Tải bản đầy đủ (.pdf) (29 trang)

VẬT lý địa CHẤN 13 deco

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.31 MB, 29 trang )

Outline







Correlation
Auto-correlation
Filter
Convolution
Deconvolution
Wiener filter


Numerical evaluation of Cross-correlation

n−τ

φ (τ ) = ∑ x y
i + τ

xy

i

i =1

xi: (i=0 ... n)
yi: (i= 0 ... n)


φxy(τ) : (-m < τ < +m)
m = max. displacement

In Fourier domain:
Cross-correlation = Multiplication of Amplitude spectrum
and Subtraction of Phase spectrum


Reynolds, 1997


Cross-correlation function


Autocorrelation
Cross-correlation of a Function with itself

n −τ

φ xx (τ ) = ∑ x i + τ x
i =1

xi = (i=0 ... n)
i

φxx (τ) = (-m < τ < +m)
m = max. displacement


Auto-correlation of two identical waveforms



Normalization of correlation
Auto-correlation

Cross-correlation

φ xx (τ )
φ xx;norm (τ ) =
φ xx (0 )
φ xy ;norm (τ ) =

φ xy (τ )

φ xx (0 )φ yy (0 )


Auto-correlation: multiples


Autocorrelation functions contain reverberations

a) A gradually decaying function indicative of short-period
reverberation
b) A function with separate side lobes indicative of long-period
reverberations: multiples


General Filter


Filter
Operator

Input function

Output function


General Filter

Filter
Operator

Deltafunction

Impulse response


Example of input response


From geology to seismogram


Convolution

Convolution

y(t) = g(t) ∗ f(t)


outputfunction
Seismic trace

Inputfunction
Source wavelet

Filterfunction
Reflectivity function


Numerical implementation of convolution
m

y k = ∑ g i f k −i
i =0

k = 0 ... m+n
gi = (i=0 ... m)
fj = (j= 0 ... n)

In Fourier domain:
Convolution = Multiplication (of Amplitudes
and Addition of Phasespectrum)


Example of Convolution

m

yk = ∑ g i f k −i

i =0

fk

f0

f1

f2

f3

2

0

0

0

-1 0

0

0 ½

0

0


0

-1
2-1 -1
2 2-1
½ ½
2-1 -1
2 ½
2-1 -1
½
½ ½
gk ½
2 2-1
2-1 -1
2 2
½
½
½ 2-1
½ ½
g
gg
gg
gg
g
g
gg
gg
gg
g
2


yk

12

021

4

10
2

0
12

-2 1

021

0

g102

gg021

gg102

ggg012

-2 1 -½ 0


ggg012

gg021

gg10

1 -½ ¼

g0

0


Convolution model of the Earth
wt
( equivalent Wavelet)

gt = kδt ∗ st ∗ nt ∗ pt ∗ e t

Impulse
of source

Near-surface
zone of source

Source effect

gt = w t ∗ e t


+ Noise

Reflectivity
of the Earth

Additional modifying
Effects (absorption, wave conversion)

+ Noise


*

=


+

=


Aim of Deconvolution
Theoretical:
Reconstruction of the Reflectivity function

Practical:
Shorting of the Signal
Suppression of Noise
Suppression of Multiples



Deconvolution
Reverse of Convolution

xt = wt ∗ e t

et = xt ∗ w-1t

=> Inverse Filtering
Problem:
w(t) is in general not known,
i.e. w

-1

(t) Can not be determined directly


Principle of Wiener filtering


Principle of Wiener-Filters

Input-Function ∗
(known)

Filter = Output-Function
(wanted)

g0

g1




(known)

f0

g 0f 0 = y0

f1

g1 f0 + g 0 f1 = y 1




=> Solve system of equations


Wiener filter
• Spiking deconvolution:
desired output is a spike
• Predictive deconvolution:
attempts to remove the effect of multiples


After trace
Common shot-gathers

just balancing
after demultiplexing
Afterfor
spiking
deconvolution
Corrected
wavefront
divergence

Yilmaz, 1987


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×