Tải bản đầy đủ (.pdf) (4 trang)

Quick study academic pre calculus 600dpi

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (6.89 MB, 4 trang )

FUNCTIONS
A. A function is a rel ation in wh ich each el ement of the d oma in (x value
- in dependen t va ri a bl e) is pa ired w ith only one e leme nt of the ra nge
(y value ­ d epe n de nt va riable).
B. A re lation can be tested to see if it is a funct ion by the vertical lin e test.
Draw a vertical line throug h a ny g raph, and if it hi t an x- value more than
on ce, it is not a functi on . (1-4)

b. b 2 ­ 4ac = 0, exactly one rea l r ot
c. b 2 - 4ac < 0, no real roots (two disti nct imaginary roots)
I) Example l:f(x) =x2_4x+ I use

f( x)=

[!]E8rnrn

FE
A function

Not a function

A function

A fu nction

C. Linear funct io ns ta ke the form: f(x) = mx+b, or y =

m x+b where m = the. lope, and b = the y-intercept.

Examp le: f(x ) = 4 x-l , the s lo pe i 4/1 (ri e ove r run), and


th e y-intercept is -I.

D. he dis tance between two points o n a lin can be found

j( X 2 -

u ing the distance form ul a, d =

XI ) 2 + ( Y2 - YI )2

X I)



Vd ).

(Y 2 +
2 '

F. The s tan dard form ofa linear functi o n is 0 =Ax + By +
C. The lope is m = -A/B, and the y-intercept is -C/B.
G. The zeros of a fun ct io n a re fo und by setting y to O. and
solvi ng for x.
I. E xam ple .1: f(x) = 4x-1 (5)
2. Exam p le 2: f(x) = 6, thi s func tio n has no zero, and is

a h ri z ntal lin e th rough +6 o n the y-axi . (6)

3, Exam ple 3: x = 4, th i i not a function, because the re


is a verti ca l line through +4 on the x-axi , g ivi ng a n

in fi n ite set of va lu es for y. (7)


X;~~5

ffi

the

discriminan t is > 0, the re are two rea l roots. (15)
2) Example 2: f(x) = 2x2 + 2x + I us ing b 2 - 4 ac =
-4, since the d isc rimin ant is < 0, there are two
imaginary root . (16)
3) Example 3: f(x) = x2 + 2x + I us ing b 2 - 4ac = 0,
· ..
. 0 th
'
I
17
ere IS one rea I' \. ( )
since t1le d ISCnl11l11ant IS =
. .



g(x)

J . RatIOnal fun ction s take the fo ri: f(x ) = b (x) .

I . The pare nt fu nction i f(x) = X ·

~2
x-

+ 3 (21)

E
3
E
/

x= 1.2765957

y=-2. 106855

Two real solutions


E
4
E

a . Find th e sum : (f + g)(x), x + 2 + ~
( x + 2 ) (x - 4) + x
X2 _ X _ 8

x- 4
= x - 4 ' and x f. 4.
b. Find the di fference: (f - g)(x), x + 2 - ~

(x + 2) (x - 4 ) - x x _ 3 x _ 8

x- 4
=
x_ 4
• an d x f. 4.
6. Example 2: Gi ven f(x) = x + 2, g(x) = x:. 4
a. Find the product: (fxg)(x), (x + 2)( x :. 4 ) =
x 2 + 2x
---x=-;t.
an d x f. 4.
b. Find the quot ient: (
X - 4)

Example 2: f(x) = 2xJ + x2 - 2x + 3, thi function has

one rea l zero at x = -1.17, and two non -rea l roots. (8)


(x+2) (.-x- =

t

)(X),

x;x+_2 4 =

x2 -2x - S

x


x~930B511

, andx f. O.

:. 4

+ 2.

2(
4)
x ( x - 4)

+2

Example: Gi en f(x)=x+2, g(x)=
Find IfogJ(x): f ( x :. 4
( _ x_ + 2 )
x - 4

+2

=

+ 2) =
x

+

5x - 16


, and x f. 4.
x- 4
M .lnve r se function s : If og l(x) = Igo fj( x)

- b ± jb 2 - 4ac
x=-1.010638
2a
can y=2.9737903

Example: Given f(x)=2x - 4, g(x) = · +4
'-2X+4)_- 2 (X-2+4) - 4 -_x,
Ifog l(x) -_f (

x-- 0265958

y~.OlO0806

A rationalfunction

with asymptotes
at the x & y axes.

F
O E

~,

be u ed to f ind the roots of a ll quadratic eq uations.
6 . The a lue under th sq uare root symbo l is ca ll ed the


d iscrim in an t. It te ll s u the type of roots o f a quadratic

equat ion .


( 2X
and IgO fj( x) =

di st inct rea l roots
1

-

4)
2

x=-.5053192
y=.47379034
Two imaginal)!

y=.00478157

L. c om P.osition of functions:lfog l(x) = f(g(x» E
8
!J

Example 3 : f( x) = x 2 + I. this fUllction has'two nonreal roots, (9)
x=. 10638298
l. Qua dra tic funct ions take the form : f(x) = ax 2 + bx + c. y=1.0113173

I. 111e graph ofa quadrati function i called a parabola. (10)
o E
2 . ome parabolas ar e qu adrat ic eq uation , but not t
q uadratic fu nctions. (II)
3. Quadrati c functions or equat ions can have one real

so luti on. two rea l solutions, or no real so luti on. (12-14)

4 . Th vertex of a parabo la i ca ll ed its critical p oi nt.

EE

ra

ra

x=1.3829787

y=-2.671371

Two real roots,

(.26,0) & (3.73,0)


5. Example I: Given f(x) = x + 2, g ( x) == x:. 4

Example l: f( x) = 2x4 + x 2 + X + 10, has a degree of
4, there are fo ur roots (so lutions) to th is po ly nomia l. 9


t lVO

y=-.0100807
One real solullOn

. (f)

EE
tE

a. b 2 - 4ac > 0,

x = -(-4)

f< - 4 2 _ 4)/2 = 3 .732, and
- f< - 4 - 4) /2 = .267. s ince

K. Oper ations of fu nctions:
I. Sum: (f + g)(x) = f(x) + g(x)
2. Diffe rence: (f - g)(x) = f(x) - g(x)
3. P rod uct: (f x g)(x) = f(x) x g(x)
f( x)
4. QuotIent: g (x) = g (x )' g( x) f. 0

No zeros

+ cx n-2 ••• + d x + e
I . When the hi g he t power o f the func ti on is a n odd

intege r, there is at least one real zero.


2 . When the h ighe t powe r is a n even integer, there may

be no real zeros .

3. Both type can have imag inary roots of the form a + bi.
x=-1.170213
4. T h hi ghest p wer of a po lyno mi a l w ith o ne vari able is
y=.0100806
ca ll ed it degr ee.

=

x = -(-4) +

6 . Exa mple 3: f(x) =

H. Polyno mial function s take the form : f(x) = ax n + bx n- I

). The quadratic equat ion f(x)

2a

2. Th e g raph of these functi ons cons ist of two pan s, one
in quadrant I, and one in quad rant 3.
3. The bran hes of rational functi on approac h line
call ed asy mptotes. (18)

x


x=-.9574468
4. Exa mple I: f(x) = x + 3 (19)

y=7.9737903
No real solutions
3

5. Exam ple 2: f(x) = x (20)

E. The mid-point of a line segment can be found us ing the
..
( X2 +
m id -po lllt for m ula,
2

-b ± /b 2 _ 4ac

+4

= x.

x=.02659573
y=-.0100806
The asymptotes
are the axes

y1=x~2x+1

One real rOO! (-.93,0)



N. Families of functions : Graphs of fu nction fami lies. Changes in va lues of
the parent affect the appearance of the paren t g raph. A par ent g ra p h is
the basic grap h in a fam ily. II the other fa mily m mbers move up, down,
left. right, o r turn based on changes in va lues .
I. Polynomia l fun ctions 1:
3. A bsolute value fu nctions:
a. f(x) = Ixl (38)
a. f(x) = x 2 (22)
b. f( x) = 2x2 (23)
b. f(x) = -I xl (39)
c. f(x) = .5x2 (24)

c. f{x) = 12xl (40)

_
2

d.( f(x) = 1.5xl (41)

d.f(x) - -x (25)
e .f(x) = Ix + 21 (42)

e . f(x) = x 2 + 2 (26)

f. rex) = Ix - 21 (43)
f f(x) = x 2 ­ 2 (27)
g . f(x) = Ixl + 2 (44)
g. r(x) = (x + 2)2 (28)
h. f(x) = Ixl- 2 (45)

h.r(x) = (x - 2)2 (29)
2. I>olynom ial function s 2:
a. f(x) = x3 (30)
b. f(x) = _x3 (31)
c. f{ x) = x3 + 2 (32)

d.f(x) = x3 - 2 (33)

e. f( x) = 2x3 (34)
f. f( x) = .5x3 (35)
g. f( x) = (x + 2)3 (36)
h.f(x) = (x - 2)3 (37)

A. Rectangula r coordinates arc o f the form (x,y), and arc pl otted on the
Cartes ian coord in ate syste m.
B. Poin ts are p lotted w ith two va lues, one the absci sa and the other th

ordinate.
C. T he absc issa i the x-va lue, call ed the domain. and th e ord inate is the

E
S f]

y- va lue, called the range.

/P

D. Many di ffe rent shape and func tion can be drawn on the
Ca rt e ian system.
E. Here is a g ive n ang le, orig inating fr


the

III

-axi

and

rotating counter-clockwise. Th is ang le is re prese nted by a

P(4.6)

li ne segment ori ginati ng at t.he o ri gin, and extend in g to a
given poin t (P). (46)
R Pola r coo rdinates are o f the fo rm P( r, 9), where r

E
7 B
,p

= the

I

(.

radiu , the di stance from the o ri g in (0,0) to I) (a g iven
po int), and El = the magnitude o f an ang le.
I. If r is pos iti ve,


e is

P(H,O)

the meas ure o f any a ng le in

sta nd ard pos ition th at has segm ent 0 ,1' a its te rmina l
s ide.

2. If r is negative, El is the measu re of any ang le that has
ray o ppos ite segmen t O, P as its ter mina l side.

th

(47&48)

22

EEJ

P(-r,9)

G. Graphing w ith polar coordi nates :

I. Exa mp le I: 1'(4, 120 d egr ees) (49)

2. E xa mp le 2: P ( 4. ~ ) (50)
H. O ne angle graphed w ith polar coordinates can


I'

presen t

seve ra l angle .
I. If Pis a po int w ith polar coo rdinate (r, 9), then l' can
also be g raphed by t he po lar coordi nates (-r,

ffi

P(4, 120)

e + ( 2x + 1)1t) or

(r, e + 2x1t), where x i any in teger.
2. E xa mlJle: S how fo ur differ nt pa ir ofp la r coo rd inate th at ca n be re prese nte d b the po int 1'(3, 60

r
a n
.

I.

degrees).
3. (-r,

e + (2 x + 1)1 80 d egrees) ~ (- (3), 60 + (1)180)

(- (3), 60 - (1)1 80),
4. (r,


= 1'(-3, 240) or 1'(-3,120)

P(4'3)

e + 360x) ~ P(3, 60 + (1)360) or 1'(3, 60 + (2(360)

= P(3, 780)

hanging from rectangula r to pola r coordina tes : The fo ll owing
fo rmulas are used to make thi s change:

j( x

f,

+ y2) , e = A rctan x > O.
2. 9 = A rc ta n
+ 11:, X < 0, a nd fj = r adian s.
3. E xample I: Find the polar coordinates f, r 1'(-2,4). r =
I. r =

=

2

f

j20 = 4.47. e = Arcta n


j

_ 2)2 + ( 4 )2

_42 + 1t = 2.03, P(4.47, 2.03).

4 . Exam ple 2: Find the po lar co rd inates for P(3 ,5). r =
5
34 = 5.83, El = A rcta n "3
= 1.03. P(5.83, 1.03).

~_~

j()2+ 5 2) =

hanging fro m polar to r ecta ng ular coordinates: The formulas used to
make thi s change are :
I. x = r cos El

e
3. ~~a~Ple 1:
2. v

=r

sin

P ( 4.

~),


x = 4 cos

( ~)

= 2,

an d 4 s in

(~)

=

3.46 - P( 2, 3.4(h.

4. Exa mple 2: P(5, 60°), x = 5 cos (60)

= -4.76. Y = 5 si n (60°) =

-1.52 =

P( -4. 76, -1.52).
K. Grapbing imaginary numbers with po lar coord inate: The polar
form of a complex number i x + yi = r(cos El + i s in e).
Example: Graph the complex number -4, + 2i, and change to polar form.
r =

;;r+yL =

j(_ 4


2

+ 2i 2)

= /16

+4

=

,fiO = 4.47, El =

rctan

( _24 ) + IT = 2.68,1)0Ia r fo rm = 1'( -4, 2 i) = 4.47(cos 2.68 + i sin 2.68)

2


A. The notation P( n,n) = the num ber o f permutations of n objects taken all
at one time.
B. The notat ion P(n,r) represents the number of perm utation of n obj cts

A. Exponential properties:
I. Multiplication: x· xh = x. + b

E xample: x 2x 4 = x6

take n r at a time P (n,r)


2. Division : (;: ) = x·- b
Example:

4. Distribu tion with d ivisio n: (

r

y

y/ = ( ;: )

= x:

18·17·16·15·14·13·12·11·10·9·8·7·6·5· 4 ·3·2·1
.
h
6.5.4.3.2.1
, not!cetatyou

y

can ca ncel 6!, leaving 18 ~ 7 = 8.89 X 10 12 choices.
Example 3: A combination lock has four tumbl ers, and i num bered I ­

5. Power of a power: (X") b = x· b

Exam ple: (x 2)3 = x6

6. Inverse power: x-I = {



x"" = ~
x

7. Root power: xI I. =
Example : XII2

20 on the dial. How many combinations are possible . P(20,4)

.j;


= j;


R


bR


B. Logarithmic Properties and Logarithmic Fo rm:

EE
FE
EB
EfJ



1. Logarithmic Form: log.x = y, thi s is read a "the

exponent of a to ge t the result x is y."


1

Exa mple: log, 100 = 10, the exponent of x to get the

res ult .100 = 10 or x lO = 100.

2. Loga rithmic I)roperties :

a. M ultiplication: log.xy = log.x + log.y
b. Division: log.

y= logax - log.y

* log.x
= logaY' then

c. Power p rope rty: log.x b = b
d. rden tity property : If log.x

x= y

3. Change of Base p rope rty: I Lx, y and z are + nu mbers.

log ) z



and x and }' are n t = I , then, log, z = -I - - .
og)x
C. Solving logarithmic equations:

Exa mple I: Write log 1000 = 3 in exponential form:
10" = 1000

Example 2:

olve, log,

Ii

=

i~

x l/4

=Ii

24 - 3x. x = 6.
Example 4: log (2x + 8) - log (x + 2) = I

+8

~

~


8x = -12

(2x + 8)
10 1 = (x + 2)

~

Exam ple 5: log, 5 =

-*

~

log

IOx +20= 2x E
6 EJ

x = - L5.

~ x- 1/3 = 5 ~ x = - 1~5.

Exa mple 3: y = 2 2. - 1 - I (53)

Exam ple 4: y =

+ I (54)

Example 5: y = logz

E xample 6 : y = log2(x - 2) (56)
E xample 7: y = log2(x - 2) + 2 (57)

Example 2: How many word pattern can be form ed from Mi issippi ?
ll!
2!2!2!4! = 207,900.
Example 3: There are 24 ch ild ren who are going to play dodge ball. 10
of the m w ill start out in the circle. Ilow many ways cou ld the
remai ning children fo rm ci rcular combinations? (n-I)! = 13! =
6,227,020,800.
E. Combinations: Di ffer from permutations in that order i not a cons ider­

II! )
.
r !r!
Example 1: A book c lu b ha selected e ight books to read, how many four

ation. The number of n objects taken r at a time is C(n,r) = (

11-

group com binations are pos ible?

~

qn,r) = (

8! )
= 70
8 - 4 !4!


Exa mp le 2: How many five card hands an be dea lt from a regu lar deck
52'
o f card s? qn,r) ~ = (52 _
!5! = 2598960

5)

A. Synthetic division is a method used to make long d ivision of p Iynomial
les cumbersome .
I. It is ma inly used when you have a very long numeral r.
2. It ca n only be lIsed wi th a di i or in the form (x - n).
3. You can convert the form (3 x + n) to (x + 1/3n) and then use sy nthetic
divis ion.
B. Synthetic Division of the fo rm x2 - 3x - 54.;- x - 9.
I. Example I: T he standard way of d iv iding polynomials
3x - 54
x + 6


Btl
ttJ

Exam ple I: y = 3 ', and (1/3)' on the same grap h. (51)

Example 2: y = 92 +1 (52)


Repetitions: The number of n objects of which x & yare alike = ~.
.y.

C ircular Pattern s = (n-I)!
Example 1: How many word arrangemen ts can be made from the word
5!
radar? n = 5, x&y = a&r = 2. 2!2! = 30.

x - 9 )X 2 -

D. Graphi ng Exponent ial and Loga rithmic Equa tions:

22>-1

;gi

~


(xI /4)4 = (1i)4 ~ x = 4.
5

Example 3: logi2x - 6) = log4(24 - 3x). 2x - 6 =


2 + 8)
(x +2 ) = I

~

_ 20·19·18·17·1 6 ·15·1 4 ·13·12·11·10· 9 · 8 · 7 · 6·5 · 4 ·3· 2 ·1 _
16·15· 14 · 13 ·1 2 ·11·1O·9· 8 ·7·6·5·4 .J.2 ·1
­

116,280.
Example 4: If26 people enter a 16-mile race and all of them finish, h w many
possi ble orders of fin ishing are there? P(26,26) = 26! 26! = 4.032 x 1026
D. Permutations th at contain repetitions or are placed in a Circular Pa ttern




8. Rational power: x· /b =
Exa m ple: x312 =

I

11.) I'
Il - r .

Exa mple I: How many ways can fi ve cartons of cereal be arranged?
P(5,5) ~ 5! = 5432 I = 120
Exa mple 2: If 18 people show up to serve on ajury, hO\ many 12 person
18!
P (1 8, 12)
juries
ca n
chose n?
be
( 18 -12 ) !

3. Distribution with multiplication : (xy)· = x·y·

Exam ple: (xy )s = x Sy 5



Exa m ple:

(

C. The notation n ! is read as n - factorial.

(::..64) = x lO

Exam ple: (

= !, P(n,r) =

x - 9 ) X 2 - 3x - 54

_(x 2 - 9x)

6x - 54

-(6x - 54)


o

Answer = x + 6 r. 0

2. Using synthetic division, we use the econd part of the divi or, but change
the sign (+9, trom the above example). We then Ii I the coefficients of the
div idend. From th e example above, th y \\ould be I, -3, -54.

Then bring down the coefficients one at a time, mUltiply them b} the


divisor (+9), and add them to the next coefficient. T his gives the same
result. From the example on pg. 3:

1-8
3
31

6. The product of a scalar (x), (a va lue with magn it ude, but no d irection),
and a matrix (.I) is d, with eac h e le ment f ..1 mu ltip lied time the

2..1 1 -3

-54

9 54

1 6 0 An wer = x + 6 r. 0

Note: The power of x a lways begins one lower in the answe r.

Exam ple 2: 3x3 + x 2 + 5x - 2 -;.- x + 1 -?


··
.
I 12 24 - 36 1


.

va I
ue x. S IX tIm es the matrI X .I =
1-1 8 0 12 1

7. The product of 2 - two by t\\'o matrices i a two b two matrix. The

::.113 1 5 -2

-3 2 -7

3 -2 7 -9
nswe r = 3x 2 - 2x + 7 r. -9

Examp le 3: In the follow ing example, noti ce that there mu t be a

place-ho lde r fo r missing powers of the variable. Z4 + Oz3 + Oz2 +

Oz + 16 -;.- z + 2


procedure isa fo llow: .J = 12
16
JxK='2 ( 6 ) + 4( 3 )

-21

0 0 0 16


-2 4 -8 16

I -2 4 -8 32 Answer = z3 _2z2 + 4z -8 r.32

C. S nthetic di vi ion of the form 3x2 + lOx - 9 + 3x~2. In thi example, all
nu mber are first divided by 3, then at the end of the process a ll fractions
are changed by mul tiplication.
Exam pie 1: 3x - 2 ) ( 3x 2 + lOx - 9) become x -

tl

t )(

X2

+

lj) x -

t


- 9

10

"3 3


8



2

3

3


4


t'

now mult ipl y a ll fract ions by 3.

Exam ple 2: 2x - I )( 6x 4 - x 3 - Ilx 2 + 9 x - 2), now div ide all parts
by 2, and use s nthetic divis ion .
3

1

II

9

2 -I

I


5


-5

2

-2-2
3

2 - 2


2
3

Add row 3 to

Aga in, when standard long di vision is perfor m d, the same answer is

atta ined . Note: II' there w re any frac ti ons in a ny part of the an wer,

they wou ld be removed by mul tip lication.


I I -2

I' W

I 1 -2 I : 7 I


107 0 :-7 1

10 0 ~ : 12 1


2

-2 1 I: 7 I

01 0: - I I

004 : 12 1

I -2 I : 7 1

o I 0: -I I

o 0 I: 3 1


Mu lt iply row 2 by 117

Multiply row .... by 1/4

MATRICES
A. Matrix:
rectangu lar array of elements in columns and rows. Rows are
named before columns, therefore a 2x4matri x has two rows and four colwnn .


Mu ltiply row 2 by 2 and add to row I

B. Prope r ties of Ma trices:
I. A ma trix with on l one row is called a row ma tri x.
2. matri th at ha onl. one o lum ll i ca lled a col um n mat rix .
3. Two matri ces are equal if and only if they have the same dimensions
and co ntai n the same identical e lements.
4. The sum o r a 2x3 and a 2x3 matrix is a 2x3 matrix in which the
e lements are added to the cor respond ing e leme nts.
Exam ple: Find.1 + K ifJ

= 1 2 4 -6 1and K =
1-3 0

f3


9

15
-3

21

Multiply row

1

2 4 -61
21



J

and K =


1-

-9

­ 21


I

3

II


1 00 : 2 1

00 1 : 3 1


The solution set = 2, -I, 3.


21



IS BN- 1 3 : 97 8 - 14 2320248- 6

IS BN- 10 : 142320 2 48 -1


-'i'

J~111 1

IlI1lllllllil1llillllil

U.S. 54.95 CAN . $7.50
Author: S. Orcutt

"" rlpU, re)oo:n~J Nil ran Q(lh, pul.h,,;lil, .. I1'\1\ lit ICprod U' d ... IBII mil .. Ift.-\
r"nn vr b, an) mean~, 1:1«1100'''' Of rIW\n.n, •• Indu"h" pNII.,.;;"" rc..:.'I"d, .... "'
,"11,, 11\4111<.) " >I""I~ and rttrloal ,,>W'tn .. uhuIK llIt,lIm P"TlfilU,,1fI r">fI the ~h Iwr
20111 l(IIJb K.r< harb. l .f. 1t,,87

5. The ditference of two matrices.J - K is equa l t add ing J to th e add itive

1- 3 0

by -I and add to r w I

I0 I: 5I

010: -I i


00 1 : 3 1


o I 0 : -I I


.J +KJ5 13 - 4 1.

12 - 3
II


inverse of K. .I =

26 1


6 ( 9 ) + l( 2 ) 1 139 56 1

[6 ( 6 ) + t( 3 )
C. sing matn ce to solve sys tems of eq uat ions: If you have thr e systems
of eq uation yo u can use an augmented matrix to find the solu tion et of
the va ria ble. You mu t fo llow the e guide li nes:
I. Any two rows Illa be interc hanged.
2. ny row may be repl aced by a non-zero multiple of that row.
3. Any row may be replaced by the um of that row and the multiple of

another. The goa l is to achieve an augmen ted matrix of the form;


110 0 : x,1

10 I 0 : y I

100 I : z I, where x, y, z = the olution el.

Example : Solve x - 2y + Z = 7

3x + Y - z = 2

2x + 3y + 2z = 7. u ing an augmented matrix.


Answer = 3x3 + x2 -5x + 2 r. 0

0

9 1.

21


2 (9) + 4( 2 )IJ 24

The aug mented matri i

Answer = x + 4 r. -1. When th i sa me problem is performed with trad i­
ti onal divi sion, the an wer i the same.

tl


41 ,1 6
I I 13

I: 7 I

13 I -I : 21

12 3 2: 71

Multiply row I by -3 and add 10 rO\ 2 I I -2 I: 7 I

107-4:-1 9 1

12 3 2: 7 1

MUltiply row I by -2 and add to I' w 3 I I -2 I: 7 I

10 7 -4 :-19 1

10 7 0: -7 1

Mu ltiply row 2 by - I and add trow 3 II -2 I: 7 1

I 0 7 -4 : -1 9 I

100 4 : 12 1


1



-3

Answer = x + 4 r. -

-5 - 81


J-K J -I

.1\

free di wllloadS &
h n red~ of t Itles . t

qUlc sluaY.COm
4


6111Ill~~ll~II~~ijI11111118



×