Tải bản đầy đủ (.pdf) (21 trang)

Đề thi thử THPT Quốc gia 2017 môn Toán - Trắc nghiệm, có đáp án, lời giải chi tiết

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.32 MB, 21 trang )

BỘ GIÁO DỤC VÀ ĐÀO TẠO

KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA 2017

ĐỀ THI THỬ NGHIỆM
(Đề thi gồm có 07 trang)

Bài thi: TOÁN
Thời gian làm bài: 90 phút, không kể thời gian phát đề
Mã đề thi 01

Họ, tên thí sinh: ..........................................................................
Số báo danh: ...............................................................................
2x 1
?
x 1
D. x  1.

Câu 1. Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số y 
A. x  1.

B. y  1.

C. y  2.

Câu 2. Đồ thị của hàm số y  x 4  2 x 2  2 và đồ thị của hàm số y   x 2  4 có tất cả bao nhiêu
điểm chung ?
A. 0.
B. 4.
C. 1.
D. 2.


Câu 3. Cho hàm số y  f  x  xác định, liên tục trên đoạn  2; 2
và có đồ thị là đường cong trong hình vẽ bên. Hàm số f  x  đạt
cực đại tại điểm nào dưới đây ?
A. x  2.
B. x  1.
C. x  1.
D. x  2.

Câu 4. Cho hàm số y  x3  2 x 2  x  1. Mệnh đề nào dưới đây đúng ?

1 
A. Hàm số nghịch biến trên khoảng  ;1 .
3 
1 
C. Hàm số đồng biến trên khoảng  ;1 .
3 
Câu 5. Cho hàm số y  f  x  xác định trên

1

B. Hàm số nghịch biến trên khoảng  ;  .
3

D. Hàm số nghịch biến trên khoảng (1; ).

\{0} , liên tục trên mỗi khoảng xác định và có bảng

biến thiên như sau

Tìm tập hợp tất cả các giá trị của tham số thực m sao cho phương trình f  x   m có ba nghiệm

thực phân biệt.
A. [  1; 2].
B. (1; 2).
C. (1; 2].
D. (; 2].

Trang 1/7 – Mã đề thi 01


x2  3
. Mệnh đề nào dưới đây đúng ?
x 1
A. Cực tiểu của hàm số bằng 3.
B. Cực tiểu của hàm số bằng 1.
C. Cực tiểu của hàm số bằng 6.
D. Cực tiểu của hàm số bằng 2.
1
Câu 7. Một vật chuyển động theo quy luật s   t 3  9t 2 , với t (giây) là khoảng thời gian tính từ
2
lúc vật bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi
trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được
bằng bao nhiêu ?
A. 216 (m/s).
B. 30 (m/s).
C. 400 (m/s).
D. 54 (m/s).
Câu 6. Cho hàm số y 

2 x 1  x2  x  3
.

x2  5x  6
A. x  3 và x  2.
B. x  3.
C. x  3 và x  2.
D. x  3.
Câu 9. Tìm tập hợp tất cả các giá trị của tham số thực m để hàm số y  ln( x2  1)  mx  1 đồng
biến trên khoảng (; ).
Câu 8. Tìm tất cả các tiệm cận đứng của đồ thị hàm số y 

A.  ; 1.

D. 1;   .

C.  1;1.

B.  ; 1 .

Câu 10. Biết M  0; 2  , N (2; 2) là các điểm cực trị của đồ thị hàm số y  ax3  bx2  cx  d . Tính
giá trị của hàm số tại x  2.
A. y(2)  2.
B. y(2)  22.

C. y(2)  6.

D. y(2)  18.

Câu 11. Cho hàm số y  ax3  bx2  cx  d có
đồ thị như hình vẽ bên. Mệnh đề nào dưới đây
đúng ?
A. a  0, b  0, c  0, d  0.

B. a  0, b  0, c  0, d  0.
C. a  0, b  0, c  0, d  0.
D. a  0, b  0, c  0, d  0.
Câu 12. Với các số thực dương a, b bất kì. Mệnh đề nào dưới đây đúng ?
A. ln(ab)  ln a  ln b.
B. ln(ab)  ln a.ln b.
C. ln

a ln a

.
b ln b

D. ln

a
 ln b  ln a.
b

Câu 13. Tìm nghiệm của phương trình 3x1  27.
A. x  9.
B. x  3.
C. x  4.
D. x  10.
Câu 14. Số lượng của loại vi khuẩn A trong một phòng thí nghiệm được tính theo công thức
s(t )  s(0).2t , trong đó s(0) là số lượng vi khuẩn A lúc ban đầu, s(t ) là số lượng vi khuẩn A có sau
t phút. Biết sau 3 phút thì số lượng vi khuẩn A là 625 nghìn con. Hỏi sau bao lâu, kể từ lúc ban đầu,
số lượng vi khuẩn A là 10 triệu con ?
A. 48 phút.
B. 19 phút.

C. 7 phút.
D. 12 phút.
Câu 15. Cho biểu thức P  x. 3 x 2 . x3 , với x  0. Mệnh đề nào dưới đây đúng ?
4

1

A. P  x 2 .

13

B. P  x 24 .

1

C. P  x 4 .

2

D. P  x 3 .
Trang 2/7 – Mã đề thi 01


Câu 16. Với các số thực dương a, b bất kì. Mệnh đề nào dưới đây đúng ?

 2a 3 
A. log 2 
  1  3log 2 a  log 2 b.
 b 


 2a 3 
1
B. log 2 
  1  log 2 a  log 2 b.
3
 b 

 2a 3 
C. log 2 
  1  3log 2 a  log 2 b.
 b 

 2a 3 
1
D. log 2 
  1  log 2 a  log 2 b.
3
 b 

Câu 17. Tìm tập nghiệm S của bất phương trình log 1  x  1  log 1  2 x  1 .
2

A. S  (2; ).

2

1 
C. S   ; 2  .
2 


B. S  (;2).



D. S  (1;2).



Câu 18. Tính đạo hàm của hàm số y  ln 1  x  1 .
A. y 



1

2 x 1 1 x 1

C. y 



1

x 1 1 x 1





.


.

B. y 

1
.
1 x 1

D. y 

2



x 1 1 x 1



.

Câu 19. Cho ba số thực dương a, b, c khác 1.
Đồ thị các hàm số y  a x , y  b x , y  c x được
cho trong hình vẽ bên. Mệnh đề nào dưới đây
đúng ?
A. a  b  c.
B. a  c  b.
C. b  c  a.
D. c  a  b.


Câu 20. Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình 6x   3  m  2x  m  0 có
nghiệm thuộc khoảng  0;1 .
A. [3;4].

B. [2;4].

C. (2; 4).

D. (3; 4).

Câu 21. Xét các số thực a, b thỏa mãn a  b  1 . Tìm giá trị nhỏ nhất Pmin của biểu thức

a
P  log 2a  a 2   3logb   .
b
b
A. Pmin  19.

B. Pmin  13.

C. Pmin  14.

D. Pmin  15.

Câu 22. Tìm nguyên hàm của hàm số f ( x)  cos 2 x.

1

1


A.

 f ( x) dx  2 sin 2 x  C.

B.

 f ( x) dx   2 sin 2 x  C.

C.

 f ( x) dx  2sin 2x  C.

D.

 f ( x) dx  2sin 2 x  C.
Trang 3/7 – Mã đề thi 01


2

Câu 23. Cho hàm số f  x  có đạo hàm trên đoạn 1;2 , f (1)  1 và f (2)  2. Tính I   f   x  dx.
1

A. I  1.

B. I  1.

C. I  3.

7

D. I  .
2

Câu 24. Biết F  x  là một nguyên hàm của hàm số f ( x) 

1
và F  2   1 . Tính F  3 .
x 1

A. F  3  ln 2  1.

1
C. F  3  .
2

7
D. F  3  .
4

C. I  16.

D. I  4.

Câu 25. Cho

4

2

0


0

 f ( x) dx  16. Tính I   f (2 x) dx.

A. I  32.

B. I  8.
4

Câu 26. Biết

x
3

A. S  6.

B. F  3  ln 2  1.

dx
 a ln 2  b ln3 c ln 5, với a, b, c là các số nguyên. Tính S  a  b  c.
x

2

B. S  2.

C. S  2.

D. S  0.


Câu 27. Cho hình thang cong ( H ) giới hạn bởi các
đường y  e x , y  0, x  0 và x  ln 4. Đường thẳng
x  k (0  k  ln 4) chia ( H ) thành hai phần có diện
tích là S1 và S 2 như hình vẽ bên. Tìm k để S1  2S2 .

2
A. k  ln 4.
3

B. k  ln 2.

8
C. k  ln .
3

D. k  ln 3.

Câu 28. Ông An có một mảnh vườn hình elip có độ dài trục
lớn bằng 16 m và độ dài trục bé bằng 10 m. Ông muốn trồng
hoa trên một dải đất rộng 8 m và nhận trục bé của elip làm trục
đối xứng (như hình vẽ). Biết kinh phí để trồng hoa là 100.000
đồng/ 1 m2 . Hỏi ông An cần bao nhiêu tiền để trồng hoa trên
dải đất đó ? (Số tiền được làm tròn đến hàng nghìn.)
A. 7.862.000 đồng.
B. 7.653.000 đồng.
C. 7.128.000 đồng.
D. 7.826.000 đồng.
Câu 29. Điểm M trong hình vẽ bên là điểm biểu diễn của số phức z.
Tìm phần thực và phần ảo của số phức z.

A. Phần thực là 4 và phần ảo là 3.
B. Phần thực là 3 và phần ảo là 4i.
C. Phần thực là 3 và phần ảo là 4.
D. Phần thực là 4 và phần ảo là 3i.
Trang 4/7 – Mã đề thi 01


Câu 30. Tìm số phức liên hợp của số phức z  i(3i  1).
A. z  3  i.

B. z  3  i.

C. z  3  i.

D. z  3  i.

Câu 31. Tính môđun của số phức z thỏa mãn z  2  i   13i  1.
A. z  34.

B. z  34.

C. z 

5 34
.
3

D. z 

34

.
3

Câu 32. Kí hiệu z0 là nghiệm phức có phần ảo dương của phương trình 4 z 2  16 z  17  0. Trên
mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức w  iz0 ?

1 
1 
 1 
 1 
A. M 1  ; 2  .
B. M 2   ; 2  .
C. M 3   ;1 .
D. M 4  ;1 .
4 
2 
 2 
 4 
Câu 33. Cho số phức z  a  bi (a, b  ) thỏa mãn (1  i) z  2 z  3  2i. Tính P  a  b.
1
A. P  .
2

B. P  1.

C. P  1.

1
D. P   .
2


10
 2  i. Mệnh đề nào dưới đây đúng ?
z
3
1
1
3
A.  z  2.
B. z  2.
C. z  .
D.  z  .
2
2
2
2
3
Câu 35. Cho hình chóp S. ABC có đáy là tam giác đều cạnh 2a và thể tích bằng a . Tính chiều
cao h của hình chóp đã cho.
Câu 34. Xét số phức z thỏa mãn 1  2i  z 

3a
3a
3a
.
.
.
B. h 
C. h 
6

2
3
Câu 36. Hình đa diện nào dưới đây không có tâm đối xứng ?
A. h 

D. h  3a.

C. Hình lập phương.
D. Lăng trụ lục giác đều.
A. Tứ diện đều.
B. Bát diện đều.
Câu 37. Cho tứ diện ABCD có thể tích bằng 12 và G là trọng tâm của tam giác BCD. Tính thể
tích V của khối chóp AGBC
.
.
A.
B. V  4.
C. V  6.
D. V  5.
V  3.
Câu 38. Cho hình lăng trụ tam giác ABC. A ' B ' C ' có đáy ABC là tam giác vuông cân tại A, cạnh

AC  2 2. Biết AC ' tạo với mặt phẳng ( ABC ) một góc 60 và AC '  4. Tính thể tích V của
khối đa diện ABCB 'C '.
16 3
8 3
8
16
.
.

A. V  .
B. V  .
C. V 
D. V 
3
3
3
3
Câu 39. Cho khối nón (N) có bán kính đáy bằng 3 và diện tích xung quanh bằng 15 . Tính thể tích
V của khối nón (N).
A. V  12  .
B. V  20  .
C. V  36  .
D. V  60  .

Trang 5/7 – Mã đề thi 01


Câu 40. Cho hình lăng trụ tam giác đều ABC. A ' B ' C ' có độ dài cạnh đáy bằng a và chiều cao
bằng h. Tính thể tích V của khối trụ ngoại tiếp lăng trụ đã cho.
A. V 

 a2h

B. V 

.

 a2h


C. V  3 a 2 h.

.

D. V   a 2 h.

9
3
Câu 41. Cho hình hộp chữ nhật ABCD. A B CD có AB  a, AD  2a và AA  2a. Tính bán kính
R của mặt cầu ngoại tiếp tứ diện ABBC .
3a
3a
A. R  3a.
B. R  .
C. R  .
D. R  2a.
4
2
Câu 42. Cho hai hình vuông cùng có cạnh bằng 5 được xếp chồng
lên nhau sao cho đỉnh X của một hình vuông là tâm của hình vuông
còn lại (như hình vẽ bên). Tính thể tích V của vật thể tròn xoay khi
quay mô hình trên xung quanh trục XY.
A. V 
C. V 





125 1  2 




6

B. V 

.



125 5  4 2 

D. V 

.





125 5  2 2 



12

.




125 2  2 

.
24
4
Câu 43. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A  3; 2;3  và B  1; 2;5 . Tìm tọa độ
trung điểm I của đoạn thẳng AB.
A. I  2; 2;1 .
B. I 1;0; 4  .
C. I  2;0;8 .
D. I  2; 2; 1 .
x  1

Câu 44. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :  y  2  3t (t  ). Vectơ nào
z  5  t

dưới đây là vectơ chỉ phương của d ?
A. u1  (0;3; 1).

B. u2  (1;3; 1).

C. u3  (1; 3; 1).

D. u4  (1; 2;5).

Câu 45. Trong không gian với hệ tọa độ Oxyz, cho ba điểm A 1;0;0 , B 0; 2;0  và C  0;0;3 .
Phương trình nào dưới đây là phương trình của mặt phẳng  ABC  ?
A.


x y z

  1.
3 2 1

B.

x y z
   1.
2 1 3

C.

x y z

  1.
1 2 3

D.

x y z
 
 1.
3 1 2

Câu 46. Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình của mặt
cầu có tâm I 1; 2; 1 và tiếp xúc với mặt phẳng  P  : x  2 y  2 z  8  0?
A. ( x  1)2  ( y  2)2  ( z  1)2  3.

B. ( x  1)2  ( y  2)2  ( z  1)2  3.


C. ( x  1)2  ( y  2)2  ( z  1)2  9.

D. ( x  1)2  ( y  2)2  ( z  1)2  9.

Câu 47. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

x 1 y z  5


và mặt
1
3
1

phẳng ( P) : 3x  3 y  2 z  6  0. Mệnh đề nào dưới đây đúng ?
A. d cắt và không vuông góc với (P).
B. d vuông góc với (P).
C. d song song với (P).
D. d nằm trong (P).

Trang 6/7 – Mã đề thi 01


Câu 48. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A  2;3;1  và B  5; 6; 2  . Đường
thẳng AB cắt mặt phẳng (Oxz) tại điểm M. Tính tỉ số
A.

AM 1
 .

BM 2

B.

AM
 2.
BM

AM
.
BM
AM 1
C.
 .
BM 3

D.

AM
 3.
BM

Câu 49. Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng ( P) song song và cách
x2 y z
x y 1 z  2
đều hai đường thẳng d1 :
  , d2 : 

.
1

1 1
2
1
1
A. ( P) : 2 x  2 z  1  0.
B. ( P) : 2 y  2 z  1  0.
C. ( P) : 2 x  2 y  1  0.

D. ( P) : 2 y  2z  1  0.

Câu 50. Trong không gian với hệ tọa độ Oxyz, xét các điểm A(0;0;1), B(m;0;0), C (0; n;0) và
D(1;1;1), với m  0, n  0 và m  n  1. Biết rằng khi m, n thay đổi, tồn tại một mặt cầu cố định
tiếp xúc với mặt phẳng ( ABC ) và đi qua D. Tính bán kính R của mặt cầu đó ?
A. R  1.

B. R 

2
3
.
C. R  .
2
2
------------------- HẾT ----------------

D. R 

3
.
2


Trang 7/7 – Mã đề thi 01


TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

Mã đề: 485

TRƯỜNG THPT CHUYÊN KHTN
ĐỀ THI KIỂM TRA KIẾN THỨC LỚP 12 NĂM HỌC 2016-2017 LẦN 2
Môn: Toán học; Thời gian làm bài : 90 phút, không kể thời gian phát đề.
Đề thi gồm 05 trang
Câu 1: Cho hàm số y  2 x  3 9  x 2 . Giá trị nhỏ nhất của hàm số bằng
A. -6

B. -9

C. 9

D. 0

1
Câu 2: Tìm tập hợp tất cả các nghiệm của phương trình ( )2 x 1  (2 2) x  2 .
4

 11 
D. 

 2 


 2 
A.   .
 11 

2
B.   .
11 

Câu 3: Cho hàm số y 

x2  4
. Đồ thị hàm số có mấy tiệm cận
x 1

A. 1

B. 0

11 
C.  
2

C. 2

D. 3

Câu 4: Đồ thị hàm số nào dưới đây không có tiệm cận ngang?
A. y  x  x 2  1

B. y 


x2
.
x 1

C. y 

x2
.
x 1

D. y 

x2
x2 1

Câu 5: Cho hàm số y  (m  1) x3  (m  1) x 2  x  m . Tìm m để hàm số đồng biến trên R.
A. m  4, m  1 .

B. 1  m  4 .

C. 1  m  4 .

Câu 6: Số nghiệm thực của phương trình 2log 2 ( x  3)  2  log
A. 2

B. 0

C. 1


2

D. 1  m  4
3  2 x là

D. 3

Câu 7 Cho số phức z  (1  i)2  (1  i)3  ...  (1  i) 22 . Phần thực của số phức z là
A. 211 .

B. 211  2 .

C. 211  2

D. 211 .

1 Truy cập trang để học Toán – Lý – Hóa – Sinh – Văn –
Anh – Sử - Địa tốt nhất!


Câu 8: Tập hợp các điểm biểu diễn các số phức z thỏa mãn phần thực của

z 1
bằng 0 là đường
z i

tròn tâm I, bán kính R (trừ một điểm )
I(
A.
.


1 1
1
, ), R 
2 2
2

B. I (

1 1
1
, ), R  .
2 2
2

1 1
1
C. I ( , ), R  .
2 2
2

1 1
1
D. I ( , ), R 
2 2
2

Câu 9: Tìm nguyên hàm I   (2 x  1)e x dx
A. I  (2 x  1) e x  C B. I  (2 x  1) e x  C C. I  (2 x  3) e x  C D. I  (2 x  3)e x  C
.

.
Câu 10: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+2y-2z+3=0. Khoảng cách
từ điểm A(1;-2;-3) đến mặt phẳng (P) bằng
A. 2

D. 1
2
1
C.
3
3
Câu 11: Trong các hình hộp nội tiếp mặt cầu tâm I bán kính R, hình hộp có thể tích lớn nhất
bằng
A.

B.

8 3
R
3

B.

8
3 3

D.

8 3
C.

R
3 3

R3

8R3

Câu 12: Cho tứ diện đều ABCD cạnh A. Tính diện tích mặt cầu nội tiếp tứ diện ABCD.
A. S 

4 a 2
3

B. S 

 a2

C. S 

6


24

a2

D. S   a 2

1
Câu 13: Khoảng cách giữa hai điểm cực trị của đồ thị hàm số y  x3  x 2  x  1 bằng

3

A.

5 2
3

B.

2 5
3

C.

10 2
3

D.

2 10
3

Câu 14: Tìm diện tích hình phẳng giới hạn bởi các đường y  ( x  1)e x , y  x 2  1
A. S  e 

8
3

B. S  e 


2
3

C. S  e 

2
3

D. S  e 

8
3

2 Truy cập trang để học Toán – Lý – Hóa – Sinh – Văn –
Anh – Sử - Địa tốt nhất!


Câu 15: Cho hình chóp S.ABC có SA=SB=SC=a, ASB  600 , BSC  900 , CSA  1200 . Tính thể
tích hình chóp S.ABC và đáy là đường tròn nội tiếp hình vuông A’B’C’D’

2a 3
A. V 
12

2a 3
B. V 
4

2a 3
C. V 

6

2a 3
D. V 
2

Câu 16: Cho hình lập phương ABCD. A’B’C’D’ cạnh A. Tính thể tích khối nón có đỉnh là tâm
hình vuông ABCD và đáy là đường tròn nội tiếp hình vuông A’B’C’D’
A. V 


12

B. V 

a3


6

C. V 

a3


4

D. V 

a3


4 3
a
3

Câu 17: Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y  ( x  1)e2 x , trục hoành và các
đường thẳng x=0, x=2.
e4 e2 3
A.
 
4 2 4

e4 e2 3
B.
 
4 2 4

e4 e2 3
C.
 
4 2 4

e4 e2 3
D.
 
4 2 4

Câu 18: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu có phương trình

x2  y 2  z 2  2 x  4 y  6 z  9  0 . Tìm tâm I và bán kính R của mặt cầu

C. I (1; 2,3), R  5

A. I (1;2; 3), R  5 B. I (1; 2;3), R  5
Câu 19: Tính đạo hàm của hàm số y  e x
A. y '  2 xe x

B. y '  x 2e x

2

2

D. I (1;2; 3);R  5

2

1

C. y '  xe x

2

1

D. y '  2 xe x

2

1


Câu 20: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(-1;2;-4) và B(1;0;2). Viết
phương trình đường thẳng d đi qua hai điểm A và B.
A. d :

x 1 y  2 z  4


1
1
3

C. d :

x 1 y  2 z  4


1
1
3

B. d :

x 1 y  2 z  4


1
1
3

D. d :


x 1 y  2 z  4


1
1
3

Câu 21: Tìm tập nghiệm của phương trình 2( x1)  4x
2





A. 4  3, 4  3





B. 2  3, 2  3

3 Truy cập trang để học Toán – Lý – Hóa – Sinh – Văn –
Anh – Sử - Địa tốt nhất!









C. 4  3, 4  3



D. 2  3, 2  3

Câu 22: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (d ) :

x 1 y  2 z  2
. Tính


1
2
2

khoảng cách từ điểm M(-2,1,-1) tới (d).
A.

5 2
3

B.

5 2
2


C.

2
3

D.

5
3

Câu 23: Tìm nguyên hàm I   x ln(2 x  1)dx
4 x2 1
x( x  1)
ln 2 x  1 
C
8
4

A. I 

4 x2  1
x( x  1)
B. I 
ln 2 x  1 
C
8
4

C. I 


4 x2 1
x( x  1)
ln 2 x  1 
C
8
4

4 x2  1
x( x  1)
D. I 
ln 2 x  1 
C
8
4

Câu 24. Tính thể tích khối tròn xoay khi cho hình phẳng giới hạn bởi đồ thị các hàm số
y  x 2  2 x và y   x 2 quay quanh trục Ox.
4
4

.
B.
.
C.
.
3
3
3
Câu 25. Cho log 2  a,log 3  b. Tính log 6 90 theo a, b .
2b  1

2b  1
b 1
A.
B.
C.
.
.
.
ab
ab
ab
Câu 26. Cho hàm số y  x3  3x  2017. Mệnh đề nào dưới đây đúng?

A.

D.

1
.
3

D.

2b  1
.
a  2b

A. Hàm số đồng biến trên khoảng  ; 1 và 1;   .
B. Hàm số đồng biến trên khoảng  0;   .
C. Hàm số đồng biến trên khoảng  ;0  .

D. Hàm số đồng biến trên khoảng  ;1 .
Câu 27. Cho số phức z=2-3i. Tìm phần ảo của số phức w  1  i  z   2  i  z .
A. -9i

B. -9

C. -5

D. -5i

Câu 28. Phương trình 4 x3  2 x1  2 x  1  x2 có bao nhiêu nghiệm dương.
A. 3
B. 1
C. 2
D. 0
3
Câu 29. Phương trình log 2  x  2 x   log 2 1  x có bao nhiêu nghiệm
2

A. 3

B. 0

C. 1

D. 2

4 Truy cập trang để học Toán – Lý – Hóa – Sinh – Văn –
Anh – Sử - Địa tốt nhất!



Câu 30. Tập hợp các điểm biểu diễn các số phức z thỏa mãn z  2  i  z  2i là đường thẳng.
A.
4 x  2 y  1  0.

B.
4 x  6 y  1  0.

C.
D.
4 x  2 y  1  0.
4 x  2 y  1  0.
25
Câu 31. Cho số phức z=-3-4i . Tìm mô đun của số phức w  iz  .
z
B.
2
D. 5
A. 2
C. 5
x 1 y 1 z  1
Câu 32. Trong không gian với tọa độ Oxyz cho đường thẳng (d1 ) :
và đường thẳng


2
1
3
x3 y 2 z 2
(d 2 ) :



. Vị trí tương đối của (d1 ) và (d 2 ) là
2
2
1
A. Cắt nhau.
B. Song song.
C. Chéo nhau.
D. Vuông góC.
x  3 y 1 z 1
Câu 33. Trong không gian với tọa độ Oxyz cho đường thẳng (d ) :


. Viết
2
1
1
phương trình mặt phẳng qua điểm A(3,1,0) và chứa đường thẳng (d).
A. x  2 y  4 z  1  0 B. x  2 y  4 z  1  0 C. x  2 y  4 z  1  0 D. x  2 y  4 z  1  0
Câu 34. Tìm nguyên hàm I    x  1 sin 2 xdx.
A. I 

1  2 x  cos 2 x  sin 2 x  C

2
 2  2 x  cos 2 x  sin 2 x  C
B. I 
2


C. I 

1  2 x  cos 2 x  sin 2 x  C

4
 2  2 x  cos 2 x  sin 2 x  C
D. I 
4

Câu 35. Phương trình  x  1  x  1 có bao nhiêu nghiệm thực
A. 1
B. 0
C. 3
2

D. 2

Câu 36. Tính đạo hàm của hàm số y  x 3 x 4 x .
17
7
7 24 x 7
17 24 x 7
C. y ' 
D. y ' 
B. y ' 
2424 x 7
2424 x 7
24
24
Câu 37. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y=xsin2x, trục hoành và các

đường thẳng x  0, x  
D. 
A. 2


B.
C.
4
2
Câu 38. Cho hình hộp ABCDA’B’C’D’ có tất cả các cạnh bằng a, hình chiếu vuông góc của A’
lên mặt phẳng ABCD, các cạnh xuất phát từ đỉnh A của hình hộp đôi một tạo với nhau một góc
600 . Tính thể tích hình hộp ABCDA’B’C’D’

A. y ' 

5 Truy cập trang để học Toán – Lý – Hóa – Sinh – Văn –
Anh – Sử - Địa tốt nhất!


3 3
2 3
3 3
2 3
B. V 
C. V 
D. V 
a.
a.
a.
a.

6
2
6
2
Câu 39. Cho hình chóp tam giác đều S.ABC có AB=a, mặt bên (SAB) tạo với đáy (ABC) một
góc 600 . Tính thể tích hình chóp S.ABC
1
3 3
3 3
3 3
A. V 
a3 .
B. V 
C. V 
D. V 
a.
a.
a.
24 3
12
8
24
Câu 40. Số nghiệm thực của phương trình log 3 x3  3x 2  log 1 x  x 2  0 là.

A. V 










3

A. 0
B. 1
C. 3
D. 2
Câu 41. Cho hình lăng trụ đứng ABCA’B’C’ có đáy ABC cân tại C, AB=AA’=a, góc giữa BC’
và mặt phẳng (ABB’A’) bằng 600 . Tính thể tích hình lăng trụ ABCA’B’C’.
A. V  15a3
3 15 3
C. V 
a
4
15 3
15 3
B. V 
a
D. V 
a
12
4
x 1
. Tiếp tuyến tại điểm có hoành độ bằng -1 có hệ số góc bằng
2x 1
1
1

1
1
A.
B.
C.
D.
6
3
6
3
1 x
Câu 43. Tính đạo hàm của hàm số y  2 .
 ln 2 1 x
2 1 x
A. y ' 
2 .
C. y ' 
.
2 1 x
2 1 x
ln 2
2 1 x
B. y ' 
2 1 x .
D. y ' 
.
2 1 x
2 1 x

Câu 42. Cho hàm số y 




 



Câu 44. Tổng các nghiệm của phương trình  x  1 .2x  2 x x 2  1  4 2 x 1  x 2 bằng
2

A. 4

B. 5

C. 2
D. 3
b
16
Câu 45. Cho a,b>0, a  1 thỏa mãn log a b  và log 2 a  . Tổng a+b bằng
4
b
A. 12
B. 10
C. 16
D. 18
Câu 46. Tìm tập xác định của hàm số y  log  x 2  3x   1
A. (, 5]  [2, ).
B. (2, ).

C. 1,   .

D. (, 5)  (5, ).

6 Truy cập trang để học Toán – Lý – Hóa – Sinh – Văn –
Anh – Sử - Địa tốt nhất!


Câu 47. Tìm nguyên hàm I  

1
dx
4  x2

A.

B

C.

D.

1 x2
I  ln
 C.
2 x2

1 x2
I  ln
 C.
2 x2


1 x2
I  ln
 C.
4 x2

1 x2
I  ln
 C.
4 x2

Câu 48. Xét các hình chóp S.ABC có SA=SB=SC=AB=BC=A. Giá trị lớn nhất của thể tích
hình chóp S.ABC bằng
a3
a3
a3
3 3a 3
A.
B.
C.
D.
12
8
4
4
Câu 49. Cho các số phức z thỏa mãn z  i  z  1  2i . Tập hợp các điểm biểu diễn các số
phức w   2  i  z  1 trên mặt phẳng tọa độ là một đường thẳng. Viết phương trình đường
thẳng đó.
A.  x  7 y  9  0
B. x  7 y  9  0
C. x  7 y  9  0

D. x  7 y  9  0
x
Câu 50. Số nghiệm thực của phương trình 2  log 2 8  x  là
A. 2
B. 1
C. 3
D.0

7 Truy cập trang để học Toán – Lý – Hóa – Sinh – Văn –
Anh – Sử - Địa tốt nhất!


1A

2A

3C

4B

ĐÁP ÁN
5D
6B

11B

12B

13C


14D

15A

16A

17A

18B

19A

20C

21B

22A

23C

24C

25C

26A

27C

28B


29C

30D

31A

32A

33B

34D

35D

36C

37D

38D

39D

40B

41D

42C

43A


44B

45D

46A

47D

48B

49C

50B

7C

8D

9A

10A

8 Truy cập trang để học Toán – Lý – Hóa –
Sinh – Văn – Anh – Sử - Địa tốt nhất!


TRƯỜNG THPT ĐỒNG ĐẬU

ĐỀ THI KHẢO SÁT CHẤT LƯỢNG THPT QG LẦN 3


(Đề thi gồm có 6 trang)

MÔN THI: TOÁN
Thời gian làm bài: 90 phút; không kể thời gian phát đề
(50 câu trắc nghiệm)
Mã đề thi
109

(Thí sinh không được sử dụng tài liệu)
Họ, tên thí sinh:..................................................................... Số báo danh: .............................
Câu 1: Cho hàm số y  x , mệnh đề nào đúng trong các mệnh đề sau?
A. Hàm số có đạo hàm tại x  0 nên đạt cực tiểu tại x  0 .
B. Hàm số có đạo hàm tại x  0 nhưng không đạt cực tiểu tại x  0 .
C. Hàm số không có đạo hàm tại x  0 nhưng vẫn đạt cực tiểu tại x  0 .
D. Hàm số không có đạo hàm tại x  0 nên không đạt cực tiểu tại x  0 .
Câu 2: Giá trị nhỏ nhất của hàm số y   x 2  4 x  21   x 2  3x  10 bằng:
A. 2
B. 3  1
C. 3
D. 2
Câu 3: Cho hình chóp tứ giác đều S.ABCD. Nhận định nào sau đây là sai?
A. Hình chóp S.ABCD có các cạnh bên bằng nhau.
B. Hình chiếu vuông góc của đỉnh S xuống mặt đáy là tâm của đường tròn ngoại tiếp tứ giác ABCD.
C. Tứ giác ABCD là hình thoi.
D. Hình chóp có các cạnh bên hợp với đáy cùng một góc.
Câu 4: Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y  x 1  x 2 . Khi đó, giá trị
M  n bằng:
A. 1
B. 3
C. 2

D. 4
Câu 5: Tập nghiệm của bất phương trình log 2  3x  2   log 2  6  5x  là:
 6
A. 1; 
 5

1 
B.  ;3 
2 

C.  3;1

Câu 6: Nếu log 2 3  a,log 2 5  b thì log 2 6 360 bằng:
1 a b
1 a b
1 a b
A.  
B.  
C.  
3 4 6
2 6 3
2 3 6

D.  0;  

D.

1 a b
 
6 2 3


Câu 7: Cho hàm số y  f  x  . Mệnh đề nào đúng trong các mệnh đề sau?
A. f  x  đồng biến trên khoảng  a; b   f   x   0, x   a; b  .
B. f   x   0 với x   a; b  f  x  đồng biến trên đoạn  a; b  .
C. f  x  nghịch biến trên khoảng  a; b   f   x   0, x   a; b  .
D. f   x   0 với x   a; b   f  x  đồng biến trên khoảng  a; b  .

1
Câu 8: Logarit cơ số 3 của số nào bằng  ?
3
1
A.
B. 3 3
27

1
1
D.
3
3 3
Câu 9: Anh Hùng vay tiền ngân hàng 1 tỉ đồng để mua nhà theo phương thức trả góp. Nếu cuối mỗi
tháng bắt đầu từ tháng thứ nhất anh trả 30 triệu đồng và chịu lãi số tiền chưa trả là 0,5%/tháng thì sau bao
lâu anh trả hết nợ?
A. 3 năm 2 tháng
B. 3 năm
C. 3 năm 3 tháng
D. 3 năm 1 tháng
2

C.


3

1

Câu 10: Nếu  a  1 3   a  1 3 thì điều kiện của a là:
Trang 1/6 - Mã đề thi 109


a  1
C. 
a  2

a  1
D. 
a  2

Câu 11: Tập nghiệm của bất phương trình 2 x 2 x  8 là:
A.  2; 4
B.  ; 1  3;  
C.  3;1

D.  1;3

B. 1  a  2

A. a  2

2


Câu 12: Họ nguyên hàm của hàm số y 

3x  4
có dạng:
2 x 2  3x  1
11
ln 2 x  1  C
2
D. 7 ln x  1  11ln 2 x  1  C

11
ln  2 x  1  C
2
C. 7 ln x  1  11ln 2 x  1

A. 7 ln  x  1 

B. 7 ln x  1 

Câu 13: Hàm số F  x   ln  x 2  x  1 là một nguyên hàm của hàm số:
A. y 

2x 1
x  x 1
2

B. y 

1
x  x 1


C. y 

2

1
ln  x  x  1
2

D. y 

2x 1
ln  x 2  x  1

Câu 14: Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, AC  a 2 . Biết SA  SB  SC  a .
Thể tích khối chóp S.ABC bằng:
a3 2
a3 2
a3 3
a3 3
A.
B.
C.
D.
6
12
6
12
Câu 15: Số nghiệm của phương trình
A. 3




B. 0

Câu 16: Số tiệm cận của đồ thị hàm số y 
A. 4



3 1

B. 2

log 2 x

x





3 1

log 2 x

 1  x 2 là:

C. 2


D. 1

x
là:
x 2
C. 3

D. 1

2

Câu 17: Nghiệm của phương trình log3  x 2  3x   log 1  2 x  2   0 là:
3

A. x  3  2

B. x  3 3

C. x  1

D. x  1

Câu 18: Cho hàm số y   x  x  1 có đồ thị là (C) và đường thẳng d: y   x  m2 (với m là tham số).
Khẳng định nào sau đây đúng?
A. Đồ thị (C) luôn cắt đường thẳng d tại 3 điểm phân biệt với mọi m.
B. Đồ thị (C) luôn cắt đường thẳng d tại đúng một điểm với mọi m.
C. Đồ thị (C) luôn cắt đường thẳng d tại đúng hai điểm phân biệt với mọi m.
D. Đồ thị (C) luôn cắt đường thẳng d tại điểm có hoành độ nhỏ hơn 0 với mọi m.
2x  2
Câu 19: Cho hàm số y 

, mệnh đề nào đúng trong các mệnh đề sau?
x 1
A. Đồ thị hàm số nhận điểm I  2; 1 làm tâm đối xứng.
B. Hàm số không có cực trị.
C. Đồ thị hàm số có tiệm cận đứng là y  2 và tiệm cận ngang là x  1 .
3

D. Hàm số luôn nghịch biến trên  \ 1 .
Câu 20: Một sợi dây có chiều dài 6 m, được cắt thành hai phần. Phần thứ nhất uốn thành hình tam giác
đều, phần thứ hai uốn thành hình vuông. Hỏi cạnh của hình tam giác đều bằng bao nhiêu để tổng diện tích
hai hình thu được là nhỏ nhất?
18
36 3
12
18 3
A.
m
B.
m
C.
m
D.
m
94 3
94 3
4 3
4 3
Câu 21: Từ một tấm tôn hình chữ nhật có chiều rộng là 20cm, chiều dài bằng 60cm, người ta gò tấm tôn
thành mặt xung quanh của một chiếc hộp (hình hộp chữ nhật) sao cho chiều rộng của tấm tôn là chiều cao
của chiếc hộp. Hỏi thể tích lớn nhất của chiếc hộp bằng bao nhiêu?

A. 4 (lít)
B. 18 (lít)
C. 4,5 (lít)
D. 6 (lít)
Trang 2/6 - Mã đề thi 109


Câu 22: Hãy xác định giá trị của a và b để hàm số y 

A. a  1; b  1

B. a  2; b  1

ax  1
có đồ thị như hình vẽ:
2x  b

C. a  2; b  1

D. a  2; b  1

Câu 23: Hàm số nào sau đây đồng biến trên tập số thực?
x3
x3
2x 1
A. y   x 2  x  1
B. y   x 2  x  2
C. y 
D. y  x 4  2 x 2  1
3

3
x 1
Câu 24: Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA tạo với đáy một
góc 60 . Thể tích khối chóp S.BCD bằng:
a3 6
a3 6
a3 3
a3 3
A.
B.
C.
D.
12
6
6
12
Câu 25: Số điểm cực trị của đồ thị hàm số y  x3  3x  2 là?
A. 1
B. 3
C. 0
Câu 26: Họ tất cả các nguyên hàm của hàm số y 

D. 2

sin 3 x
là:
cos 4 x
1
1


C
3
3cos x cos x
1
1
D. 

C
3
3cos x cos x

1
1

C
3
3cos x cos x
1
1
C.

C
3
3cos x cos x

B. 

A.

Câu 27: Hàm số y  x 2  2 x đồng biến trên khoảng nào?

A.  0; 2 
B.  ;0 
C. 1;  

D.  2;  

Câu 28: Số nguyên dương m nhỏ nhất để đường thẳng y   x  m cắt đồ thị hàm số y 
điểm phân biệt là:
A. m  4

B. m  3

C. m  0

x 3
tại hai
2 x

D. m  2

ABC  30 . Quay tam giác ABC
Câu 29: Trong không gian cho tam giác ABC vuông tại A có AC  3 , 
quanh cạnh AB thu được một hình nón. Diện tích toàn phần của hình nón đó là:
A. 27 cm2
B. 18 3 cm2
C. 18 cm2
D. 27  18 3  cm2






Câu 30: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y  x3  3x  1 trên đoạn  1; 4 là:
A. max y  51, min y  1
1;4

1;4

B. max y  51, min y  3
1;4

1;4

Trang 3/6 - Mã đề thi 109


D. max y  51, min y  1

C. max y  1, min y  1
1;4

1;4

1;4

1;4



Câu 31: Số nghiệm của phương trình 7  3 5


  7  3 5 
x

x

 7.2 x là:

A. 1
B. 2
C. 0
Câu 32: Đồ thị hàm số ở hình bên là của hàm số nào dưới đây?

A. y    x 2  2 

2

B. y   x 2  2 

2

C. y  x 4  2 x 2  4

Câu 33: Thể tích của khối cầu có đường kính 6cm bằng:
A. 36 cm3
B. 288 cm3
C. 81 cm3

D. 3


D. y  x 4  4 x 2  4
D. 27 cm3

Câu 34: Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB  a, AD  2a và cạnh bên SA  2a đồng
thời vuông góc với đáy. Thể tích của khối chóp S.ABCD bằng:
2a 3
4a 3
A.
(đvtt)
B.
(đvtt)
C. 2a 3 (đvtt)
D. 4a 3 (đvtt)
3
3
Câu 35: Trong các mệnh đề sau, mệnh đề nào sai?
A. Hình tạo bởi một số hữu hạn các đa giác được gọi là hình đa diện.
B. Khối đa diện bao gồm phần không gian được giới hạn bởi hình đa diện và cả hình đa diện đó.
C. Mỗi cạnh của một đa giác trong hình đa diện là cạnh chung của đúng hai đa giác.
D. Hai đa giác bất kì trong một hình đa diện hoặc là không có điểm chung, hoặc là có một đỉnh chung,
hoặc là có một cạnh chung.





Câu 36: Số nghiệm của phương trình log 2 x  3 x  4  3 là:
A. 1

B. 2


C. 0

D. 3

2x
 0 , bạn An lập luận như sau:
x2
x  0
2x
0
Bước 1: Điều kiện
, (1).
x2
x  2
2x
2x
Bước 2: Ta có, ln
0
 1 , (2)
x2
x2
Bước 3: (2)  2 x  x  2  x  2 , (3)
 2  x  0
Kết hợp (1) và (3) ta được: 
x  2

Câu 37: Để giải bất phương trình ln

Vậy, tập nghiệm của bất phương trình đã cho là: T   2;0    2;   .

Hỏi lập luận của bạn An đúng hay sai? Nếu lập luận sai thì sai ở bước nào?
Trang 4/6 - Mã đề thi 109


A. Lập luận hoàn toàn đúng.
B. Lập luận sai từ bước 2.
C. Lập luận sai từ bước 3.
D. Lập luận sai từ bước 1.
Câu 38: Cho hình lập phương ABCD.A’B’C’D’. Mặt phẳng (BDC’) chia khối lập phương thành hai phần
có tỉ lệ thể tích phần nhỏ so với phần lớn bằng:
1
1
1
1
A.
B.
C.
D.
5
6
3
4
Câu 39: Họ nguyên hàm của hàm số y  x sin x là:
A. cos x  x sin x  C
B. sin x  x cos x  C
C. x sin x  cos x  C
D. sin x  x cos x  C
Câu 40: Nếu thiết diện qua trục của một hình nón là tam giác đều thì tỉ lệ giữa diện tích toàn phần và diện
tích xung quanh của hình nón đó bằng:
6

3
5
4
A.
B.
C.
D.
5
2
4
3
Câu 41: Hàm số y  x3  3x 2  2 nghịch biến trên khoảng nào dưới đây?
A.  ;0 
B.  2;0 
C.  2;  

D.  0; 2 

Câu 42: Cho hình nón có chiều cao h; bán kính đáy r và độ dài đường sinh l. Khẳng định nào đúng, trong
các khẳng định sau?
1
A. V  r 2 h
B. S xq   rh
C. S xq  2 rh
D. Stp   r  r  l 
3
Câu 43: Giám đốc một công ty sữa yêu cầu bộ phận thiết kế làm một mẫu hộp đựng sữa có dạng hình trụ
thể tích bằng 450cm3 . Nếu là nhân viên của bộ phận thiết kế, thì anh/chị sẽ thiết kế hộp đựng sữa có bán
kính đáy gần với giá trị nào nhất sau đây để chi phí cho nguyên liệu là thấp nhất?
A. 5,2cm

B. 4,25cm
C. 3,6cm
D. 4,2cm
Câu 44: Hàm số f  x    2 x  1 có một nguyên hàm dạng F  x   ax3  bx 2  cx  d thỏa mãn điều kiện
2

1
F  1  . Khi đó, a  b  c  d bằng:
3
A. 3
B. 2
C. 4
D. 5
Câu 45: Cho một khối trụ có bán kính đáy bằng a, thiết diện của hình trụ qua trục là hình vuông có chu vi
là 8. Thể tích khối trụ có giá trị bằng:
A. 8
B. 2
C. 4
D. 16
Câu 46: Khái niệm nào sau đây đúng với khối chóp?
A. Khối chóp là khối đa diện có hình dạng là hình chóp.
B. Khối chóp là phần không gian được giới hạn bởi hình chóp.
C. Khối chóp là hình có đáy là một đa giác và các mặt bên là các tam giác có chung một đỉnh.
D. Khối chóp là phần không gian được giới hạn bởi hình chóp và cả hình chóp đó.

1  x2
có bao nhiêu tiệm cận?
x2  4
A. 0
B. 2

C. 1
D. 3
x
Câu 48: Đồ thị của hàm số y 
không có tiệm cận ngang khi và chỉ khi:
mx 2  1
A. m  0
B. m  0
C. m  0
D. m  0
Câu 49: Đồ thị hàm số ở hình bên là của hàm số nào dưới đây?
Câu 47: Đồ thị hàm số y 

Trang 5/6 - Mã đề thi 109


A. y  x3  3x 2  2

C. y  x3  3x 2  2

B. y  x3  3x  2

D. y   x3  3x 2  2

Câu 50: Cho hình hộp chữ nhật ABCD.A’B’C’D’ với AB  3cm, AD  6cm và độ dài đường chéo
AC  9cm . Thể tích hình hộp ABCD.A’B’C’D’ bằng bao nhiêu?
A. 81cm3
B. 108cm3
C. 102cm3
D. 90cm3

-----------------------------------------------

----------- HẾT ---------ĐÁP ÁN
Câu
1
2
3
4
5
6
7
8
9
10

Đáp án
C
D
C
A
A
C
D
C
D
A

Câu
11
12

13
14
15
16
17
18
19
20

Đáp án
D
B
A
B
D
C
C
B
B
C

Câu
21
22
23
24
25
26
27
28

29
30

Đáp án
C
C
B
C
C
A
D
A
A
B

Câu
31
32
33
34
35
36
37
38
39
40

Đáp án
B
B

A
B
A
A
C
A
D
A

Câu
41
42
43
44
45
46
47
48
49
50

Đáp án
D
D
D
D
B
D
A
B

C
B

Trang 6/6 - Mã đề thi 109



×