Tải bản đầy đủ (.pdf) (158 trang)

Giải pháp phân chia tần số và công suất dưới điều kiện ràng buộc nhiễu cho truyền thông nhận thức sử dụng OFDM

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.05 MB, 158 trang )

THÔNG TIN TÓM TẮT VỀ NHỮNG KẾT LUẬN MỚI CỦA LUẬN ÁN TIẾN SĨ
Tên luận án: Giải pháp phân chia tần số và công suất dưới điều kiện ràng buộc nhiễu cho
truyền thông nhận thức sử dụng OFDM
Chuyên ngành:
Kỹ thuật Viễn thông
Mã số:
62520208
Nghiên cứu sinh:
Nguyễn Tiến Hòa
Người hướng dẫn khoa học:
PGS.TS Nguyễn Văn Đức
Cơ sở đào tạo: Trường Đại học Bách khoa Hà Nội
TÓM TẮT KẾT LUẬN MỚI CỦA LUẬN ÁN
1) Đưa ra nghiệm phân bổ công suất giải tích tối ưu dạng đóng cho mô hình hệ thống CROFDM với ba kịch bản bảo vệ chất lượng dịch vụ của hệ thống PU khác nhau, bao gồm:
a) hệ thống PU cần bảo vệ với một mức can nhiễu giới hạn; b) hệ thống PU cần bảo vệ với
nhiều mức can nhiễu giới hạn; c) nhiều hệ thống PU cần được bảo vệ với nhiều tốc độ truyền
dẫn khác nhau.
2) Đề xuất giải pháp phân bổ công suất phát bám nhiễu bậc hai SOIT (Second Order
Interference Tracking). Giải pháp này có số lượng sóng mang con được chèn không là động
(dynamic nulling) và giảm độ phức tạp thuật toán xuống O(NlogN) so với phương pháp tối
ưu là O(N3).
3) Đề xuất hai giải pháp phân chia tần số dựa trên nhiễu, cụ thể: Giải pháp phân chia nhiễu
nghịch đảo IIA (Inverted Interference Assignment) dựa trên sự công bằng mức nhiễu và giải
pháp phân chia tập hợp sóng mang con thông minh CCA (Cognitive Carrier Aggregation)
dựa trên sự đảm bảo về QoS của hệ thống.
4) Đề xuất hai phương án giải quyết bài toán tối ưu và cận tối ưu trong phân bổ công suất
của hệ thông CR-OFDM đa người dùng
- Đối với vấn đề tối ưu: Đưa ra nghiệm giải tích dạng đóng cho sự phân bổ công suất tối ưu
trong trong mô hình mạng tồn tại cả nhiễu tương hỗ MUI (Multi-Users Interference) và
cả nhiễu nội bộ IUI (Inter-Users Interference).
- Đối với vấn đề cận tối ưu: Mở rộng phương pháp phân bổ công suất phát bám nhiễu bậc


hai (SOIT) cũng như đề xuất mở rộng hai phương pháp Scheme A và Scheme B của
Bansal cho hệ thống CR-OFDM đa người dùng.
Hà Nội, ngày 07 tháng 07 năm 2016
Giảng viên hướng dẫn

Nghiên cứu sinh

PGS.TS Nguyễn Văn Đức

Nguyễn Tiến Hòa


INFORMATION ON NEW CONCLUSIONS OF DOCTORAL THESIS
Name of Thesis: Channel and Power Allocation Techniques with Interference Constraint in
OFDM-based Cognitive Radio System
Specialization:
Telecommunications Engineering
Code No.:
62520208
Name of PhD. Student:
Nguyen Tien Hoa
Advisors:
Prof. Dr Nguyen Van Duc
Training Institution:
Hanoi University of Science and Technology

SUMMARY OF THE NEW CONTRIBUTIONS OF THE THESIS

1) Provides analytic optimal transmit power allocation in closed-form for CR-OFDM
system with three protection scenarios of the QoS of different PU system models,

including: a) PU systems predicted with limited power interference threshold; b) Many PU
systems predicted with different limited power interference threshold; c) Many PU system
with different predicted data rate.
2) Proposes a suboptimal transmit power allocation SOIT (Second Order Tracking
Interference). This method has the dynamic number of Null-subcarriers (dynamic
nulling) and reduces the computational complexity algorithm to O(NlogN) compared to
the optimal method which is O(N3).
3) Proposes two solutions for channel assignment based on Interference, including: IIA
(Inverted Interference Assignment) based on the fairness of interference and CCA
(Cognitive Carrier Aggregation) based on the fairness of QoS
4) Proposes two approaches for transmit power suboptimal and optimal allocation
problems in CR-OFDM multi-user system.
a. For optimal problem
Provides analytic optimal transmit power allocation in closed-form for CR-OFDM
multi-user system in network model, which has both mutual interference MUI
(Multi-Users Interference) and internal Interference IUI (Inter-Users Interference).
b. For suboptimal problem
Extends the proposed method SOIT as well as two methods Scheme A and Scheme
B of Bansal for CR-OFDM multi-user system.
Hanoi, 07/07/2016
Supervisor

PhD. Student

Prof. Dr Nguyen Van Duc

Nguyen Tien Hoa


TRÍCH YẾU LUẬN ÁN

Họ và tên NCS:
Đề tài nghiên cứu:
Chuyên ngành:
Mã số:
Cơ sở đào tạo:

Nguyễn Tiến Hòa
“Giải pháp phân chia tần số và công suất dưới điều kiện ràng buộc nhiễu
cho truyền thông nhận thức sử dụng OFDM”
Kỹ thuật Viễn thông
62520208
Bộ môn Mạch và Xử lý Tín hiệu, Viện Điện tử - Viễn thông, trường
ĐHBK Hà Nội

Mục đích và đối tượng nghiên cứu của luận án.

Mục tiêu của luận án nhằm giải quyết những vấn đề tối ưu và cận tối ưu trong phân chia kênh
động và phân bổ công suất nhằm tối ưu dung lượng tổng cộng trong một hệ thống CR-OFDM
đơn và đa người dùng. Trong đó đối tượng nghiên cứu của luận án là phân chia kênh động và
phân bổ công suất phát.
Các phương pháp nghiên cứu đã sử dụng.

Luận án phát triển tiếp trên những công trình quan trọng của Bansal và cộng sự được nhiều
người quan tâm với hơn 500 lượt trích dẫn. Cách tính toán nghiệm tối ưu sử dụng phương pháp
Lagrange với các điều kiện biên Karush-Kuhn-Tucker. Các phương pháp hiện hành (tối ưu hay
cận tối ưu) cho hệ thống CR sử dụng OFDM (cả đơn hay đa người dùng) đều chưa tính đến điều
kiện biên là tổng công suất phát phải dưới ngưỡng cho phép, trong khi điều kiện này được áp chế
bởi FCC. Luận án bổ sung điều kiện này để đưa ra các giải pháp tối ưu đối với công suất phát
dưới dạng nghiệm giải tích đóng (đơn và đa người dùng). Luận án dựa trên nghiệm giải tích dạng
đóng này để đưa ra các giải pháp cận tối ưu nhằm giảm độ phức tạp tính toán và đảm bảo chất

lượng hệ thống theo yêu cầu. Luận án sử dụng phương pháp phân tích giải tích kết hợp với lý
thuyết và mô phỏng ở lớp vật lý để đánh giá hiệu năng của hệ thống.
Các kết quả chính

1) Đóng góp 1: Đưa ra nghiệm phân bổ công suất giải tích tối ưu dạng đóng cho mô hình hệ
thống CR-OFDM với ba kịch bản bảo vệ chất lượng dịch vụ của hệ thống PU khác nhau,
bao gồm: a) hệ thống PU cần bảo vệ với một mức can nhiễu giới hạn; b) hệ thống PU cần
bảo vệ với nhiều mức can nhiễu giới hạn; c) nhiều hệ thống PU cần được bảo vệ với nhiều
tốc độ truyền dẫn khác nhau.
2) Đóng góp 2: Đề xuất giải pháp phân bổ công suất phát bám nhiễu bậc hai SOIT (Second
Order Interference Tracking). Giải pháp này có số lượng sóng mang con được chèn không
là động (dynamic nulling) và giảm độ phức tạp thuật toán xuống O(NlogN) so với phương
pháp tối ưu là O(N3).
3) Đóng góp 3: Đề xuất hai giải pháp phân chia tần số dựa trên nhiễu, cụ thể: Giải pháp phân
chia nhiễu nghịch đảo IIA (Inverted Interference Assignment) dựa trên sự công bằng mức


nhiễu và giải pháp phân chia tập hợp sóng mang con thông minh CCA (Cognitive Carrier
Aggregation) dựa trên sự đảm bảo về QoS của hệ thống.
4) Đóng góp 4: Đề xuất hai phương án giải quyết bài toán tối ưu và cận tối ưu trong phân bổ
công suất của hệ thông CR-OFDM đa người dùng
Đối với vấn đề tối ưu: Đưa ra nghiệm giải tích dạng đóng cho sự phân bổ công suất tối
ưu trong trong mô hình mạng tồn tại cả nhiễu tương hỗ MUI (Multi-Users Interference)
và cả nhiễu nội bộ IUI (Inter-Users Interference).
Đối với vấn đề cận tối ưu: Mở rộng phương pháp phân bổ công suất phát bám nhiễu bậc
hai (SOIT) cũng như đề xuất mở rộng hai phương pháp Scheme A và Scheme B của
Bansal cho mô hình CR đa người dùng.
Kết luận

Trong luận án này, nghiên cứu sinh đã nghiên cứu nghiên cứu các kỹ thuật tối ưu và cận tối ưu

trong quá trình phân chia kênh động và phân bổ công suất trên đường xuống của hệ thống truyền
thông nhận thức ứng dụng OFDM (CR-OFDM) đơn và đa người dùng. Luận án xem xét vấn đề
tối ưu hiệu năng dung lượng trong hệ thống CR với các điều kiện biên bao gồm việc bảo vệ chất
lượng dịch vụ của hệ thống được cấp phép PU.
Luận án đã đưa ra nghiệm giải tích dạng đóng cho mô hình với ba kịch bản bảo vệ chất lượng
dịch vụ của hệ thống PU khác nhau. Thông qua giải pháp tối ưu, luận án tính được các tham số
nhiễu, gây ảnh hưởng đến chất lượng hệ thống. Qua đó, các giải pháp cận tối ưu được đưa ra trên
cơ sở khai thác cách sử dụng các tham số nhiễu
Luận án đã đề xuất hai phương pháp phân chia kênh động IIA và CCA, trong đó IIA có khả năng
ứng dụng thực tế cao, đồng thời có độ phức tạp tính toán thấp O(N). Giải pháp IIA nâng tổng
công suất phát lên 45% so với phân chia đều truyền thống, có độ phức tạp thuật toán là O(N).
Giải pháp CCA có độ phức tạp thuật toán L.O(N) và nâng tổng công suất phát lên 12% so với
phương pháp phân chia đều, đồng thời cũng thấp hơn 33% so với phương pháp IIA.
Kết quả mô phỏng chỉ ra rằng phương pháp SOIT được đề xuất trong luận án có độ phức tạp
thuật toán thấp O(NlogN), đồng thời mang lại hiệu năng dung lượng tốt hơn 30% so với phương
pháp Scheme B và 70% so với phương pháp Scheme A của Bansal. Phương pháp SOIT cũng đạt
xấp xỉ 95% đối với hiệu năng dung lượng tối ưu, và cao hơn 74% so với phương pháp phân bổ
công suất đều.

Giảng viên hướng dẫn

Nghiên cứu sinh

PGS.TS Nguyễn Văn Đức

Nguyễn Tiến Hòa


BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI


NGUYỄN TIẾN HÒA

GIẢI PHÁP PHÂN CHIA TẦN SỐ VÀ CÔNG SUẤT
DƯỚI ĐIỀU KIỆN RÀNG BUỘC NHIỄU
CHO TRUYỀN THÔNG NHẬN THỨC SỬ DỤNG OFDM

Chuyên ngành: Kỹ thuật Viễn thông
Mã số: 62520208

TÓM TẮT LUẬN ÁN TIẾN SĨ KỸ THUẬT VIỄN THÔNG

HÀ NỘI - 2016


Công trình này được hoàn thành tại
Trường Đại học Bách Khoa Hà Nội

Người hướng dẫn khoa học: PGS.TS.Nguyễn Văn Đức

Phản biện 1: .......................................................................
Phản biện 2: .......................................................................
Phản biện 3: .......................................................................
Luận án được bảo vệ trước Hội đồng đánh giá luận án tiến sĩ cấp trường
họp tại Trường Đại học Bách Khoa Hà Nội

vào hồi . . . giờ, ngày . . . tháng . . . năm 2016

Có thể tìm hiểu luận án tại:


1. Thư viện Tạ Quang Bửu, Trường ĐHBK Hà Nội
2. Thư viện Quốc gia Việt Nam


GIỚI THIỆU LUẬN ÁN

1. Tính cấp thiết của luận án
Theo nghiên cứu của Ủy ban Truyền thông Liên bang FCC (Federal Communication Commission), hiệu quả của việc sử dụng của các tần số được cấp phép là
thấp [21]. Hệ thống truyền thông nhận thức (CR: Cognitive Radio) được đề xuất
trong [54] là một công nghệ đầy hứa hẹn có khả năng giải quyết các vấn đề sử
dụng phổ tần hiệu quả. Truyền thông nhận thức cho phép người sử dụng thứ cấp
SU (Secondary User) sử dụng những dải tần trống tạm thời của người dùng sơ
cấp PU (Primary User) khi đảm bảo mức can nhiễu từ SU sang PU nhỏ hơn mức
giới hạn. Các nghiên cứu đã chỉ ra rằng kỹ thuật ghép kênh đa sóng mang trực
giao OFDM (Orthogonal Frequency Division Multiplexing) là phương pháp điều
chế rất phù hợp cho các hệ thống truyền thông nhận thức [32,33,41,47,76]. Đề tài
luận án nghiên cứu các giải pháp cho vấn đề phân chia kênh động và phân bổ
công suất cho hệ thống CR-OFDM nhằm nâng cao hiệu quả sử dụng tài nguyên
vô tuyến.
2. Mục tiêu của luận án
Mục tiêu của luận án đó là giải quyết những vấn đề tối ưu và cận tối ưu trong
cấp phát kênh động và phân bổ công suất nhằm tối ưu dung lượng tổng cộng trong
hệ thống CR-OFDM đơn và đa người dùng dưới các điều kiện ràng buộc nhiễu.
3. Nhiệm vụ của luận án
Luận án tập trung nghiên cứu những phương pháp phân bổ công suất và phân
chia kênh động nhằm tối ưu dung lượng tổng cộng trong hệ thống CR-OFDM đơn
và đa người dùng dưới điều kiện ràng buộc nhiễu. Luận án giả sử rằng quá trình
cảm biến hố phổ đã được thực hiện và các dải tần trống đã được biết. Các hệ số
kênh truyền từ SU và PU được ước lượng hoàn hảo [51,96].
Đối với mô hình CR-OFDM đơn người dùng, vấn đề tối ưu dung lượng với các

điều kiện biên có thể giải được bằng phương pháp Lagrange với các điều kiện biên
1


Karush-Kuhn-Tucker (KKT) [14]. Các phương pháp phân bổ công suất cận tối ưu
được nghiên cứu một mặt nhằm giảm độ phức tạp tính toán, mặt khác đạt được
dung lượng kênh gần phương pháp tối ưu tối ưu.
Trong hệ thống CR đa người dùng, vấn đề tối ưu là vấn đề bất định trong
thời gian đa thức (NP-Hard) không thể giải được bởi cách máy tính thông thường
trong khoảng thời gian chấp nhận được, và không thể tìm được nghiệm giải tích
dạng đóng [14,16]. Vấn đề tối ưu được chia thành hai quá trình bao gồm phân
chia kênh động và phân bổ công suất phát. Ở đây quá trình phân chia kênh động
không có lời giải tối ưu [74,75]. Quá trình phân bổ công suất có hai cách tiếp cận
bao gồm tối ưu và cận tối ưu. Trong vấn đề phân bổ công suất, luận án không chỉ
xem xét nhiễu tương hỗ truyền thống MUI (Multi-Users Interference) giữa PU và
SU mà còn cả nhiễu nội bộ IUI (Inter-Users Interference) giữa những người dùng
thứ cấp.
4. Tình hình nghiên cứu trong và ngoài nước
Vấn đề quản lý tài nguyên vô tuyến của hệ thống truyền thông truyền thống
đã được nghiên cứu sâu rộng trong [1-3,7-10,34-35,96-100]. Phương pháp phân bổ
công suất theo thuật toán rót nước (Water-Filling) đã được tác giả trong [81]
chứng minh rằng không hiệu quả đối với SU. Cách tiếp cận với số lượng bít điều
chế và công suất phát trên từng kênh con cho hệ thống OFDM đơn người dùng
được trình bày trong [71], trong đó những kênh có hệ số kênh truyền lớn được
phát công suất và mức điều chế cao nhằm tăng dung lượng của hệ thống. Để đảm
bảo công bằng QoS, Rhee và cộng sự trong [70] đưa ra vấn đề Max-Min để tối ưu
dung lượng kênh của những người dùng có dung lượng kênh thấp.
Vấn đề phân bổ công suất tối ưu và cận tối ưu đã được Bansal đưa ra trong
[7-10]. Tuy nhiên ở đây PU chỉ đưa ra một mức công suất can nhiễu giới hạn,
tương ứng với một PU đang hoạt động. Tác giả không đưa ra mức công suất phát

giới hạn cho SU, điều này không sát với thực tế bởi trong mạng hỗn tạp có thể
có nhiều PU đang hoạt động và cần bảo vệ với nhiều mức can nhiễu khác nhau
[21-21]. Trong các nghiên cứu [7-10,42,97-100] đều giả sử hệ số kênh truyền trong
hệ thống SU và PU đều được biết tại phía phát SU. Sự giả định này là có cơ sở
bởi hệ số kênh truyền giữa những người dùng SU có thể được ước lượng theo các
phương pháp ước lượng kênh truyền thống. Ngoài ra hệ số kênh truyền giữa SU
và PU có thể ước lượng được dựa trên lý thuyết thuận nghịch [51,97]. Các thách
thức trong việc quản lý tài nguyên trong hệ thống không nhận thức truyền thống
có thể được xem ở [71].
Các tác giả trong [34,91] đề xuất sử dụng cửa sổ (Windowing) cho phía phát
của SU nhằm giảm búp sóng phụ qua đó giảm nhiễu lên PU. Phương pháp này
2


giúp nâng cao công suất phát của SU và nâng cao dung lượng kênh. Phần lớn
nhiễu ảnh hưởng lên PU được gây ra do những sóng mang con của SU nằm cạnh
băng tần của PU [88-89,95-100]. Tác giả trong [16] đề xuất phương pháp làm giảm
các búp sóng phụ bằng cách tắt đi các sóng mang con nằm kề băng tần của PU,
thay cho khoảng bảo vệ CP, gọi là CC (Cancellation Carriers). Việc tắt đi những
sóng mang con này có thể giảm nhiễu từ SU sang PU được gọi là chèn không.
5. Đóng góp của luận án
Những đóng góp chính của như sau:
1) Đưa ra nghiệm giải tích tối ưu dạng đóng cho mô hình hệ thống
CR-OFDM đơn người dùng với ba kịch bản bảo vệ chất lượng dịch vụ
cho ba hệ thống PU khác nhau. Kết quả được công bố trên công trình [C3],
[J2].
2) Đề xuất giải pháp phân bổ công suất phát bám nhiễu bậc hai
(SOIT) cho hệ thống CR-OFDM đơn nguời dùng. Kết quả được công bố
trên công trình [C1], [J1].
3) Đề xuất hai giải pháp phân chia tần số dựa trên nhiễu cho hệ

thống CR-OFDM đa người dùng. Các giải pháp này được công bố trên công
trình [C4], [J2].
4) Đề xuất hai phương án giải quyết bài toán tối ưu và cận tối ưu
trong phân bổ công suất của hệ thông CR-OFDM đa người dùng. Kết
quả được công bố trên công trình [C2].
6. Bố cục luận án
Luận án được chia thành ba chương. Trong chương 1, luận án trình bày các
loại can nhiễu trong mô hình mà hệ thống PU và SU cùng tồn tại cũng như dung
lượng kênh của hệ thống CR-OFDM. Trong chương 2, luận án đưa ra nghiệm giải
tích tối ưu dạng đóng cho công suất phát phân bổ trên mỗi sóng mang con trong
mô hình hệ thống CR-OFDM đơn người dùng và đề xuất phương pháp phân bổ
công suất SOIT với độ phức tạp thuật toán thấp hơn so với phương pháp phân
bổ công suất tối ưu và mang lại hiệu năng dung lượng hệ thống cao. Luận án xem
xét mô hình hệ thống CR-OFDM đa người dùng trong chương 3 và đề xuất hai
giải pháp phân chia kênh động.

3


Chương 1
NHIỄU VÀ DUNG LƯỢNG TRONG MẠNG TRUYỀN
THÔNG NHẬN THỨC

1.1. Nhiễu từ SU sang PU
Giả sử rằng ta dùng một bộ lọc xung vuông cho mỗi sóng mang con thứ i của tín
hiệu OFDM theo như chuẩn WLAN [21-22]. Như vậy mật độ phổ công suất của
sóng mang con thứ i của người dùng SU thứ k được viết trong [66-67,88-89] là
sin(πf Ts )
πf Ts


φi,k (f ) = ATs

2

,

(1.7)

trong đó A là biên độ của tín hiệu tại sóng mang con thứ i của người dùng SU thứ
k, Ts là thời gian một chu kỳ tín hiệu. Như vậy can nhiễu của tín hiệu tại sóng
mang con thứ i của người dùng SU thứ k sang hệ thống PU với băng tần có bề
rộng B là [7-10,88-89]
di,k +B/2

Ii,k (di,k , Pi,k ) = Pi,k Ts
di,k −B/2

sin(πf Ts )
πf Ts

2

df,

(1.8)

với Pi,k là công suất phát trên sóng mang con thứ i của người dùng SU thứ k, di,k
là khoảng cách giữa sóng mang con của SU đến dải tần của PU. Từ công thức
(l)
(1.8), đặt Ii,k là nhiễu từ sóng mang con thứ i, kênh thứ k của SU sang dải tần

thứ l của PU. Đặt N (k) là số lượng sóng mang con của kênh thứ k trong tổng số
N sóng mang con của cả hệ thống SU. Tổng nhiễu từ SU sang PU với L dải tần
sẽ là
L

K N (k)
(l)

Isp =

(l)

Ii,k (di,k , Pi,k )
l=1 k=1 i=1

4

(1.13)


Ta thấy nhiễu từ SU sang PU phụ thuộc vào 3 yếu tố: (1) độ lợi kênh hsp
i,k,l ;
(2) công suất Pi,k tại sóng mang con thứ i của người dùng SU thứ k; (3) khoảng
(l)
cách di,k giữa dải tần từ SU tới PU.

1.2. Nhiễu từ PU sang SU
Mật độ phổ công suất của tín hiệu PU sau khi biến đổi Fourier với chiều dài N có
thể viết [61,89]:
1

E{IN (ω)} =
2πN

π

sin(ω − ψ)N/2
ΦPU (e )
sin(ω − ψ)/2
−π


(l)

2

dψ,
(l)

(1.14)
(l)

với ΦPU (ejω ) là mật độ phổ công suất của tín hiệu PU. Đặt Ji,k (di,k , PPU ) là nhiễu
từ băng thông PU thứ l lên sóng mang con thứ i, người dùng SU thứ k ta có
(l)

(l) (l)
(l)
Ji,k (di,k , PPU )

di,k +∆f /2


=

E{IN (ω)}dω,

(l)

(1.15)

di,k −∆f /2

trong đó hps
i,k,l là độ lợi kênh từ băng thông PU thứ l và sóng mang con thứ i của
(l)

người dùng SU thứ k, ∆f là bề rộng sóng mang con của SU, PPU là công suất
phát của băng thông PU thứ l.

1.3. Nhiễu giữa SU
(m,k)

(m,k)

(m)

Đặt Mn,i (dn,i , Pn ) là nhiễu từ sóng mang thứ n, người dùng SU thứ m đến
sóng mang thứ i người dùng SU thứ k, tương tự như trên luận án có thể viết
(m,k)

dn,i

(m,k) (m,k)
Mn,i (dn,i , Pn(m) )

=

ss(m,k)
hn,i

2

Pn(m) Ts

sin(πf Ts )
πf Ts

×
(m,k)

dn,i
(m,k)

với dn,i

+∆f /2

2

−∆f /2
ss(m,k)


là khoảng cách giữa hai sóng mang thứ n và thứ i, hn,i

kênh giữa máy phát thứ m đến máy thu thứ k.
thứ n của người dùng CR thứ m.

5

df (1.17)

(m)
Pn

là độ lợi

là công suất trên sóng mang


1.4. Dung lượng hệ thống CR
Tốc độ truyền dẫn tối đa đạt được tại sóng mang con thứ i với công suất phát Pi
có thể được tính theo công thức Shannon [29].
2

Ri (Pi , hi ) = ∆f log2 1 +

|hi | Pi
,
σi2

(1.19)


Trong đó hi là độ lợi kênh pha-đinh trên sóng mang con thứ i, σi2 là nhiễu trắng
Gauss và can nhiễu từ phía phát PU sang sóng mang con thứ i. Dung lượng kênh
của hệ thống CR-OFDM được đưa ra là [7-10]:
N

∆f log2 1 +

C = max
Pi,k

i=1

2
|hss
i | Pi

σ2 +

L
l=1

(l)

,

(1.20)

Ji

với Pi là công suất phát trên sóng mang con thứ i của của SU. σ 2 là phương sai

(l)
nhiễu trắng Gauss AWGN, Ji biểu thị nhiễu từ băng thông PU thứ l sang sóng
mang con sóng mang con SU thứ i.
Trong hệ thống CR-OFDM K người dùng sử dụng phương pháp đa truy nhập
FDMA. Dung lượng kênh của hệ thống này được luận án đưa ra là:
N (k) K

∆f log2 1 +

C = max
Pi,k

i=1 k=1

2
|hss
i,k | Pi,k

σ2 +

L
l=1

(l)

Ji,k +

K
m=1
m=k


N (m)
n=1

(m,k)

, (1.21)

Mn,i

với Pi,k là công suất phát cho sóng mang con thứ i, người dùng SU thứ k. σ 2 là
(l)
phương sai nhiễu trắng Gauss AWGN, Ji,k là nhiễu từ băng thông PU thứ l sang
sóng mang con thứ i, người dùng SU thứ k. N (k) là số lượng sóng mang con của
(m,k)
kênh SU thứ k, Mn,i là nhiễu giữa hai sóng mang con thứ i và thứ n của người
dùng SU thứ m và thứ k.

6


Chương 2
PHÂN BỔ TÀI NGUYÊN TRONG HỆ THỐNG CR
ĐƠN NGƯỜI DÙNG

Xem xét mô hình phân chia phổ tần giữa hệ thống CR và PU như trên hình 2.1.
Luận án đưa ra nghiệm giải tích tối ưu dạng đóng cho mô hình hệ thống CROFDM đơn người dùng với ba kịch bản bảo vệ chất lượng dịch vụ cho ba hệ thống
PU khác nhau. Kết quả giải tích được đối chứng với kết quả giải bằng công cụ tối
ưu CVX [30]. Luận án cũng đưa ra phương pháp phân bổ công suất phát SOIT
(Second Order Interference Tracking) dựa trên nhiễu từ PU sang SU. SOIT có độ

phức tạp thuật toán là O(N logN ) bằng với Scheme A và B được đề xuất trong
[7-10], và thấp hơn so với phương pháp tối ưu là O(N 3 ).

2.1. Mô hình hệ thống và đặt vấn đề
Số lượng các dải tần rời rạc của hệ thống PU là L với bề rộng tương ứng là
B1 , B2 , . . . , BL . Hệ thống CR-OFDM đơn người dùng với N sóng mang với khoảng

Hình 2.1: Mô hình phân chia phổ tần giữa hệ thống CR và PU

7


cách giữa các sóng mang con là ∆f và chu kỳ tín hiệu là Ts . Vấn đề tối ưu có thể
được mô tả như sau
N

2

C = max

∆f log2 1 +

Pi,k

i=1

|hss
i | Pi
σ2 +


L
l=1

,

Jl

(2.1)

Đối với hàm mục tiêu trong công thức (2.1), luận án xem xét ba mô hình đảm bảo
QoS cho PU như dưới đây.

2.1.1. Lời giải cho mô hình đảm bảo chất lượng dịch vụ với
một mức giới hạn can nhiễu
Mô hình này đưa ra điều kiện bảo vệ PU và cho phép PU có thể hoạt động với
chất lượng dịch vụ (QoS) ở mức chấp nhận được khi can nhiễu từ SU nằm trong
mức giới hạn cho phép (IPC). Đồng thời luận án cũng xem xét đến điều kiện tổng
công suất phát của hệ thống CR dưới mức giới hạn cho phép, là điều kiện được
áp chế bởi những tổ chức quản lý tần số như FCC hoặc ETSI. Các điều kiện biên
cho hàm mục tiêu (2.1) được viết là:
L

N
(l)

C1 :

(l)

Ii (di , Pi ) ≤ Ith ,


(2.7)

với ∀i = [1, . . . , N ],

(2.8)

l=1 i=1

Pi ≥ 0,

C2 :
N

Pi ≤ Pth ,

C3 :

với ∀i = [1, . . . , N ],

(2.9)

i=1

Vấn đề này có thể giải được bằng phương pháp Lagrange và các điều kiện KKT
như sau [14]:
N

2


L(. . . ) =

log2 1 +
i=1
L

Pi∗ |hss
i |
σ2 +

L
l=1

N

(2.19)

N
(l)

−λ



Jl

Ii − Ith
l=1 i=1

N


µi Pi∗ − β

+
i=1

Pi∗ − Pth ,
i=1

với Pi∗ là nghiệm công suất tối ưu và các nhân tử Lagrange λ, µi , β ∈ R0,+ . Ta
2

đặt

(l)
Ki

(l)

(l)

=

∂Ii
∂Pi

=

di +Bl /2
2

|hsp
i,l | Ts d(l) −B /2
l
i

sin(πf Ts )
πf Ts

, giải và biện luận phương trình

Lagrange với các điều kiện biên KKT, nghiệm giải tích tối ưu đối với công suất

8


phát Pi∗ là
Pi∗ = max 0,

L

1
L
l=1

λ



(l)


Ki + β

(l)

σ 2 + l=1 Ji
2
|hss
i |

,

(2.22)

2.1.2. Lời giải cho mô hình đảm bảo chất lượng dịch vụ với
nhiều mức giới hạn can nhiễu
Trong trường hợp có nhiều hệ thống PU đang hoạt động và mức giới hạn IPC của
từng hệ thống PU là khác nhau. Nói cách khác mỗi dải tần Bl sẽ có định mức can
l
nhiễu cho phép Ith
. Hơn thế nữa công suất phát của hệ thống CR cũng cần phải
được giới hạn theo ủy ban truyền thông FCC hay ETSI. Vì vậy luận án đưa ra
điều kiện biên như sau đây.
N
(l)

(l)

(l)

Ii (di , Pi ) ≤ Ith , ∀l = [1, . . . , L]


C4 :

(2.11)

i=1

Pi ≥ 0, ∀i = [1, . . . , N ],

C5 :

(2.12)

N

Pi ≤ Pth , ∀i = [1, . . . , N ],

C6 :

(2.13)

i=1

Đặt ψi =

2
|hss
i |
σ2 + L
l=1 Jl


phương trình Lagrange có thể viết lại như sau với điều kiện

KKT như sau [13]:
N

L

log2 1 + Pi∗ ψi

L(. . . ) =



i=1

N

l=1
N

i=1

(l)



(2.24)

i=1


N

Pi∗ − Pth

−β

(l)

Pi∗ Ki − Ith

λl
µi Pi∗ ,

+
i=1

Giải và biện luận phương trình Lagrange với các điều kiện biên KKT, công
suất phát Pi∗ tối ưu trên mỗi sóng mang con của CR-OFDM là:

(l)
L
1

− ψ1i ,
nếu
(l)
L
l=1 λl Ki + β ≤ ψi
l=1 λl Ki +β

(2.29)
Pi∗ =
(l)
L
0,
nếu λl l=1 Ki + β > ψi

2.1.3. Lời giải cho mô hình đảm bảo chất lượng dịch vụ với
nhiều mức giới hạn dựa trên tham số SINR
Mô hình này cho phép tính toán tốc độ truyền dẫn tối thiểu (MDR) của hệ thống
PU dựa trên tỉ lệ lỗi bít truyền dẫn (BER) bằng cách đặt giới hạn cho thông số tỉ
9


lệ tín hiệu trên nhiễu cộng tạp âm (SINR). Kịch bản này cho phép bảo vệ nhiều
hệ thống PU hoạt động nhiều tốc độ truyền dẫn khác nhau. Luận án đưa ra điều
kiện biên như sau đây.
(l)

ϑ(l) ≥ ϑth , với ∀l = [1, . . . , L]

C7 :

(2.16)

N

Pi ≤ Pth

C8 :


(2.17)

i=1

Pi ≥ 0, ∀i = [1, . . . , N ],

C9 :

(2.18)

Phương trình Lagrange được viết là
N

L

log2 1 + Pi∗ ψi

L(. . . ) =

(l)

λl ϑ(l) − ϑth −

+

i=1

(2.30)


l=1
N

N

Pi∗ − Pth

−β

µi Pi∗ .

+

i=1

i=1

Do điều kiện giới hạn SINR là không tuyến tính, nên hệ phương trình trên
không tuyến tính dẫn vấn đề giải và biện luận phức tạp. Đặt a1 = 1/ψi , a2 =
(l)
(l)
N
L
N0 / i=1 Ki và b = l=1 λ(l) . Phương trình vi phân Lagrange có thể rút gọn:
βP ∗ 2i + [β(a1 + a2 ) + b − 1]Pi∗ + βa1 a2 + ba1 − a2 = 0.

(2.36)

Đặt Popt là nghiệm dương lớn nhất của phương trình (2.36), nghiệm giải tích tối
ưu Pi∗ là

Pi∗ =

Popt ,

nếu [β(a1 + a2 ) + b − 1] > 0

0,

cho các trường hợp còn lại

(2.39)

2.2. Phương pháp phân bổ công suất cận tối ưu
2.2.1. Phương pháp phân bổ công suất đều
Phương pháp phân bổ công suất đều đơn giản nhất có độ phức tạp tính toán
O(N ), chia đều công suất phát cho tất cả các sóng mang. Đặt Ptot là quỹ công
suất phát của SU, công suất phát trên mỗi sóng con Pi là

Ith

nếu Ptot ≥ Pth
(l)
L
N
l=1
i=1 Ki
(2.44)
Pi =
 Ptot nếu P ≤ P .
tot

th
N
10


2.2.2. Phương pháp A, B của Bansal
Trong [7-8], Bansal và cộng sự đã đề xuất hai phương pháp phân chia công suất
cận với độ phức tạp tính toán O(N logN ).
Phương pháp Scheme A
Tác giả trong [7] đề xuất một phương pháp phân bổ công suất tuyến tính dựa
trên tham số là khoảng cách giữa các sóng mang của hệ thống CR tới các băng
tần của hệ thống PU. Trong đó công suất trên mỗi sóng mang của hệ thống CR Pi
Ith
là bội bố công suất đơn vị ∆P . Đặt P = L
, công suất
N/2
(l)
(l)
l=1

Pi có thể viết là

i=1

i× Ki +KN/2+1−i


P nếu P ≤ 4×Ptot
N (N +2)
Pi =

 4×Ptot nếu P > 4×Ptot .
N (N +2)
N (N +2)

(2.51)

Phương pháp Scheme B
Trong phương pháp Scheme B, từ nghiệm tối ưu Pi trong công thức (2.22) tác
(l)

giả bỏ qua phần

σ2 + L
l=1 Ji
2
|hss
i |

và chỉ xem xét phần

1
λ

L
l=1

(l)

Ki


. Từ đó công suất

(l)

phát Pi cho mỗi sóng mang con tỷ lệ nghịch với hệ số Ki . Như vậy Pi có thể viết


Ith

Ptot ≤ Pth
(l) nếu
L
i
Pi = N × l=1 K
(2.53)
P
th
 Pi =
nếu Ptot > Pth .
(l)
L
l=1

Ki

2.2.3. Đề xuất phương pháp bám nhiễu bậc hai SOIT
Luận án sử dụng các hàm đa thức nhằm mô tả xấp xỉ công suất phát tối ưu trên
mỗi sóng mang con và thấy rằng khi dùng hàm bậc một mô tả xấp xỉ nghiệm
tối ưu sẽ cho sai số lớn đến mức 10−3 (W). Mức này xấp xỉ 0.7 lần so với công
suất phát cực đại trên mỗi sóng mang con. Hàm bậc một cũng chính là phương

pháp Scheme A được Bansal đề xuất trong [7-8]. Nghiên cứu sinh đã chỉ ra việc sử
dụng đa thức bậc năm có thể mô tả xấp xỉ khá chính xác công suất tối ưu được
phân bổ trên từng sóng mang con. Tuy nhiên việc dùng đa thức bậc năm để mô
tả mức công suất cận tối ưu sẽ mang lại độ phức tạp thuật toán (Computational
Complexity) lớn. Vì thế luận án sử dụng đa thức bậc hai, cụ thể là phương trình
parabol nhằm mô tả xấp xỉ nghiệm tối ưu và từ đó đề xuất phương pháp bám
nhiễu bậc hai SOIT.
Với phương pháp này, hiệu năng dung lượng kênh của SU được cải thiện trong
khi độ phức tạp tính toán vẫn là O(N logN ). Đặt P là công suất phát trung bình
Ith
Ith
trên mỗi sóng mang con. Đặt α =
, sử dụng
(l) và β = L×N ×K
L
N
min
L×N ×

11

l=1

i=1

Ki


Mô hình phân bổ công suất cận tối u SOIT
Mức công suất phát (W)


0.025
Công suất phát xác định
tại lới parabol

Mạng lới parabol

0.02
0.015
0.01
0.005

Công suất phân bổ trên các sóng mang con
0
0

5

10
15
20
Chỉ số sóng mang con

25

30

Hỡnh 2.4: Thut toỏn bỏm nhiu bc hai mụ hỡnh CR n ngi dựng

bt ng thc Cauchy-Schwarz lun ỏn tớnh c

P

(2.62)

Tip theo nghiờn cu sinh xõy dng N/2 mng li parabol ng vi N/2 giỏ tr
ca P , nhm xõy dng li parabol xp x vi cụng sut phõn b ti. Sau ú a
ra giỏ tr cp phỏt cụng sut Pi bng giỏ tr cỏc nỳt trờn mng li parabol ú.
Lun ỏn xõy dng chớnh sỏch phõn b cụng sut bỏm nhiu bc hai minh ha nh
trong hỡnh 2.4.
õy parabol Li(1) l mt li parabol u tiờn, ng vi P = v Li(N/2)
l li parabol cui cựng ng vi P = . Hai li parabol ny c xỏc nh bi
hai iu kin, mt l ct trc honh ti v trớ súng mang u tiờn v súng mang
th N . Do ti hai v trớ ny, hai súng mang con SU nm cnh cỏc di tn PU vỡ
th cụng sut phỏt s xp x 0. Hai l tng cụng sut phỏt trờn li parabol bng
N ì P . Sau khi xõy dng c N/2 li parabol, lun ỏn xut phng phỏp
SOIT nh sau. Giỏ tr Pmax c gỏn cho súng mang con xa di tn s ca PU
nht, ti súng con th (N + 1)/2 i vi trng hp N l hoc hai súng mang th
N/2 v N/2 + 1 i vi trng hp N chn. Sau ú hai súng mang con k bờn
cnh, ti v trớ (N + 1)/2 1 v (N + 1)/2 + 1 i vi N l hoc hai súng mang
con v trớ N/2 1 v N/2 + 1 i vi N chn s c phõn b cụng sut mc
(k)
Pmax P . Tip tc nh vy cho n khi ht qu cụng sut phỏt hoc nhiu sang
PU n mc gii hn.
A: i vi trng hp N chn
Cụng sut phõn b cho súng mang con ti v trớ N/2 i v N/2 + 1 + i l
Pmax i ì P .
B: i vi trng hp N l
Cụng sut phõn b cho súng mang con ti v trớ (N + 1)/2 i v (N + 1)/2 + i
l Pmax i ì P
12



Dung lợng kênh (Mega Bít/giây)

40

Phân chia tối u
Bám nhiễu bậc hai
Scheme A 0-Nulling
Scheme A 1-Nulling
Scheme A 2-Nulling
Phân chia đều
Scheme B 0-Nulling

30
20
10
0
2

4
6
8
Mức can nhiễu giới hạn (mW)

10

Hỡnh 2.12: So sỏnh dung lng kờnh ca h thng CR-OFDM n ngi dựng gia cỏc
phng phỏp phõn b cụng sut gia cỏc thut toỏn vi kờnh Rayleigh


Quy tc ny tip din cho n khi iu kin biờn (2.7) ti hn. Cú th thy
rng iu kin rng buc nhiu hoc qu cụng sut cú th ti hn trc khi tt
c cỏc súng mang con c phõn b cụng sut. Vỡ vy s lng cỏc súng mang
con hai u ca tớn hiu OFDM khụng c s dng l ng v hot ng nh
khong bo v lm gim nhiu t SU sang PU.

2.3. Kt qu mụ phng
Xem xột h thng CR-OFDM n ngi dựng vi 20 súng mang con v khong
cỏch gia cỏc súng mang con l f = 0.3125MHz. B rng hai bng tn ca h
thng PU nh trong mụ hỡnh 2.1 c gi s l f . Cụng sut phỏt PPU trờn
tng di tn c coi l 1W. Mc cụng sut phỏt gii hn ca CR Pth = PPU . Giỏ
sp(l)
ps(l)
tr nhiu trng 2 c t l 103 W. hi , hi
l kờnh Rayleigh. Hỡnh 2.12
mụ t dung lng kờnh truyn ca SU c tớnh trung bỡnh sau khi chy 1000 ln
mụ phng vi cỏc thut toỏn khỏc nhau c ỏp dng.
Kt qu mụ phng cho thy phõn b cụng sut da trờn nhiu (Scheme B)
mang li dung lng cao hn so vi da tuyn tớnh theo khong cỏch (Scheme A).
Bờn cnh ú vic tt i mt s cỏc súng mang ti hai u ca tớn hiu OFDM lm
gim s lng bin N v gim mc phc tp tớnh toỏn ON 3 . ng thi nhng
súng mang con ny hot ng nh mt khong bo v lm bc x ngoi di OOB,
t ú cú th nõng cao c cụng sut phỏt ti nhng súng mang con khỏc.
Khi tt i mt súng mang mi u tớn hiu OFDM, SU cú dung lng cao
hn so vi trng hp tt i hai súng ti mc Ith = 6mW. Lý do l khi mc Ith
cao, cỏc súng mang con bờn cnh cỏc di tn PU cng c s dng truyn
dn. Vỡ vy vic tt i hai súng mang lm gim b rng bng thụng ca SU v
lm gim dung lng kờnh truyn.
13



Dung l−îng kªnh (Mega BÝt/Gi©y)

50

Ph©n chia tèi −u
§Ò xuÊt PP b¸m nhiÔu bËc 2
Scheme A, 0-Nulling
Scheme A, 2-Nulling
Scheme B
Ph©n chia tèi −u
§Ò xuÊt PP b¸m nhiÔu bËc 2
Scheme A, 0-Nulling
Scheme A, 2-Nulling
Scheme B

45
40
35
30
MIMO 2x2:
SISO

25
2

4
6
8
Møc can nhiÔu giíi h¹n (mW)


10

Hình 2.13: So sánh dung lượng kênh của hệ thống SISO và MIMO CR-OFDM đơn người
dùng với kênh Rayleigh

Phương pháp đề xuất SOIT xem xét không những khoảng cách từ các sóng
mang con SU đến dải tần PU mà còn dựa trên các tham số nhiễu. Kết quả trong
hình 2.12 cho thấy SU sử dụng phương pháp SOIT có dung lượng xấp xỉ 95% so
với sử dụng phương pháp tối ưu. Đồng độ phức tạp thuật toán giảm từ O(N 3 )
xuống O(N logN ). SOIT nâng cao dung lượng xấp xỉ 8% so với Scheme B và xấp
xỉ 30% so với Scheme A.
Việc sử dụng MIMO cho hệ thống CR nhằm đạt được thêm độ lợi phân tập
không gian giữa các ăng-ten như trên hình 2.13. So sánh hiệu năng dung lượng
của hệ thống CR trong hai mô hình MIMO và SISO luận án thấy rằng đối với mức
can nhiễu giới hạn Ith = 2 × 10−4 hệ thống MIMO có dung lượng lớn hơn SISO
xấp xỉ 3.4Mbps tương đương với xấp xỉ 0.17bit/s/Hz. Với mức can nhiễu giới hạn
Ith = 10 × 10−4 hệ thống MIMO có dung lượng lớn hơn SISO xấp xỉ 6Mbps tương
đương với xấp xỉ 0.3bit/s/Hz.

14


Chương 3
PHÂN BỔ TÀI NGUYÊN TRONG HỆ THỐNG CR
ĐA NGƯỜI DÙNG

Xem xét hệ thống CR-OFDM đa người dùng với K kênh sử dụng OFDM, sử dụng
phương pháp đa truy nhập FDMA. Mỗi kênh có N (k) trong tổng số N sóng mang
con của hệ thống. Hệ thống SU sử dụng các hố phổ nằm kề với L băng tần PU.

Luận án xem xét hai quá trình, gồm phân chia kênh động và phân bổ công suất.

3.1. Vấn đề phân chia kênh
Trong phần này luận án xem xét phương pháp phân chia kênh đều và đề suất
hai phương pháp phân chia kênh động dựa trên hai loại nhiễu tương hỗ giữa SU
và PU, gồm (a) Giải pháp phân chia nhiễu nghịch đảo IIA (Inverted Interference Assignment) dựa nhiễu từ PU sang SU và sự cân bằng về mức nhiễu. (b)
Giải pháp phân chia tập hợp sóng mang con thông minh CCA (Cognitive Carrier
Aggregation) dựa trên nhiễu từ SU sang PU và sự công bằng về QoS.

3.1.1. Phương pháp phân chia kênh đều
Đây là phương pháp phổ biến vì tính đơn giản với độ phức tạp thuật toán là O(N )
[73]. Đặt N (k) là số sóng mang con của kênh thứ k trong hệ thống SU suy ra:
N (k) =

N
,
K

(3.1)

với N là số sóng mang con, K là tổng số kênh của hệ thống SU. Phương pháp này
được sử dụng trong nhiều hệ thống truyền thông ví dụ như trong hệ thống WiFi,
khi mỗi kênh là bằng nhau và bằng 20MHz.
15


3.1.2. Đề xuất phương pháp phân chia kênh động (IIA) dựa
trên nhiễu từ PU sang SU
Phương pháp phân chia IIA có thể áp dụng được trong cả hai mô hình tập trung
và phân tán, nhờ dựa trên nhiễu từ PU sang SU có thể hoàn toàn tính toán được

tại phía SU. IIA được thực hiện dựa trên ba bước như sau:
Bước 1: Hệ thống CR lập một bản đồ nhiễu từ phía PU sang SU. Nhiễu từ PU
sang SU hoàn toàn có thể đo và tính được tại phía SU. Bước 2: IIA tính lượng
nhiễu trung bình trên từng sóng mang con của CR đồng thời tính lượng nhiễu J
mà mỗi người dùng SU cần phải chịu.
J=



L
l=1

N
i=1

(l)

(l)

(l)

Ji (di , PPU )

N
(l)

(l)

,


(3.2)

(l)

với L là số lượng băng thông của hệ thống PU, Ji (di , PPU ) là nhiễu của từ băng
thông PU thứ l sóng mang con CR thứ i, N là tổng số sóng mang con của CR.
Bước 3: Đặt N (k) là số sóng mang con của kênh SU thứ k, nhiễu từ hệ thống
PU sang kênh SU thứ k được viết là
L N (k)
(l)

N (k)
Jps
=

(l)

(l)

Ji,k (di,k , PPU ),

(3.3)

l=1 i=1

Chọn N (k) sao cho
N (k)
Jps
≤J


(3.4)

Quá trình này được tiếp tục cho đến K − 1 kênh, và kênh thứ K sẽ nhận toàn bộ
những tần số còn trống còn lại. Với ba bước để phân chia kênh động theo phương
pháp IIA, độ phức tạp của phương pháp này tương tự như phân chia đều và bằng
O(N ) [73].

3.2. Đề xuất phương pháp phân chia kênh động
(CCA) dựa trên nhiễu từ SU sang PU
Phương pháp phân chia kênh động CCA có thể được áp dụng trong mô hình tập
trung. CCA dựa trên nhiễu từ SU sang PU và mức ngưỡng công suất nhiễu giới
hạn Ith . CCA được thực hiện dựa trên 3 bước như sau:
Bước 1: Hệ thống CR lập một bản đồ nhiễu từ phía SU sang PU và xác định
mức ngưỡng nhiễu giới hạn Ith .
Bước 2: CCA tính lượng nhiễu trung bình I mà mỗi kênh SU gây sang PU .
I=



L
l=1

(l) (l)
(l)
N
i=1 Ii (di , PPU )

N
16


,

(3.5)


(l)

(l)

(l)

với L là số lượng băng thông của hệ thống PU, Ii (di , PPU ) là nhiễu từ sóng
mang SU thứ i sang băng thông PU thứ l. N là tổng số sóng mang con của SU.
Bước 3: Đặt N (k) là số sóng mang con của kênh SU thứ k, chọn N (k) như
sau
N (k)
(3.7)
Isp
≤I
Quá trình này được tiếp tục cho đến kênh thứ K − 1. Kênh thứ K sẽ nhận toàn
bộ những tần số còn trống còn lại. Độ phức tạp của phương pháp này có thể tính
tương tự như IIA bằng L × O(N ), khi L băng tần PU cần bảo vệ với L mức công
suất can nhiễu giới hạn [73].

3.3. Vấn đề phân bổ công suất
Giả sử rằng có rất nhiều người dùng SU, dựa trên định lý giới hạn trung tâm
(m,k)
(central limit theorem), có thể coi Mn,i là một loại nhiễu trắng Gauss [5]. Luận
án viết lại hàm mục tiêu với các điều kiện biên như dưới đây
hss

i,k

K N (k)

∆f log2 1 +

C = max
Pi

k=1 i=1

2

Pi,k
L
l=1

σ2 +

Jl

,

(3.9)

Luận án xem xét xác suất để nhiễu từ SU sang PU nhỏ hơn mức giới hạn cần lớn
hơn mức giới hạn α. Điều kiện này cho phép xác định xác suất rớt mạng (outage
probability) của hệ thống của PU. Các điều kiện biên đối với bài toán tối ưu trong
hàm mục tiêu (3.9) là:
K N (k)

(l)

(l)

Ii,k (di,k , Pi,k ) − Ith

C1 : Pr

≥ α,

(3.10)

k=1 i=1
(l)

với Ith là mức can nhiễu giới hạn cho phép trên băng thông PU thứ l.
C2 : 0 ≤ Pi,k ≤ Pth , ∀i = [1, . . . , N (k)], k = [1, . . . , K]
(l)

(3.10)

(l)

Từ công thức (3.10) và Ii,k = Pi,k Ki,k luận án nhận được
K N (k)
(l)

(l)

Pi,k Ki,k ≤ Ith


Pr

≥ α,

(3.14)

k=1 i=1

hay viết cách khác luận án có
K N (k)

(l)

(l)

Pi,k Ki,k ≤
k=1 i=1

17

Ith
−σln(1 − α)

(3.19)


Tiếp theo luận án đặt ψi,k =

|hss

i,k |
σ2 +

2

L
l=1

Jl

. Từ hàm mục tiêu trong (3.9) phương

trình Lagrange có thể viết là
K N (k)

L(. . . ) =

K N (k)

log2 1 +


Pi,k
ψi,k

k=1 i=1



k=1 i=1

K N (k)

L

(l)


Pi,k
Ki,k −

λl
l=1


Pi,k
− Pth

−β

k=1 i=1

(l)
Ith

σl ln(1 − α)

(3.20)

K N (k)


+

µi,k Pi,k ,
k=1 i=1

Với các hệ số nhân Lagrange λl ∈ R0,+ , l = [1, . . . L], µi,k ∈ R0,+ , i =

[1, . . . , N (k)], k = [1, . . . , K] và β là các nhân tử Lagrange. Khi đó nghiệm Pi,k
được tính là

(l)
L
 L 1 (l)
nếu
− ψ1i ,
l=1 λl Ki,k + β ≤ ψi,k

l=1 λl Ki,k +β
Pi,k
=
(3.22)
(l)
L
0,
nếu λl l=1 Ki,k + β > ψi,k

3.3.1. Phương pháp phân bổ công suất đều
Phương pháp này chia đều công suất phát trên tất cả các sóng mang. Đặt P là
công suất trên mỗi sóng mang, Ptot là quỹ công suất phát của SU, luận án tính
được


Ith

,
nếu Ptot ≤ Pth
N (k)
(l)
L
K

−σ
ln(1−α)
l
l=1
k=1
i=1 Ki,k
Pi =
(3.25)

P = Pth /N,
nếu Ptot ≥ Pth
Tham số Ith là mức can nhiễu giới hạn đã biết tại hệ thống SU. Vì vậy SU hoàn
toàn có thể sử dụng phương pháp này trong thực tế với độ phức tạp tính toán là
O(N )

3.3.2. Đề xuất mở rộng phương pháp bám nhiễu bậc hai SOIT
Trong phần này luận án mở rộng phương pháp phân bổ công suất phát bám nhiễu
bậc hai (SOIT) cho hệ thống CR-OFDM đa người dùng. Khác với hệ thống CROFDM đơn người dùng, trong hệ thống đa người dùng trước hết phải xác định
được công suất phát trên từng người dùng trong hệ thống. Nói cách khác P được
hiểu là công suất phát trung bình của từng cặp người dùng. Luận án chia công

suất phát cho từng kênh dựa trên bề rộng băng thông của chúng. Công suất trung
bình trên từng kênh sẽ nằm trong khoảng
α × N (k)
β × N (k)
≤ P (k) ≤
N
N
18

(3.30)


Mở rộng phơng pháp đề xuất SOIT cho đa ngời dùng
Mức công suất phát (W)

0.025
#2 CR User

#1 CR User
0.02

Mạng lới Parabol
0.015
0.01
0.005
0
0

5


10

15

20
25
30
Chỉ số sóng mang con

35

40

45

Hỡnh 3.4: xut m rng phng phỏp bỏm nhiu bc hai (SOIT) cho h thng CROFDM a ngi dựng

vi N (k) l s súng mang con tng ng vi b rng bng thụng ca kờnh th k
v N l s súng mang con trong h thng CR. Tip tc ý tng ca thut toỏt
bỏm nhiu bc hai ú l xõy dng N (k)/2 mng li parabol ng vi N (k)/2 giỏ
tr ca P (k), sau ú a ra giỏ tr cp phỏt cụng sut Pi,k bng giỏ tr cỏc nỳt
trờn mng li parabol ú. Chớnh sỏch phõn b cụng sut SOIT c minh ha
nh trong hỡnh 3.4,
(k)
õy parabol li1 l mt li parabol u tiờn ca cp ngi dựng th k,
(k)

(k)
ng vi P (k) = ìN
v liN l li parabol cui cựng cng ca cp ngi

N
(k)
. Hai li parabol ny c xỏc nh bi hai
dựng th k ng vi P (k) = ìN
N
iu kin, mt l ct trc honh ti v trớ th N (k 1) + 1 v th N (k). i
vi cp ngi dựng u tiờn N (0) c coi bng 0. iu ny c gii thớch l
ti hai v trớ ny, hai súng mang con ca SU nm ngay cnh cỏc di tn ca PU
hoc cnh kờnh SU khỏc nờn cú cụng sut phỏt xp x 0. Hai l tng cụng sut
phỏt trờn cỏc li parabol chớnh l tng qu cụng sut phỏt ca kờnh th k hay
l P (k) = N (k) ì P (k).
T õy phng phỏp ni suy cụng sut phỏt trờn mi súng mang con ca mi
kờnh s c tin hnh cho ngi dựng th k nh sau: Nu N (k) chn, hai súng
mang con gia ti v trớ th N (k)/2 v N (k)/2 + 1 s c phõn b cụng sut
(k)
phỏt cao nht mc Pmax . Nu N (k) l, súng mang con gia ti v trớ th
(k)
(N (k) + 1)/2 s c phõn b cụng sut phỏt cao nht mc Pmax . Sau ú hai
súng mang con bờn cnh hai bờn v trớ N (k)/2 1 v N (k)/2 + 2 i vi trng
hp N (k) chn v (N (k) + 1)/2 1 vi (N (k) + 1)/2 + 1 i vi trng hp N (k)
(k)
l s c phõn b cụng mc Pmax P (k) . Tip tc nh vy lun ỏn xut
chớnh sỏch phõn b cụng sut nh sau:
A: i vi N (k) chn
Cụng sut phõn b cho súng mang con ti v trớ N (k)/2 i v N (k)/2 + 1 + i

19



×