Tải bản đầy đủ (.ppt) (31 trang)

silicate structures

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (686.5 KB, 31 trang )

Mineral Structures
Silicates are classified on the basis of Si-O polymerism
the [SiO4]4- tetrahedron


Mineral Structures
Silicates are classified on the basis of Si-O polymerism
[SiO4]4-

Independent tetrahedra Nesosilicates

Examples: olivine garnet

[Si2O7]6-

Double tetrahedra

Sorosilicates

Examples: lawsonite epidote

n[SiO3]2- n = 3, 4, 6
Examples: benitoite BaTi[Si3O9]
beryl Be3Al2[Si6O18]

Cyclosilicates


Mineral Structures
Inosilicates


[SiO3]2pryoxenes

single chains
pyroxenoids

Inosilicates

[Si4O11]4-

Double chains
amphiboles


Mineral Structures
Phyllosilicates

[Si2O5]2-

Sheets of tetrahedra

micas talc clay minerals serpentine

Phyllosilicates


Mineral Structures
Tectosilcates

low-quartz


[SiO2]

3-D frameworks of tetrahedra: fully polymerized

quartz and the silica minerals feldspars feldspathoids zeolites

Tectosilicates


Nesosilicates: independent SiO4 tetrahedra

b

c

M1 and M2 as polyhedra

Olivine (100) view blue = M1 yellow = M2


Nesosilicates: Olivine (Mg,Fe)2SiO4
Olivine Occurrences:
Principally in mafic and ultramafic igneous rocksTypically ~60+% of mantle source for basaltsFayalite in meta-ironstones and in some alkalic
granitoids
Forsterite in some siliceous dolomitic marbles


Nesosilicates: Garnet
Garnet: A2+3 B3+2 [SiO4]3
“Pyralspites” - B = Al

Pyrope: Mg3 Al2 [SiO4]3
Almandine: Fe3 Al2 [SiO4]3
Spessartine: Mn3 Al2 [SiO4]3
“Ugrandites” - A = Ca
Uvarovite: Ca3 Cr2 [SiO4]3
Grossularite: Ca3 Al2 [SiO4]3
Andradite: Ca3 Fe2 [SiO4]3
Occurrence:
Mostly metamorphic
Some high-Al igneous
Also in some mantle peridotites

Garnet (001) view blue = Si purple = A turquoise = B


Inosilicates: single chains- pyroxenes
b

a sinβ

Diopside: CaMg [Si2O6]

Where are the Si-O-Si-O chains??

Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)


Inosilicates: single chains- pyroxenes

a sinβ


b

Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)


Inosilicates: single chains- pyroxenes

(+) M2

The tetrahedral chain
above the M1s is
offset from that below

c
a

(+) M1

(+) M2

The result is a
monoclinic unit cell,
hence clinopyroxenes

e.g. Diopside, Augite


Inosilicates: single chains- pyroxenes
Orthopyroxene


c
(-) M1

an orthorhombic unit
cell
(+) M2
Enstatite (Mg2Si2O6)

a
(+) M1

(-) M2


Pyroxene Chemistry
The general pyroxene formula:
W1-P (X,Y)1+P Z2O6
Where
W = Ca Na
X = Mg Fe2+ Mn Ni Li
Y = Al Fe3+ Cr Ti
Z = Si Al
Anhydrous so high-temperature or dry conditions
favor pyroxenes over amphiboles


Pyroxene Chemistry
The pyroxene quadrilateral and opx-cpx solvus
Coexisting opx + cpx in many rocks (pigeonite only in volcanics)

Wollastonite
pigeonite
orthopyroxenes

Diopside

clinopyroxenes

cli
no
py
ro
xe
ne
s

1200oC

1000oC

Hedenbergite

Solvus
800oC

pigeonite

(Mg,Fe)2Si2O6

orthopyroxenes

Enstatite

Ferrosilite

Ca(Mg,Fe)Si2O6


Pyroxene Chemistry
“Non-quad” pyroxenes
Jadeite
NaAlSi2O6

Aegirine
NaFe3+Si2O6

0.8
Omphacite

aegirineaugite

Ca / (Ca + Na)

0.2

Ca-Tschermack’s
molecule CaAl2SiO6
Augite

Diopside-Hedenbergite


Ca(Mg,Fe)Si2O6


Inosilicates: double chains- amphiboles
b

a sinβ

Tremolite:
Ca2Mg5 [Si8O22] (OH)2

Tremolite (001) view blue = Si purple = M1 rose = M2 gray = M3 (all Mg)
yellow = M4 (Ca)


Inosilicates: double chains- amphiboles
b

a sinβ

Hornblende:
(Ca, Na)2-3 (Mg, Fe, Al)5
[(Si,Al)8O22] (OH)2

Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2
light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na)
little turquoise ball = H


Amphibole Chemistry

General formula:
W0-1 X2 Y5 [Z8O22] (OH, F, Cl)2
W = Na K
X = Ca Na Mg Fe2+ (Mn Li)
Y = Mg Fe2+ Mn Al Fe3+ Ti
Z = Si Al
Again, the great variety of sites and sizes → a great chemical range, and
hence a broad stability range
The hydrous nature implies an upper temperature stability limit


Amphibole Chemistry
Ca-Mg-Fe Amphibole “quadrilateral” (good analogy with pyroxenes)

Tremolite
Ca2Mg5Si8O22(OH)2

Anthophyllite
Mg7Si8O22(OH)2

Actinolite

Cummingtonite-grunerite

Orthoamphiboles

Ferroactinolite
Ca2Fe5Si8O22(OH)2
Clinoamphiboles
Fe7Si8O22(OH)2



Amphibole Chemistry
Hornblende has Al in the tetrahedral site
Geologists traditionally use the term “hornblende” as a catch-all term for practically
any dark amphibole. Now the common use of the microprobe has petrologists
casting “hornblende” into end-member compositions and naming amphiboles
after a well-represented end-member.

Sodic amphiboles
Glaucophane: Na2 Mg3 Al2 [Si8O22] (OH)2
Riebeckite: Na2 Fe2+3 Fe3+2 [Si8O22] (OH)2
Sodic amphiboles are commonly blue, and often called “blue amphiboles”


Amphibole Occurrences
Tremolite (Ca-Mg) occurs in meta-carbonates
Actinolite occurs in low-grade metamorphosed basic igneous rocks
The complex solid solution called hornblende occurs in a broad variety of both
igneous and metamorphic rocks
Sodic amphiboles are predominantly metamorphic where they are
characteristic of high P/T subduction-zone metamorphism (commonly
called “blueschist” in reference to the predominant blue sodic amphiboles


pyroxene

Inosilicates

amphibole


b
a

Cleavage angles can be interpreted in terms of weak bonds in M2 sites
Narrow single-chain I-beams → 90o cleavages in pyroxenes while wider doublechain I-beams → 60-120o cleavages in amphiboles


Phyllosilicates
SiO4 tetrahedra polymerized into 2-D sheets: [Si2O5]
Apical O’s are unpolymerized and are bonded to other constituents


Phyllosilicates
Tetrahedral layers are bonded to octahedral layers
(OH) pairs are located in center of T rings where no apical O


Phyllosilicates
a2

a1

Gibbsite: Al(OH)3
Layers of octahedral Al in coordination with (OH)
Al3+ means that only 2/3 of the VI sites may be occupied for charge-balance reasons
Brucite-type layers may be called trioctahedral and gibbsite-type dioctahedral



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×