Outline
•
•
•
•
•
•
Correlation
Auto-correlation
Filter
Convolution
Deconvolution
Wiener filter
Numerical evaluation of Cross-correlation
n−τ
φ (τ ) = ∑ x y
i + τ
xy
i
i =1
xi: (i=0 ... n)
yi: (i= 0 ... n)
φxy(τ) : (-m < τ < +m)
m = max. displacement
In Fourier domain:
Cross-correlation = Multiplication of Amplitude spectrum
and Subtraction of Phase spectrum
Reynolds, 1997
Cross-correlation function
Autocorrelation
Cross-correlation of a Function with itself
n −τ
φ xx (τ ) = ∑ x i + τ x
i =1
xi = (i=0 ... n)
i
φxx (τ) = (-m < τ < +m)
m = max. displacement
Auto-correlation of two identical waveforms
Normalization of correlation
Auto-correlation
Cross-correlation
φ xx (τ )
φ xx;norm (τ ) =
φ xx (0 )
φ xy ;norm (τ ) =
φ xy (τ )
φ xx (0 )φ yy (0 )
Auto-correlation: multiples
Autocorrelation functions contain reverberations
a) A gradually decaying function indicative of short-period
reverberation
b) A function with separate side lobes indicative of long-period
reverberations: multiples
General Filter
Filter
Operator
Input function
Output function
General Filter
Filter
Operator
Deltafunction
Impulse response
Example of input response
From geology to seismogram
Convolution
Convolution
y(t) = g(t) ∗ f(t)
outputfunction
Seismic trace
Inputfunction
Source wavelet
Filterfunction
Reflectivity function
Numerical implementation of convolution
m
y k = ∑ g i f k −i
i =0
k = 0 ... m+n
gi = (i=0 ... m)
fj = (j= 0 ... n)
In Fourier domain:
Convolution = Multiplication (of Amplitudes
and Addition of Phasespectrum)
Example of Convolution
m
yk = ∑ g i f k −i
i =0
fk
f0
f1
f2
f3
2
0
0
0
-1 0
0
0 ½
0
0
0
-1
2-1 -1
2 2-1
½ ½
2-1 -1
2 ½
2-1 -1
½
½ ½
gk ½
2 2-1
2-1 -1
2 2
½
½
½ 2-1
½ ½
g
gg
gg
gg
g
g
gg
gg
gg
g
2
yk
12
021
4
10
2
0
12
-2 1
021
0
g102
gg021
gg102
ggg012
-2 1 -½ 0
ggg012
gg021
gg10
1 -½ ¼
g0
0
Convolution model of the Earth
wt
( equivalent Wavelet)
gt = kδt ∗ st ∗ nt ∗ pt ∗ e t
Impulse
of source
Near-surface
zone of source
Source effect
gt = w t ∗ e t
+ Noise
Reflectivity
of the Earth
Additional modifying
Effects (absorption, wave conversion)
+ Noise
*
=
+
=
Aim of Deconvolution
Theoretical:
Reconstruction of the Reflectivity function
Practical:
Shorting of the Signal
Suppression of Noise
Suppression of Multiples
Deconvolution
Reverse of Convolution
xt = wt ∗ e t
et = xt ∗ w-1t
=> Inverse Filtering
Problem:
w(t) is in general not known,
i.e. w
-1
(t) Can not be determined directly
Principle of Wiener filtering
Principle of Wiener-Filters
Input-Function ∗
(known)
Filter = Output-Function
(wanted)
g0
g1
…
∗
(known)
f0
g 0f 0 = y0
f1
g1 f0 + g 0 f1 = y 1
…
…
=> Solve system of equations
Wiener filter
• Spiking deconvolution:
desired output is a spike
• Predictive deconvolution:
attempts to remove the effect of multiples
After trace
Common shot-gathers
just balancing
after demultiplexing
Afterfor
spiking
deconvolution
Corrected
wavefront
divergence
Yilmaz, 1987