Tải bản đầy đủ (.pdf) (754 trang)

Introduction to polymer science and chemistry a problem solving approach, second edition chanda, manas

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (8.75 MB, 754 trang )

Polymer Science

S e c o n d

A Problem-Solving Approach
S e c o n d

E d i t i o n

Industry and academia remain fascinated with the diverse properties and applications
of polymers. However, most introductory books on this enormous and important field
do not stress practical problem solving or include recent advances, which are critical
for the modern polymer scientist-to-be. Updating the popular first edition of “the polymer
book for the new millennium,” Introduction to Polymer Science and Chemistry: A
Problem-Solving Approach, Second Edition seamlessly integrates exploration of the
fundamentals of polymer science and polymer chemistry.
See what’s new in the second edition:
• Chapter on living/controlled radical polymerization, using a unique
problem-solving approach
• Chapter on polymer synthesis by “click” chemistry, using a unique
problem-solving approach
• Relevant and practical work-out problems and case studies
• Examples of novel methods of synthesis of complex polymer molecules
by exciting new techniques
• Figures and schematics of the novel synthetic pathways described in
the new examples
Author Manas Chanda takes an innovative problem-solving approach in which the text
presents worked-out problems or questions with answers at every step of the development
of a new theory or concept, ensuring a better grasp of the subject and scope for
self study. Containing 286 text-embedded solved problems and 277 end-of-chapter
home-study problems (fully answered separately in a Solutions Manual), the book


provides a comprehensive understanding of the subject. These features and more set
this book apart from other currently available polymer chemistry texts.

Introduction to Polymer
Science and Chemistry

Introduction to
Polymer Science
and Chemistry

E d i t i o n

Introduction to
Polymer Science
and Chemistry
A Problem-Solving Approach
Manas Chanda

Second
Edition

K15289
ISBN-13: 978-1-4665-5384-2

90000

9 781466 553842

K15289_Cover_mech.indd 1


11/9/12 2:22 PM


Introduction to
Polymer Science
and Chemistry
A Problem-Solving Approach

K15289_FM.indd 1

11/16/12 3:48 PM


This page intentionally left blank


S e c o n d

e d i t i o n

Introduction to
Polymer Science
and Chemistry
A Problem-Solving Approach
Manas Chanda

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business


K15289_FM.indd 3

11/16/12 3:48 PM


CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2013 by © 2013 by © 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Version Date: 20130109
International Standard Book Number-13: 978-1-4665-5385-9 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at


and the CRC Press Web site at



Dedicated to the memory
of my beloved father and mentor
Narayan Chandra Chanda


This page intentionally left blank


Contents

1

2

Preface

xvii

Author

xxi

Introductory Concepts
1.1 Basic Definitions . . . . . . . . . . . . . .
1.1.1 Polymer . . . . . . . . . . . . . . .
1.1.2 Monomer . . . . . . . . . . . . . .

1.1.3 Molecular Weight and Molar Mass .
1.1.4 End Groups . . . . . . . . . . . . .
1.1.5 Degree of Polymerization . . . . .
1.1.6 Copolymers . . . . . . . . . . . . .
1.2 Polymerization and Functionality . . . . . .
1.3 Polymerization Processes . . . . . . . . . .
1.3.1 Addition or Chain Polymerization .
1.3.2 Step Polymerization . . . . . . . .
1.3.3 Supramolecular Polymerization . .
1.4 Molecular Architecture . . . . . . . . . . .
1.5 Classification of Polymers . . . . . . . . .
1.5.1 Thermoplastics and Thermosets . .
1.6 Plastics, Fibers, and Elastomers . . . . . . .
1.7 Polymer Nomenclature . . . . . . . . . . .
References
. . . . . . . . . . . . . . . . . . . . . . .
Exercises
. . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

1
1
1
2
3
3
4
4
5
7
7
11
13
18
22
22
26
29
31
31


Chain Dimensions, Structures, and Transitional Phenomena
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Polymer Chains: Structures and Dimensions . . . . . . .
2.2.1 Conformational Changes . . . . . . . . . . . . . .
2.2.1.1 Polyethylene . . . . . . . . . . . . . . .
2.2.1.2 Polyisobutylene . . . . . . . . . . . . .
2.2.1.3 Polypropylene . . . . . . . . . . . . . .
2.2.2 Polymer Conformations in Crystals . . . . . . . .
2.2.3 Polymer Size in the Amorphous State . . . . . . .
2.2.3.1 Freely Jointed Chains . . . . . . . . . .
2.2.3.2 Real Polymer Chains . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

35
35
35
35
38
39

40
40
42
43
44

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

vii


viii


Contents

2.3

Constitutional and Configurational Isomerism . . . . . .
2.3.1 Constitutional Isomerism . . . . . . . . . . . . .
2.3.2 Configurational Isomerism . . . . . . . . . . . .
2.3.2.1 Geometrical Isomerism . . . . . . . .
2.3.2.2 Stereoisomerism . . . . . . . . . . . .
2.4 Crystallinity in Polymers . . . . . . . . . . . . . . . . .
2.4.1 Structure of Bulk Polymers . . . . . . . . . . . .
2.4.1.1 Spherulites . . . . . . . . . . . . . . .
2.5 Thermal Transitions in Polymers . . . . . . . . . . . . .
2.5.1 Tg and Tm . . . . . . . . . . . . . . . . . . . . .
2.5.2 First- and Second-Order Transitions . . . . . . .
2.6 Regions of Viscoelastic Behavior . . . . . . . . . . . . .
2.7 Factors Affecting Tg . . . . . . . . . . . . . . . . . . . .
2.8 Factors Affecting Tm . . . . . . . . . . . . . . . . . . .
2.9 Relation Between Tm and Tg . . . . . . . . . . . . . . .
2.10 Theoretical Treatment of Glass Transition . . . . . . . .
2.10.1 Quantitative Effects of Factors on Tg . . . . . . .
2.11 Chain Movements in Amorphous State . . . . . . . . . .
2.11.1 The Reptation Model . . . . . . . . . . . . . . .
2.12 Thermodynamics of Rubber Elasticity . . . . . . . . . .
2.12.1 Stress-Strain Behavior of Crosslinked Elastomers
2.12.2 Nonideal Networks . . . . . . . . . . . . . . . .
2.12.2.1 Network Defects . . . . . . . . . . . .
2.12.2.2 Elastically Active Chain Sections . . .
References

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exercises
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Polymers in Solution
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Thermodynamics of Liquid Mixtures . . . . . . . . . . . . . . . . . . . . . . . .

3.2.1 Low-Molecular-Weight Mixtures: van Laar Model . . . . . . . . . . . .
3.2.2 Polymer-Solvent Mixtures: Flory-Huggins Model . . . . . . . . . . . .
3.2.2.1 Flory-Huggins Expressions for Thermodynamic Functions . .
3.2.2.2 Colligative Properties and Interaction Parameter Χ . . . . . . .
3.2.2.3 Virial Coefficients . . . . . . . . . . . . . . . . . . . . . . . .
3.2.2.4 Modification of Flory-Huggins Theory . . . . . . . . . . . . .
3.2.2.5 Flory-Krigbaum Theory . . . . . . . . . . . . . . . . . . . . .
3.2.2.6 Excluded Volume Theory . . . . . . . . . . . . . . . . . . . .
3.3 Phase Equilibria in Poor Solvents . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.1 Upper and Lower Critical Solution Temperatures . . . . . . . . . . . . .
3.4 Solubility Behavior of Polymers . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5 Swelling of Crosslinked Polymers . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.1 Determination of Χ from Swelling . . . . . . . . . . . . . . . . . . . . .
3.6 Frictional Properties of Polymer Molecules
in Dilute Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.1 Viscosity of Dilute Polymer Solutions . . . . . . . . . . . . . . . . . . .
3.6.1.1 Determination of Polymer Molecular Dimensions from Viscosity
References
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

47
47
50
50
50
57
59
59
61
61

63
64
66
68
68
69
74
80
81
83
85
91
91
91
93
94
101
101
101
104
107
111
113
117
119
121
122
126
129
131

138
142
143
145
148
151


Contents

4

5

ix

Exercises
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

152

Polymer Molecular Weights
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Molecular Weight Averages . . . . . . . . . . . . . . . . . . . . . . . .
4.2.1 Arithmetic Mean . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2 Number-Average Molecular Weight . . . . . . . . . . . . . . .
4.2.3 Weight-Average Molecular Weight . . . . . . . . . . . . . . . .
4.3 Molecular Weights in Terms of Moments . . . . . . . . . . . . . . . .
4.3.1 Ratio of First and Zeroth Moments . . . . . . . . . . . . . . . .
4.3.2 Ratios of Higher Moments . . . . . . . . . . . . . . . . . . . .

4.4 Molecular Weight Determination . . . . . . . . . . . . . . . . . . . . .
4.4.1 End-Group Analysis . . . . . . . . . . . . . . . . . . . . . . .
4.4.2 Colligative Property Measurement . . . . . . . . . . . . . . . .
4.4.2.1 Ebulliometry (Boiling Point Elevation) . . . . . . . .
4.4.2.2 Cryoscopy (Freezing Point Depression) . . . . . . . .
4.4.2.3 Membrane Osmometry . . . . . . . . . . . . . . . .
4.4.2.4 Vapor-Phase Osmometry . . . . . . . . . . . . . . .
4.4.3 Light-Scattering Method . . . . . . . . . . . . . . . . . . . . .
4.4.3.1 Rayleigh Ratio . . . . . . . . . . . . . . . . . . . . .
4.4.3.2 Turbidity and Rayleigh Ratio . . . . . . . . . . . . .
4.4.3.3 Turbidity and Molecular Weight of Polymer . . . . .
4.4.3.4 Dissymmetry of Scattering . . . . . . . . . . . . . .
4.4.3.5 Zimm Plots . . . . . . . . . . . . . . . . . . . . . .
4.4.4 Dilute Solution Viscometry . . . . . . . . . . . . . . . . . . . .
4.4.4.1 Calibration of the Mark-Houwink-Sakurada Equation
4.4.4.2 Measurement of Intrinsic Viscosity . . . . . . . . . .
4.4.5 Gel Permeation Chromatography . . . . . . . . . . . . . . . .
4.4.5.1 Data Interpretation and Calibration . . . . . . . . . .
References
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exercises
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

159
159
159
159
160
162
163
164
165
166
167
168

168
169
169
176
180
181
183
184
188
191
194
196
197
200
202
208
208

Condensation (Step-Growth) Polymerization
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Rates of Polycondensation Reactions . . . . . . . . . . .
5.2.1 Irreversible Polycondensation Kinetics . . . . .
5.2.2 Reversible Polycondensation Kinetics . . . . . .
5.3 Number-Average Degree of Polymerization . . . . . . .
5.4 Control of Molecular Weight . . . . . . . . . . . . . . .
5.4.1 Quantitative Effect of Stoichiometric Imbalance .
5.5 Molecular Weight Distribution (MWD) . . . . . . . . .
5.5.1 Breadth of MWD . . . . . . . . . . . . . . . . .
5.6 Nonlinear Step Polymerization . . . . . . . . . . . . . .
5.6.1 Branching . . . . . . . . . . . . . . . . . . . . .

5.6.2 Crosslinking and Gelation . . . . . . . . . . . .
5.6.2.1 Statistical Approach . . . . . . . . . .
5.6.2.2 Model for Gelation Process . . . . . .
5.6.2.3 Molecular Size Distribution . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

213
213
214
216
222

224
227
228
232
234
241
241
243
246
255
255

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.


x

Contents

5.6.2.4 Post-Gel Relations . . . . . . . . .
Recursive Approach for Average Properties . . . . .
5.7.1 Linear Step-Growth Polymerization . . . . .
5.7.2 Nonlinear Step-Growth Polymerization . . .
5.7.2.1 Polymerization of A f f > 2 . . .

5.7.2.2 Polymerization of A f ( f > 2) + B2
5.7.2.3 Polymerization of Ai
Bj . .
5.7.3 Post-Gel Properties . . . . . . . . . . . . . .
5.7.3.1 Polymerization of A f . . . . . . .
5.7.3.2 Polymerization of A f B2 . . . .
5.8 Polycondensation of Ax B Monomers . . . . . . . . .
5.8.1 Dendritic and Hyperbranched Polymers . . .
References
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exercises
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.
.

258
260
260
264
264
266
268
271
272
276
278
279
281
283

Free Radical Polymerization
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . .

6.2 Scheme of Radical Chain Polymerization . . . . . . . .
6.2.1 Overall Scheme . . . . . . . . . . . . . . . . . .
6.2.2 Chain Initiation . . . . . . . . . . . . . . . . . .
6.2.3 Chain Propagation . . . . . . . . . . . . . . . .
6.2.4 Chain Termination . . . . . . . . . . . . . . . .
6.2.5 Rate of Polymerization . . . . . . . . . . . . . .
6.2.6 Overall Extent of Polymerization . . . . . . . .
6.3 Experimental Determination of R p : Dilatometry . . . .
6.4 Methods of Initiation . . . . . . . . . . . . . . . . . . .
6.4.1 Thermal Decomposition of Initiators . . . . . . .
6.4.1.1 Initiator Efficiency . . . . . . . . . . .
6.4.2 Redox Initiation . . . . . . . . . . . . . . . . .
6.4.3 Photochemical Initiation . . . . . . . . . . . . .
6.4.3.1 Direct Photoinitiation . . . . . . . . .
6.4.3.2 Photosensitization . . . . . . . . . . .
6.4.3.3 Rate of Photoinitiated Polymerization .
6.4.4 Initiation by High-Energy Radiations . . . . . .
6.4.5 Thermal Initiation in Absence of Initiator . . . .
6.5 Dead-End Polymerization . . . . . . . . . . . . . . . . .
6.6 Determination of Absolute Rate Constants . . . . . . . .
6.6.1 Nonsteady-State Kinetics . . . . . . . . . . . . .
6.7 Chain Length and Degree of Polymerization . . . . . . .
6.7.1 Kinetic Chain Length . . . . . . . . . . . . . .
6.7.2 Mode of Chain Termination . . . . . . . . . . .
6.7.3 Average Lifetime of Kinetic Chains . . . . . . .
6.8 Chain Transfer . . . . . . . . . . . . . . . . . . . . . .
6.8.1 Degree of Polymerization . . . . . . . . . . . .
6.8.2 Chain Transfer to Polymer . . . . . . . . . . . .
6.8.3 Allylic Transfer . . . . . . . . . . . . . . . . . .
6.9 Deviations from Ideal Kinetics . . . . . . . . . . . . . .

6.9.1 Primary Radical Termination . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

289
289
290
290
291
291
292
293
295
298
300
300
301
305
308
308
309
310
311

312
313
316
316
321
321
323
325
325
328
334
335
337
337

5.7

6

.
.
.
.
.
.
.
.
.
.
.

.
.
.


Contents

xi

6.9.2 Initiator-Monomer Complex Formation . . . . . . . . . . . . . . . . . . 338
6.9.3 Degradative Initiator Transfer . . . . . . . . . . . . . . . . . . . . . . . 339
6.9.4 Autoacceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
6.10 Inhibition/Retardation of Polymerization . . . . . . . . . . . . . . . . . . . . . . 343
6.10.1 Inhibition/Retardation Kinetics . . . . . . . . . . . . . . . . . . . . . . . 345
6.11 Effects of Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
6.11.1 Rate of Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
6.11.2 Degree of Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . 350
6.11.3 Polymerization-Depolymerization Equilibrium . . . . . . . . . . . . . . 351
6.12 Molecular Weight Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
6.12.1 Low-Conversion Polymerization . . . . . . . . . . . . . . . . . . . . . . 355
6.12.1.1 Termination by Disproportionation and/or Transfer . . . . . . . 356
6.12.1.2 Termination by Coupling . . . . . . . . . . . . . . . . . . . . 357
6.12.1.3 Termination by Coupling, Disproportionation, and Chain Transfer358
6.12.2 High-Conversion Polymerization . . . . . . . . . . . . . . . . . . . . . 359
6.13 Polymerization Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
6.13.1 Emulsion Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . 361
6.13.1.1 Qualitative Picture . . . . . . . . . . . . . . . . . . . . . . . . 361
6.13.1.2 Kinetics of Emulsion Polymerization . . . . . . . . . . . . . . 364
6.13.1.3 Other Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 371
6.13.2 Photoemulsion Polymerization . . . . . . . . . . . . . . . . . . . . . . . 372

6.13.3 “Grafting-From” Polymerization . . . . . . . . . . . . . . . . . . . . . . 373
6.14 Living Radical Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
References
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Exercises
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
7

Chain Copolymerization
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . .
7.2 Binary Copolymer Composition – Terminal Model . . .
7.2.1 Significance of Monomer Reactivity Ratios . . .
7.2.2 Types of Copolymerization . . . . . . . . . . . .
7.2.2.1 Alternating Copolymerization . . . . .
7.2.2.2 Ideal (random) Copolymerization . . .
7.2.2.3 Random-Alternating Copolymerization
7.2.2.4 Block Copolymerization . . . . . . . .
7.2.3 Instantaneous Copolymer Composition . . . . .
7.2.4 Integrated Binary Copolymer Equation . . . . .
7.2.5 Evaluation of Monomer Reactivity Ratios . . . .
7.2.5.1 Plot of r1 versus r2 . . . . . . . . . .
7.2.5.2 Plot of F1 versus f1 . . . . . . . . . .
7.2.5.3 Direct Curve Fitting . . . . . . . . . .
7.2.6 The Q e Scheme . . . . . . . . . . . . . . . .
7.2.7 Sequence Length Distribution . . . . . . . . . .
7.2.8 Rate of Binary Free-Radical Copolymerization .
7.3 Multicomponent Copolymerization: Terpolymerization .
7.4 Deviations from Terminal Model . . . . . . . . . . . . .
7.4.1 Penultimate Model . . . . . . . . . . . . . . . .
7.4.2 Complex-Participation Model . . . . . . . . . .


.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

383
383
384
386
387
388
388
388
389
389
392
396
396

397
399
400
402
405
409
413
413
414


xii

Contents

7.5

Copolymerization and Crosslinking . . . . . . . . . . . . . . . .
7.5.1 Vinyl and Divinyl Monomers of Equal Reactivity . . . . .
7.5.2 Vinyl and Divinyl Monomers of Different Reactivities . .
7.5.3 One Group of Divinyl Monomer Having Lower Reactivity
7.6 Block and Graft Copolymerization . . . . . . . . . . . . . . . . .
7.6.1 Block Copolymerization . . . . . . . . . . . . . . . . . .
7.6.1.1 Producing Internal Peroxide Linkages . . . . .
7.6.1.2 Introducing Peroxide End Groups . . . . . . . .
7.6.1.3 Mechanical Cleaving of Polymer Chains . . . .
7.6.1.4 Controlled Radical Polymerization . . . . . . .
7.6.2 Graft Copolymerization . . . . . . . . . . . . . . . . . .
7.6.2.1 Chain Transfer Methods . . . . . . . . . . . . .
7.6.2.2 Irradiation with Ionizing Radiation . . . . . . .

References
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exercises
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

415
415
418
419
420
421
421
421
422
423
423
423
424
425
426


Ionic Chain Polymerization
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2 Ionic Polymerizability of Monomers . . . . . . . . . . . . . . . . . . .
8.3 Anionic Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3.1 Anionic Initiation . . . . . . . . . . . . . . . . . . . . . . . . .
8.3.1.1 Nucleophilic Attack . . . . . . . . . . . . . . . . . .
8.3.1.2 Electron Transfer . . . . . . . . . . . . . . . . . . .
8.3.2 Termination Reactions . . . . . . . . . . . . . . . . . . . . . .
8.3.2.1 Living Polymerization . . . . . . . . . . . . . . . . .
8.3.2.2 Termination by Transfer Agents . . . . . . . . . . . .
8.3.2.3 Spontaneous Termination . . . . . . . . . . . . . . .
8.3.3 Polymerization with Complete Dissociation of Initiator . . . . .
8.3.3.1 Polymerization Kinetics . . . . . . . . . . . . . . . .
8.3.3.2 Experimental Methods . . . . . . . . . . . . . . . . .
8.3.3.3 Average Kinetic Chain Length . . . . . . . . . . . .
8.3.3.4 Average Degree of Polymerization . . . . . . . . . .
8.3.3.5 Distribution of the Degree of Polymerization . . . . .
8.3.3.6 Effects of Reaction Media . . . . . . . . . . . . . . .
8.3.3.7 Effect of Excess Counterion . . . . . . . . . . . . . .
8.3.4 Polymerization with Incomplete Dissociation of Initiator . . . .
8.3.5 Polymerization with Simultaneous Propagation and Termination
8.4 Anionic Copolymerization . . . . . . . . . . . . . . . . . . . . . . . .
8.4.1 Reactivity Groups . . . . . . . . . . . . . . . . . . . . . . . .
8.4.2 Block Copolymers . . . . . . . . . . . . . . . . . . . . . . . .
8.4.2.1 Sequential Monomer Addition . . . . . . . . . . . .
8.4.2.2 Coupling Reactions . . . . . . . . . . . . . . . . . .
8.5 Cationic Polymerization . . . . . . . . . . . . . . . . . . . . . . . . .
8.5.1 Cationic Initiation . . . . . . . . . . . . . . . . . . . . . . . .
8.5.1.1 Protonic Acids . . . . . . . . . . . . . . . . . . . . .
8.5.1.2 Lewis Acids . . . . . . . . . . . . . . . . . . . . . .

8.5.2 Propagation of Cationic Chain . . . . . . . . . . . . . . . . . .
8.5.3 Chain Transfer and Termination . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

429
429
430
433
433
433
434
436
436
436
438
438
439
439
441
441
443

447
451
454
455
457
458
459
460
461
463
463
464
464
465
466


Contents

8.5.3.1 Chain Transfer to Monomer .
8.5.3.2 Spontaneous Termination . .
8.5.3.3 Combination with Counterion
8.5.3.4 Transfer to Solvents/Reagents
8.5.3.5 Chain Transfer to Polymer .
8.5.4 Kinetics . . . . . . . . . . . . . . . . .
8.5.4.1 Ions and Ion Pairs . . . . . .
8.5.4.2 Simplified Kinetic Scheme .
8.5.4.3 Degree of Polymerization . .
8.5.5 Molecular Weight Distribution . . . . .
8.5.6 Cationic Copolymerization . . . . . . .

References
. . . . . . . . . . . . . . . . . . . . . . . . .
Exercises
. . . . . . . . . . . . . . . . . . . . . . . . .
9

xiii

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

466
467
467
469
470
471
471
472
478
479

482
482
483

Coordination Addition Polymerization
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . .
9.2 Ziegler-Natta Catalysts . . . . . . . . . . . . . . . . . .
9.2.1 Catalyst Composition . . . . . . . . . . . . . . .
9.2.2 Nature of the Catalyst . . . . . . . . . . . . . .
9.2.3 Evolution of the Titanium-Aluminum System . .
9.3 Mechanism of Ziegler-Natta Polymerization . . . . . . .
9.3.1 Mechanism of Stereospecific Placement . . . . .
9.3.2 Bimetallic and Monometallic Mechanisms . . .
9.3.2.1 Bimetallic Mechanism . . . . . . . . .
9.3.2.2 Monometallic Mechanism . . . . . . .
9.4 Kinetics of Ziegler-Natta Polymerization . . . . . . . . .
9.4.1 Typical Shapes of Kinetic Curves . . . . . . . .
9.4.2 Effect of Catalyst Particle Size . . . . . . . . . .
9.4.3 Chain Termination . . . . . . . . . . . . . . . .
9.4.4 Kinetic Models . . . . . . . . . . . . . . . . . .
9.4.4.1 Early Models . . . . . . . . . . . . .
9.4.4.2 Adsorption Models . . . . . . . . . .
9.4.4.3 Average Degree of Polymerization . .
9.5 Supported Metal Oxide Catalysts . . . . . . . . . . . . .
9.5.1 Polymerization Mechanism . . . . . . . . . . .
9.5.1.1 Bound-Ion-Radical Mechanism . . . .
9.5.1.2 Bound-Ion-Coordination Mechanism .
9.6 Ziegler-Natta Copolymerization . . . . . . . . . . . . .
9.7 Metallocene-Based Ziegler-Natta Catalysts . . . . . . .
9.7.1 Catalyst Composition . . . . . . . . . . . . . . .

9.7.2 The Active Center . . . . . . . . . . . . . . . .
9.7.3 Polymerization Mechanism . . . . . . . . . . .
9.7.4 Kinetic Models . . . . . . . . . . . . . . . . . .
9.7.4.1 Ewen’s Model . . . . . . . . . . . . .
9.7.4.2 Chien’s Model . . . . . . . . . . . . .
9.7.4.3 Molecular Weight and Chain Transfer
9.8 Immobilized Metallocene Catalysts . . . . . . . . . . .
9.9 Oscillating Metallocene Catalysts . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.


487
487
488
488
488
489
490
490
491
492
492
495
495
497
498
499
499
502
514
515
515
516
520
521
522
523
525
526
526

526
527
530
531
534


xiv

Contents

References
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exercises
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 Ring-Opening Polymerization
10.1 Introduction . . . . . . . . . . . . . . . . . .
10.2 Polymerization Mechanism and Kinetics . . .
10.2.1 Cyclic Ethers/Epoxides . . . . . . . .
10.2.1.1 Anionic Polymerization . .
10.2.1.2 Cationic Polymerization . .
10.2.2 Lactams . . . . . . . . . . . . . . . .
10.2.2.1 Hydrolytic Polymerization
10.2.2.2 Anionic Polymerization . .
10.2.3 Lactones . . . . . . . . . . . . . . .
References
. . . . . . . . . . . . . . . . . . . . . . . .
Exercises
. . . . . . . . . . . . . . . . . . . . . . . .


536
537

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

541
541
543

544
544
548
557
557
560
563
564
565

11 Living/Controlled Radical Polymerization
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2 Stable Free Radical Polymerization . . . . . . . . . . . . . . . . . . .
11.2.1 Monomers . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2.2 Stable Nitroxide Radicals . . . . . . . . . . . . . . . . . . .
11.2.3 Mechanism and Kinetics . . . . . . . . . . . . . . . . . . . .
11.2.4 Copolymerization . . . . . . . . . . . . . . . . . . . . . . . .
11.2.5 Aqueous Systems . . . . . . . . . . . . . . . . . . . . . . . .
11.3 Atom Transfer Radical Polymerization (ATRP) . . . . . . . . . . . .
11.3.1 ATRP Monomers . . . . . . . . . . . . . . . . . . . . . . . .
11.3.2 ATRP Initiators . . . . . . . . . . . . . . . . . . . . . . . . .
11.3.3 ATRP Catalysts . . . . . . . . . . . . . . . . . . . . . . . . .
11.3.4 ATRP Ligands . . . . . . . . . . . . . . . . . . . . . . . . .
11.3.5 ATRP Solvents . . . . . . . . . . . . . . . . . . . . . . . . .
11.3.6 ATRP Mechanism and Kinetics . . . . . . . . . . . . . . . .
11.3.7 Chain-End Functionality . . . . . . . . . . . . . . . . . . . .
11.3.8 Copolymerization . . . . . . . . . . . . . . . . . . . . . . . .
11.3.8.1 Block Copolymers . . . . . . . . . . . . . . . . . .
11.3.8.2 Graft Copolymers . . . . . . . . . . . . . . . . . .
11.3.8.3 Star and Hyperbranched Polymers . . . . . . . . .

11.3.9 Aqueous Systems . . . . . . . . . . . . . . . . . . . . . . . .
11.4 Degenerative Chain Transfer . . . . . . . . . . . . . . . . . . . . . .
11.5 Reversible Addition-Fragmentation Chain Transfer . . . . . . . . . .
11.5.1 Mechanism and Kinetics . . . . . . . . . . . . . . . . . . . .
11.5.2 Theoretical Molecular Weight . . . . . . . . . . . . . . . . .
11.5.3 Block Copolymers . . . . . . . . . . . . . . . . . . . . . . .
11.5.3.1 Sequential Monomer Addition . . . . . . . . . . .
11.5.3.2 Macro-CTA Method . . . . . . . . . . . . . . . . .
11.5.4 Star (Co)polymers . . . . . . . . . . . . . . . . . . . . . . .
11.5.5 Branched (Co)polymers . . . . . . . . . . . . . . . . . . . .
11.5.6 Surface Modification . . . . . . . . . . . . . . . . . . . . . .
11.5.7 Combination of RAFT and Other Polymerization Techniques .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

567
567
571
573
573

573
579
589
593
596
599
600
601
601
602
607
609
609
618
621
624
625
625
629
635
636
636
641
641
644
644
645

.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.


Contents

xv

11.5.8 Transformation of RAFT Polymer End Groups . . . . . . . . . . . . . .
References
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercises
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12 Polymer Synthesis by Click Chemistry
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2 Copper-Catalyzed Azide-Alkyne Cycloaddition . . . . . . . . .
12.2.1 Combination of ATRP and CuAAC Reactions . . . . . .
12.2.1.1 Macromonomer Synthesis . . . . . . . . . . .
12.2.1.2 End-Functionalization of (Co)polymer Chains
12.2.1.3 Cyclization of Linear Polymers . . . . . . . .
12.2.1.4 Moldular Synthesis of Block Copolymers . .
12.2.1.5 Nonlinear Polymer Synthesis . . . . . . . . .
12.2.2 Combination of RAFT Polymerization and CuAAC . . .
12.3 Strain-Promoted Azide-Alkyne Coupling . . . . . . . . . . . .
12.4 Diels-Alder Click Reactions . . . . . . . . . . . . . . . . . . .
12.4.1 Copolymer Synthesis . . . . . . . . . . . . . . . . . . .
12.4.2 Thermoresponsive Systems, Dendrons, and Dendrimers
12.4.3 Hetero-Diels-Alder (HDA) Cycloaddition . . . . . . . .
12.5 Thiol-Ene Reactions . . . . . . . . . . . . . . . . . . . . . . .
12.5.1 Mechanisms of Thiol-Ene Reactions . . . . . . . . . . .
12.5.2 Synthesis of Star Polymers and Dendrimers . . . . . . .
References
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exercises
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

646
649
653
661
661

665
675
675
680
681
682
683
690
694
696
697
702
707
710
714
716
719
722

Appendix A Conversion of Units

727

Appendix B Fundamental Constants

729

Index

731



This page intentionally left blank


Preface
A question asked during discussion, or even ahead of it, excites a student’s mind and rouses his
eagerness to probe, thus making the process of learning more thorough. During my teaching of
polymer science and chemistry over a period of nearly four decades, I have thus always believed
that learning becomes much easier if problem solving with a question-and-answer approach is intimately integrated with the text. It was this belief that motivated me to embark on writing this
new text on polymer science and polymer chemistry, even though I was fully aware that the field
was already crowded with more than a dozen well-written polymer texts. Adopting a distinctly
different and innovative approach, the text in this new polymer book has been laced with questions and answers at every step of the development of a theory or concept in each chapter. The
book thus features a significantly large number (286) of solved problems interspersed with the
text that is spread over 720 pages. In addition, a large number (277) of problems are included as
end-of-chapter exercises and these are fully worked out in a separate Solutions Manual. As my
experience in teaching has shown me the value of dealing with numbers to deepen one’s understanding, most of the problems with which the text is studded are numerical. The same is true for
exercise problems appended at the end of each chapter and each such problem is provided with
numerical answers that the reader can compare with his own.
To describe the present book briefly, it is a revised and enlarged second edition of Introduction
to Polymer Science and Chemistry: A Problem Solving Approach and it contains a total of 563 textembedded solved problems and chapter-end exercise problems. It has evolved from the first edition
by retaining all the latter’s ten chapters, which, however, have been fully relaid and restructured
to afford greater readability and understanding, and adding two new and large chapters to deal
with two recent topics that are said to have ushered in a renaissance in polymer chemistry, namely,
living/controlled radical polymerization and application of “click” chemistry in polymer synthesis.
The book thus has twelve chapters that fall into three distinct groups. The first four chapters
introduce the reader to polymers and their basic characteristics, both in solid state and in solution,
and the next six chapters are concerned with various polymerization reactions, mechanisms, and
kinetics, while the last two chapters are devoted to two recent topics, as cited above, of great
interest and importance in polymer chemistry. This division into groups is, however, notional and

is not made explicit by numbering these groups of chapters separately. Instead, for convenience, a
single sequence of numbers is used throughout the book.
Chapter 1 is devoted to introductory concepts and definitions, while Chapter 2 deals with
physical and molecular aspects of polymers, that is, those relating to molecular shape and size,
distinctive characteristics, conformational and configurational behavior, structural features, morphology, thermal transitional phenomena, and relaxation properties. Chapter 3 discusses polymer
solution behavior, the emphasis being on thermodynamics, phase equilibria, solubility, swelling,
frictional properties, and viscosity. Molecular weight determination, which is one of the first steps
of polymer characterization and a centrally important topic of polymer science, mostly involves
xvii


xviii

Preface

analysis of polymers in solution. The next chapter, Chapter 4, is therefore devoted to polymer
molecular weights with focus on the fundamentals of molecular weight statistics and methods of
measurement, their origins, and significance.
The chemistry part of the book focusing on polymerization reactions, mechanisms, and kinetics starts with Chapter 5. Five main types of polymerization reactions — condensation (step), free
radical (chain), ionic (chain), coordination (chain), and ring-opening — are dealt with separately
in five essentially self-contained chapters. Copolymerization that may involve any of these polymerization mechanisms is included in respective chapters, an exception being free-radical chain
copolymerization which, in view of its great practical importance and considerable theoretical development that has taken place in this field, has been accorded the space of one full chapter. While
polymerization reactions have been characterized on the basis of mechanisms and kinetic features,
emphasis has been placed on understanding the reaction parameters which are important in controlling polymerization rates, degree of polymerization, and structural features, such as branching
and crosslinking.
The development of living/controlled radical polymerization (CRP) methods, which started
only in 1985, has been a long-standing goal in polymer chemistry because a radical process is
more tolerant of functional groups and impurities and is the leading industrial method to produce polymers, while the livingness of polymerization allows unprecedented control of polymer
types, architecture, end-functionalities, molecular weght, and distributions. CRP is thus among
the most rapidly developing areas of polymer chemistry, with the number of publications nearly

doubling each year in the initial phase of development. Presently, the most popular CRP methods are nitroxide-mediated polymerization (NMP), atom transfer radical polymerization (ATRP),
and reversible addition/fragmentation chain transfer (RAFT) techniques, all of which are described
elaborately in the newly added Chapter 11, using once again the unique problem solving approach,
which is a hallmark of the book.
Since being introduced only in 2001, click chemistry, which may thus be called a new 21st
century technique, has made great advances in the realm of polymer chemistry over the last 10
years, giving access to a wide range of complex polymers (dendrimers, dendronized linear polymers, block copolymers, graft copolymers, star polymers, etc.) and new classes of functionalized
monomers in a controlled fashion, which would be inaccessible or difficult to synthesize via conventional chemistry. Chapter 12, which is the last chapter of this new edition, is fully devoted to
application of click chemistry in polymer synthesis, using the unique problem solving approach.
In writing the first ten chapters, which deal with conventional polymer science and chemistry,
I have received much inspiration and valuable guidance from the many well-known polymer texts
that are currently available. However, I should make particular mention of George Odian’s Principles of Polymerization (McGraw-Hill, New York, 1970), the first edition of which appeared when
I was still a student and it made a marked impression on me. Another book which influenced me
greatly was Rudin’s The Elements of Polymer Science and Engineering (Academic Press, Orlando,
Florida, 1982), a prescribed text at the University of Waterloo, Canada, where I taught during a
sabbatical year (1985–1986).
For writing Chapters 11 and 12 on the two recent topics, living/controlled radical polymerization and polymer synthesis by click chemistry, which have not yet made a significant appearance in
polymer chemistry textbooks, I have depended exclusively on original articles that appeared, especially in the last ten years, in many reputed journals. Most of the articles have, however, appeared
in journals published by the American Chemical Society and John Wiley & Sons. I am grateful to
them for granting permission to reproduce some material in the book from these journals.
While SI units are being used increasingly in all branches of science, non-SI units like the older
cgs system are still in common use. This is particularly true of polymer science and chemistry.


Preface

xix

In this book, therefore, both SI and non-SI units have been used. However, in most places where
non-SI units have been used, equivalent values are given in SI terms. A suitable conversion table

is also provided as an appendix.
Synthesized polymers are utilized increasingly in our daily life, and a myriad of industrial
applications have contributed to their phenomenal growth and expansion. As this requires polymer chemists and specialists in polymers, many universities throughout the world have set up
teaching programs in polymer chemistry, science, and engineering. Their students are drawn from
various disciplines in science and engineering. The present book is designed primarily for both
undergraduate and graduate students and is intended to serve specially as a classroom text for a
one-year course in polymer science and chemistry. Moreover, as two chapters have been added in
the new edition focusing on recent advances in polymer chemistry over the last two decades, the
book will also be useful to students doing research in the area of polymers.
Polymer industry is the single largest field of employment for students of both science and
engineering. However, most workers entering the field have little background in polymer science
and chemistry and are forced to educate themselves in its basic principles. This book, with its
easy style and a large number of illustrative, worked-out problems, will be useful to them as a
self-contained text that guides a beginner in the subject to a fairly advanced level of proficiency.
The manuscript of the book originated from a course in polymers that I offered to graduate
students of chemistry and chemical engineering during my sabbatical year (1985-1986) at the
University of Waterloo, Ontario, Canada, where I have also been a summer-term visiting faculty
spanning over two decades (1980-2000). The manuscript has been tested since then and improved
year after year to its present state as the course has been offered every year to a mixed class of
students from various disciplines including chemistry, chemical engineering, metallurgy, civil engineering, electrical engineering, electronics, and aerospace engineering at the Indian Institute of
Science, Bangalore, where I have served as a permanent faculty. A basic knowledge of mathematics, chemistry, and physics is assumed on the part of the reader, while the book has been written to
be self-contained, as far as possible, with most equations fully derived and any assumptions stated.
In the interest of time, I took up the onerous task of preparing the entire book electronically.
While I did all the (LaTex) typesetting, formatting, and page designing, I received valuable help
from two colleagues, Dr. Ajay Karmarkar and Ms. B. G. Girija, who prepared computer graphics
for all diagrams, chemical structures, and chemical formula-based equations. I thank both of
them. I am deeply indebted to Dr. P. Sunthar, an acknowledged software expert on the campus,
for guiding me patiently in the use of word processing softwares during this difficult venture
and to Shashi Kumar of Cenveo Publisher Services, Noida, India, for performing the necessary
conversions to font-embedded PDF for printing.

Several academicians have contributed, directly or indirectly, to the preparation of this book.
Among them I would like to mention Prof. K. F. O’Driscoll, Prof. G. L. Rempel, and Prof. Alfred
Rudin, all of the University of Waterloo, Waterloo, Ontario (Canada), Prof. Kenneth J. Wynne of
the Virginia Commonwealth University, Richmond, Virginia (USA), Prof. Harm-Anton Klok of
Ecole Polytechnique F´ed´erale de Lausanne, Lausanne (Switzerland), Prof. Premamoy Ghosh of
the Univeristy of Calcutta, Calcutta (India), and Prof. S. Ramakrishnan and Prof. M. Giridhar,
both of the Indian Institute of Science, Bangalore (India). I express my gratitude to all of them.
Interaction with students whom I met over the years during my long academic career, both
in India and abroad, contributed greatly to the evolution of the book to its present form featuring
a unique problem solving approach. It is not possible to thank them individually as the number
is too large. However, I should mention, gratefully, two of my erstwhile students, Dr. Amitava
Sarkar and Dr. Ajay Karmarkar, who were closely associated with me during the last few years
of my service at the Indian Institute of Science, Bangalore, and provided help in many ways in


xx

Preface

the making of this book. Finally, a word of appreciation and gratitude is due to three persons very
close to me, namely, my wife Mridula, daughter Amrita, and little granddaughter Mallika, who
showed remarkable understanding and patience, and gladly sacrificed their share of my time to
facilitate my work.
Manas Chanda


Author
Manas Chanda has been a professor and is presently an emeritus professor in the Department of
Chemical Engineering, Indian Institute of Science, Bangalore, India. He also worked as a summerterm visiting professor at the University of Waterloo, Ontario, Canada with regular summer visits
from 1980 to 2000. A five-time recipient of the International Scientific Exchange Award from the

Natural Sciences and Engineering Research Council, Canada, Professor Chanda is the author or
coauthor of more than 100 scientific papers, articles, and books, including Plastics Technology
Handbook, 4th Edition (CRC Press, Boca Raton, Florida). His biographical sketch is listed in
Marquis’ Who’s Who in the World Millennium Edition (2000) by the American Biographical Society. A Fellow of the Indian National Academy of Engineers and a member of the Indian Plastics
Institute, he received B.S. (1959) and M.Sc. (1962) degrees from Calcutta University, and a Ph.D.
(1966) from the Indian Institute of Science, Bangalore.

xxi


This page intentionally left blank


Chapter 1

Introductory Concepts
1.1 Basic Definitions
Many of the terms, definitions, and concepts used in polymer science are not encountered in other
branches of science and must be understood in order to fully discuss the synthesis, characterization,
structure, and properties of polymers. While most of these are discussed in detail in subsequent
chapters, some are of such fundamental importance that they must be introduced at the beginning.

1.1.1 Polymer
The term polymer stems from the Greek roots poly (many) and meros (part). The word thus means
“many parts” and designates a molecule made up by the repetition of some simpler unit called
a mer. Polymers contain thousands to millions of atoms in a molecule that is large; they are
also called macromolecules. Polymers are prepared by joining a large number of small molecules
called monomers.
The structure of polystyrene, for example, can be written as


(I)
or, more conveniently, as (II), which depicts the mer or repeating unit of the molecule within
parentheses with a subscript, such as n, to represent the number of repeating units in the polymer
molecule.

(II)
The value of n usually ranges from a few hundred to several thousand, depending on the
molecular weight of the polymer. The polymer molecular weight may extend, on the higher side,
1


2

Chapter 1

to several millions. Often the term high polymer is also used to emphasize that the polymer under
consideration is of very high molecular weight.

1.1.2 Monomer
Monomers are generally simple organic molecules from which the polymer molecule is made.
The structure of the repeating unit of a polymer is essentially that or closely related to that of
the monomer molecule(s). The formula of the polystyrene repeating unit (II) is thus seen to be
essentially the same as that of the monomer styrene CH2 CH-C6 H5 .
The repeating unit of a linear polymer is a small portion of the macromolecule such that linking
together these units one after another gives rise to the formula of the whole molecule. A repeating
unit may be a single component such as (II) for the polymer (I), or it may consist of the residues
of several components, as in poly(ethylene terephthalate), which has the structure :

(III)
The repeating unit in (III) may be written as


(IV)
Thus, the whole molecule of (III) can be built by linking the left-hand atom shown in (IV) to
the right-hand atom, and so on.
Though it has been stated above that structures of repeating units are essentially those of the
monomers from which the polymers are made, this is not always the case. Considering, for example, poly(vinyl alcohol) :

(V)
the obvious precursor monomer for this polymer is vinyl alcohol, CH2 =CH-OH, which is an unstable tautomer of acetaldehyde and does not exist. Poly(vinyl alcohol) is instead made by alcoholysis
of poly(vinyl acetate),
CH2 CH CH2 CH CH2 CH CH2 CH CH2 CH
OCCH3
O

OCCH3
O

OCCH3
O

OCCH3
O

OCCH3
O

(VI)
which, in turn, is synthesized by polymerization of the monomer vinyl acetate, CH2 =CHOOCCH3 .
Another example is cellulose, which is a carbohydrate with molecular formula (C6 H10 O5 )n ,
where n is a few thousand. The structure is



×