction by small particles in solution. The intensity of the
scattered light is directly proportional to the number of particles in solution.
Turbidimetry is a photometric measurement of unscattered light passing through
a colloidal solution of small particles. It is essentially a measurement of blocked
light, and the amount of blocked light is directly proportional to the number of
particles in solution.
Fluorometry is the photometric measurement of light emitted by a substance that
has been previously excited by a source of UV light. After it is excited and driven
into a higher energy state, a molecule loses energy by fluorescing. The amount of
light emitted is proportional to the concentration of the substance in solution.

17:19


×