ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
---------------------
Đoàn Trung Dũng
TÊN ĐỀ TÀI LUẬN VĂN
TỔNG HỢP VÀ NGHIÊN CỨU HOẠT TÍNH XÚC TÁC CỦA VẬT
LIỆU ƠXÍT HỖN HỢP CeO2-Fe2O3 CĨ KÍCH THƯỚC NANOMET
TRONG PHẢN ỨNG OXI HĨA CO
LUẬN VĂN THẠC SĨ KHOA HỌC
Hà Nội – Năm 2016
Đoàn Trung Dũng
Luận văn tốt nghiệp cao học
ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
---------------------
Đoàn Trung Dũng
TÊN ĐỀ TÀI LUẬN VĂN
TỔNG HỢP VÀ NGHIÊN CỨU HOẠT TÍNH XÚC TÁC CỦA VẬT
LIỆU ƠXÍT HỖN HỢP CeO2-Fe2O3 CĨ KÍCH THƯỚC NANOMET
TRONG PHẢN ỨNG OXI HĨA CO
Chun ngành: Kỹ thuật hóa học
Mã số: 60520301
LUẬN VĂN THẠC SĨ KHOA HỌC
NGƢỜI HƢỚNG DẪN KHOA HỌC:
GVHDC: TS. ĐÀO NGỌC NHIỆM
GVHDP:GS.TS. NGUYỄN TRỌNG UYỂN
Hà Nội – Năm 2016
ii
Đoàn Trung Dũng
Luận văn tốt nghiệp cao học
Lời cám ơn
Với lịng biết ơn sâu sắc, tơi xin chân thành cảm ơn TS. Đào Ngọc Nhiệm,
GS.TS. Nguyễn Trọng Uyển đã giao đề tài và tận tình hướng dẫn, giúp đỡ tơi trong
suốt quá trình làm luận văn tốt nghiệp.
Trong quá trình học tập tại Khoa Hóa học, Trường Đại học Khoa học Tự
nhiên, Đại học quốc gia Hà Nội, tôi cám ơn sự giảng dạy và giúp đỡ của các thầy
cô giáo.
Tơi xin cảm ơn các đồng nghiệp tại Phịng Vật liệu Vô cơ, Viện Khoa học
Vật liệu, Viện Hàn lâm Khoa học và Công nghệ Việt Nam đã tạo điều kiện cho tơi
hồn thành đề tài khóa luận tốt nghiệp.
Bản luận văn này được thực hiện tại phòng Vật liệu vô cơ, Viện Khoa học
Vật liệu – Viện Hàn lâm Khoa học và Công nghệ Việt Nam với sự tài trợ một phần
từ Cơng trình này nằm trong khn khổ của đề tài Khoa học và Công nghệ cấp Bộ
Giáo dục và Đào tạo năm 2014-1015 Mã số B2014-04-12. Tác giả xin trân trọng
cảm ơn Bộ Giáo dục và Đào tạo đã tài trợ kinh phí cho nghiên cứu này.
Tơi xin chân thành cảm ơn!
Hà Nội, 2016
Học viên
Đoàn Trung Dũng
iii
Đoàn Trung Dũng
Luận văn tốt nghiệp cao học
MỤC LỤC
Mở đầu ................................................................................................................................... 6
Chƣơng 1 ............................................................................................................................... 8
TỔNG QUAN ........................................................................................................................ 8
1.1. Thực trạng ô nhiễm không khí .................................................................................... 8
1.1.1. Các đặc điểm chính của khơng khí .......................................................................... 8
1.1.2. Vai trị của khơng khí............................................................................................... 9
1.2. Ơ nhiễm khơng khí ................................................................................................... 10
1.3. Tổng quan về khí CO ................................................................................................ 14
1.3.1. Đặc điểm lý hóa của khí cacbon monoxit .............................................................. 14
1.3.2. Tác hại của CO ...................................................................................................... 15
1.3.4. Nguồn gốc của khí CO........................................... Error! Bookmark not defined.
1.4. Tổng quan về các vật liệu xử lý CO ......................... Error! Bookmark not defined.
1.5. Các phƣơng pháp tổng hợp vật liệu .......................... Error! Bookmark not defined.
1.5.1. Phƣơng pháp phản ứng pha rắn (phƣơng pháp gốm) ........... Error! Bookmark not
defined.
1.5.2. Phƣơng pháp kết tủa .............................................. Error! Bookmark not defined.
1.5.3. Phƣơng pháp thủy nhiệt ......................................... Error! Bookmark not defined.
1.5.4. Phƣơng pháp sol - gel ............................................ Error! Bookmark not defined.
1.5.5. Phƣơng pháp đốt cháy gel ...................................... Error! Bookmark not defined.
Chƣơng 2 ............................................................................. Error! Bookmark not defined.
THỰC NGHIỆM VÀ PHƢƠNG PHÁP NGHIÊN CỨU ... Error! Bookmark not defined.
2.1. Hóa chất và thiết bị ................................................... Error! Bookmark not defined.
2.1.1. Hóa chất ................................................................. Error! Bookmark not defined.
2.1.2. Thiết bị ................................................................... Error! Bookmark not defined.
2.2. Tổng hợp vật liệu ...................................................... Error! Bookmark not defined.
2.3. Các phƣơng pháp nghiên cứu vật liệu ...................... Error! Bookmark not defined.
2.3.1. Phƣơng pháp phân tích nhiệt ................................. Error! Bookmark not defined.
2.3.2. Phƣơng pháp nhiễu xạ tia X................................... Error! Bookmark not defined.
2.3.3. Phƣơng pháp hiển vi điện tử .................................. Error! Bookmark not defined.
2.3.4. Phƣơng pháp đo diện tích bề mặt riêng ................. Error! Bookmark not defined.
2.3.5. Phƣơng pháp nghiên cứu hoạt tính xúc tác ............ Error! Bookmark not defined.
iv
Đoàn Trung Dũng
Luận văn tốt nghiệp cao học
Chƣơng 3 ............................................................................. Error! Bookmark not defined.
KẾT QUẢ VÀ THẢO LUẬN ............................................. Error! Bookmark not defined.
3.1. Nghiên cứu tổng hợp vật liệu.................................... Error! Bookmark not defined.
3.2. Nghiên cứu tổng hợp ơxít hỗn hợp CeO2-Fe2O3 bằng phƣơng pháp đốt cháy gel với
chất tạo gel PVA .............................................................. Error! Bookmark not defined.
3.2.1. Ảnh hƣởng của nhiệt độ nung ................................ Error! Bookmark not defined.
3.2.2. Ảnh hƣởng của tỷ lệ mol kim loại Ce/Fe đến sự hình thành pha CeO2-Fe2O3
......................................................................................... Error! Bookmark not defined.
3.3. Nghiên cứu tổng hợp ôxít hỗn hợp CeO2-Fe2O3 bằng phƣơng pháp đốt cháy gel với
chất tạo gel citric .............................................................. Error! Bookmark not defined.
3.3.1. Ảnh hƣởng của nhiệt độ nung ................................ Error! Bookmark not defined.
3.3.2. Ảnh hƣởng của tỷ lệ mol kim loại đến quá trình hình thành pha ơxít hỗn hợp
CeO2-Fe2O3 ...................................................................... Error! Bookmark not defined.
3.4. Nghiên cứu khả năng xử lý CO ................................ Error! Bookmark not defined.
3.4.1. Khả năng xứ lý CO của ôxít hỗn hợp CeO2-Fe2O3 Error! Bookmark not defined.
KẾT LUẬN.......................................................................... Error! Bookmark not defined.
v
Đoàn Trung Dũng
Luận văn tốt nghiệp cao học
Mở đầu
Ngày nay môi trƣờng đang trở thành mối quan tâm của tất cả các quốc gia trên
thế giới. Trong những năm gần đây cùng với sự phát triển mạnh mẽ của các ngành
cơng nghiệp và sự gia tăng dân số thì sự ô nhiễm môi trƣờng ngày càng nặng nề
hơn. Sự ô nhiễm môi trƣờng đã và đang làm mất cân bằng sinh thái. Ở nhiều nơi
trên thế giới, con ngƣời đang phải đối mặt với những thảm họa môi trƣờng nhƣ hiệu
ứng nhà kính, sự suy giảm tầng ơ zơn, elnino, mƣa axit…Do đó, việc phát triển kinh
tế, xã hội gắn với bảo vệ môi trƣờng đã và đang đƣợc quan tâm nghiên cứu của toàn
thế giới trong những năm gần đây.
Hiện nay, vấn đề ơ nhiễm mơi trƣờng khơng khí, đặc biệt tại các đơ thị khơng
chỉ cịn là vấn đề riêng lẻ của một quốc gia hay một khu vực nào đó mà nó đã trở
thành vấn đề tồn cầu. Thực trạng phát triển kinh tế- xã hội của các quốc gia trên
thế giới trong thời gian qua đã có những tác động lớn đến mơi trƣờng, đã làm cho
môi trƣờng sống của con ngƣời bị thay đổi và ngày càng trở lên suy thoái. Những
năm gần đây nhân loại đã phải quan tâm nhiều đến vấn đề ô nhiễm mơi trƣờng
khơng khí. Đó là sự biến đổi của khí hậu – sự nóng lên tồn cầu, sự suy giảm tầng
ơzơn và mƣa axít. Ở Việt Nam ơ nhiễm mơi trƣờng khơng khí đang là một vấn đề
bức xúc đối với môi trƣờng đô thị, công nghiệp và các làng nghề. Đặc biệt ở thủ đô
Hà Nội đang phải đối mặt với vấn đề ô nhiễm môi trƣờng không khí nặng nề. Ở các
khu cơng nghiệp, các trục đƣờng giao thông lớn đều bị ô nhiễm với các cấp độ khác
nhau. Oxi hoá CO thành CO2 trên để xử lý khí này là một q trình hóa học có ý
nghĩa liên quan đến lĩnh vực môi trƣờng.
Phản ứng này xảy ra ở nhiệt độ gần 1000oC . Để phản ứng xảy ra ở nhiệt độ
thấp hơn, tiết kiệm năng lƣợng thì phản ứng trên phải thực hiện khi có mặt xúc tác.
Chính vì vậy, ngƣời ta đã tiến hành phát triển xúc tác oxi hóa có hoạt tính cao để
loại bỏ ngay cả một lƣợng nhỏ CO trong môi trƣờng ơ nhiễm. Có rất nhiều vật liệu,
hệ vật liệu đã đƣợc các nhà khoa học nghiên cứu. Đặc biệt là các hệ vật liệu xúc tác
kim loại, ơxít kim loại ngày càng đƣợc nghiên cứu sâu rộng hơn.
6
Đồn Trung Dũng
Luận văn tốt nghiệp cao học
Nhận thấy tính cấp thiết của vấn đề, nên em đã lựa chọn đề tài “Tổng hợp và
nghiên cứu hoạt tính xúc tác của vật liệu ơxít hỗn hợp CeO2-Fe2O3 có kích
thước nanomet trong phản ứng oxi hóa CO”. Nhằm mục đích xử lý lƣợng khí
thải CO độc hại ra mơi trƣờng.
7
Đoàn Trung Dũng
Luận văn tốt nghiệp cao học
Chương 1
TỔNG QUAN
1.1. Thực trạng ơ nhiễm khơng khí
1.1.1. Các đặc điểm chính của khơng khí
Khí quyển Trái Đất là lớp các chất khí bao quanh hành tinh Trái Đất và đƣợc giữ lại
bởi lực hấp dẫn của Trái Đất. Thành phần chính của khí quyển gồm có nitơ (78,1%
theo thể tích) và ôxy (20,9%), với một lƣợng nhỏ agon (0,9%), cacbon điôxít (dao
động, khoảng 0,035%), hơi nƣớc và một số chất khí khác. Bầu khí quyển bảo vệ
cuộc sống trên Trái Đất bằng cách hấp thụ các bức xạ tia cực tím của mặt trời và tạo
ra sự thay đổi về nhiệt độ giữa ngày và đêm.
Bảng 1.1: Thành phần phần trăm của khơng khí khơ theo thể tích - ppmv: phần
triệu theo thể tích.
Chất khí
Theo NASA
Nitơ
78%
Ơxy
21%
Agon
0,9340%
Cacbon điơxít (CO2)
390 ppmv
Neon
18,18 ppmv
Hêli
5,24 ppmv
Mêtan
1,745 ppmv
Krypton
1,14 ppmv
Hiđrơ
0,55 ppmv
Nitơ
78%
Ơxy
21%
Agon
0,9340%
Khơng khí ẩm thường có thêm
Hơi nƣớc
Dao động mạnh; thông thƣờng khoảng 1%
8
Đồn Trung Dũng
Luận văn tốt nghiệp cao học
Cacbon điơxít và mêtan theo IPCC bảng 1.1. Tuy nhiên, theo báo cáo gần đây
của các nhà khí tƣợng Mỹ NOAA ghi nhận thì nồng độ CO2 trong bầu khí quyển đã
gia tăng tới mức kỷ lục mới. Nồng độ CO2 cao nhất đo đƣợc khoảng 400 ppmv.
Các nhà khí tƣợng lo ngại đây chính là một nhân tố có thể gây những thay đổi bất
ngờ của khí hậu.
Khối lƣợng phân tử trung bình của khơng khí khoảng 28,97 g/mol.
Bầu khí quyển khơng có ranh giới rõ ràng với khoảng khơng vũ trụ nhƣng mật
độ khơng khí của bầu khí quyển giảm dần theo độ cao. Ba phần tƣ khối lƣợng khí
quyển nằm trong khoảng 11 km đầu tiên của bề mặt hành tinh. Tại Mỹ, những
ngƣời có thể lên tới độ cao trên 50 dặm (80,5 km) đƣợc coi là những nhà du hành
vũ trụ. Độ cao 120 km (75 dặm hay 400.000 ft) đƣợc coi là ranh giới do ở đó các
hiệu ứng khí quyển có thể nhận thấy đƣợc khi quay trở lại.
1.1.2. Vai trị của khơng khí
Khơng khí có vai trò rất quan trọng, là một một yếu tố không thể thiếu đối với
sự sinh tồn và phát triển của sinh vật trên trái đất. Con ngƣời có thể nhịn ăn, nhịn
uống trong vài ngày nhƣng không thể nhin thở trong 5 phút.
Khơng khí là lớp áo giáp bảo vệ mọi sinh vật trên trái đất khỏi bị các tia bức xạ
nguy hiểm và các thiên thạch từ vũ trụ.
Khơng khí với các thành phần nhƣ khí O2, CO2, NO2 , cần cho hô hấp của con
ngƣời và động vật cũng nhƣ quá trình quang hợp của thực vật, là nguồn gốc của sự
sống.
Khơng khí giúp duy trì sự cháy và có vai trị quan trọng trong các lĩnh vực sản
xuất ,y tế và trong công nghiệp...
Cùng với sự phát triển kinh tế và q trình cơng nghiệp hóa – hiện đại hóa,
trong những năm gần đây, vấn đề ô nhiễm không khí ngày càng trở nên trâm trọng
ảnh hƣởng xấu đến môi trƣờng sống của con ngƣời.
9
Đồn Trung Dũng
Luận văn tốt nghiệp cao học
1.2. Ơ nhiễm khơng khí
Ơ nhiễm mơi trƣờng khơng khí là sự có mặt một chất lạ hoặc một sự biến đổi
quan trọng trong thành phần khơng khí, làm cho khơng khí khơng sạch hoặc gây
mùi khó chịu, giảm thị lực khi nhìn xa do bụi.
Hiện nay, ơ nhiễm khí quyển là vấn đề thời sự nóng bỏng của cả thế giới chứ
khơng phải riêng của một quốc gia nào. Mơi trƣờng khí quyển đang có nhiều biến
đổi rõ rệt và có ảnh hƣởng xấu đến con ngƣời và các sinh vật. Ô nhiễm khí đến từ
con ngƣời lẫn tự nhiên [20]. Hàng năm con ngƣời khai thác và sử dụng hàng tỉ tấn
than đá, dầu mỏ, khí đốt. Đồng thời cũng thải vào môi trƣờng một khối lƣợng lớn
các chất thải khác nhau nhƣ: chất thải sinh hoạt, chất thải từ các nhà máy và xí
nghiệp làm cho hàm lƣợng các loại khí độc hại tăng lên nhanh chóng.
Ơ nhiễm từ xe gắn máy cũng là một loại ơ nhiễm khí đáng lo ngại [25,55].
Ơ nhiễm mơi trƣờng khí quyển tạo nên sự ngột ngạt và "sƣơng mù", gây nhiều
bệnh cho con ngƣời. Nó cịn tạo ra các cơn mƣa axít làm huỷ diệt các khu rừng và
các cánh đồng. Điều đáng lo ngại nhất là con ngƣời thải vào khơng khí các loại khí
độc nhƣ: CO2, đã gây hiệu ứng nhà kính. Theo nghiên cứu thì chất khí quan trọng
gây hiệu ứng nhà kính là CO2, nó đóng góp 50% vào việc gây hiệu ứng nhà kính,
CH4 là 13%, nitơ 5%, CFC là 22%, hơi nƣớc ở tầng bình lƣu là 3%...
Nếu không ngăn chặn đƣợc hiện tƣợng hiệu ứng nhà kính thì trong vịng 30
năm tới mặt nƣớc biển sẽ dâng lên từ 1,5 – 3,5 m (Stepplan Keckes). Có nhiều khả
năng lƣợng CO2 sẽ tăng gấp đôi vào nửa đầu thế kỷ sau. Điều này sẽ thúc đẩy quá
trình nóng lên của Trái Đất diễn ra nhanh chóng. Nhiệt độ trung bình của Trái Đất
sẽ tăng khoảng 3,60°C (G.I.Plass), và mỗi thập kỷ sẽ tăng 0,30°C. Theo các tài liệu
khí hậu quốc tế, trong vịng hơn 130 năm qua nhiệt độ Trái Đất tăng 0,40°C. Tại hội
nghị khí hậu tại châu Âu đƣợc tổ chức gần đây, các nhà khí hậu học trên thế giới đã
đƣa ra dự báo rằng đến năm 2050 nhiệt độ của Trái Đất sẽ tăng thêm 1,5 – 4,50°C
nếu nhƣ con ngƣời khơng có biện pháp hữu hiệu để khắc phục hiện tƣợng hiệu ứng
nhà kính.
10
Đoàn Trung Dũng
Luận văn tốt nghiệp cao học
Một hậu quả nữa của ơ nhiễm khí quyển là hiện tƣợng lỗ thủng tầng ơzơn. CFC
là "kẻ phá hoại" chính của tầng ôzôn. Sau khi chịu tác động của khí CFC và một số
loại chất độc hại khác thì tầng ơzơn sẽ bị mỏng dần rồi thủng [15].
+ Nguyên nhân gây ô nhiễm:
Tự nhiên: Do các hiện tƣợng tự nhiên gây ra: núi lửa, cháy rừng. Tổng hợp các
yếu tố gây ô nhiễm có nguồn gốc tự nhiên rất lớn nhƣng phân bố tƣơng đối đồng
đều trên tồn thế giới, khơng tập trung trong một vùng. Trong quá trình phát triển,
con ngƣời đã thích nghi với các nguồn này.
Cơng nghiệp: Đây là nguồn gây ô nhiễm lớn nhất của con ngƣời. Các q trình
gây ơ nhiễm là q trình đốt các nhiên liệu hóa thạch: than, dầu, khí đốt tạo ra: CO2,
CO, SO2, NOx, các chất hữu cơ chƣa cháy hết: muội than, bụi, q trình thất thốt,
rị rỉ trên dây truyền cơng nghệ, các q trình vận chuyển các hóa chất bay hơi, bụi.
Đặc điểm: nguồn cơng nghiệp có nồng độ chất độc hại cao, thƣờng tập trung trong
một không gian nhỏ. Tùy thuộc vào quy trình cơng nghệ, quy mơ sản xuất và nhiên
liệu sử dụng thì lƣợng chất độc hại và loại chất độc hại sẽ khác nhau.
Giao thông vận tải: Đây là nguồn gây ô nhiễm lớn đối với khơng khí đặc biệt ở
khu đơ thị và khu đơng dân cƣ. Các q trình tạo ra các khí gây ơ nhiễm là q trình
đốt nhiên liệu động cơ: CO, CO2, SO2, NOx, Pb, CH4 Các bụi đất đá cuốn theo trong
quá trình di chuyển. Nếu xét trên từng phƣơng tiện thì nồng độ ơ nhiễm tƣơng đối
nhỏ nhƣng nếu mật độ giao thông lớn và quy hoạch địa hình, đƣờng xá khơng tốt thì
sẽ gây ơ nhiễm nặng cho hai bên đƣờng.
Sinh hoạt: Là nguồn gây ô nhiễm tƣơng đối nhỏ, chủ yếu là các hoạt động đun
nấu sử dụng nhiên liệu nhƣng đặc biệt gây ô nhiễm cục bộ trong một hộ gia đình
hoặc vài hộ xung quanh. Tác nhân gây ô nhiễm chủ yếu: CO, bụi, khí thải từ các
nhà máy, xe cộ,...
Thực trạng ơ nhiễm khơng khí ở Việt Nam hiện nay:
Cơng nghiệp cũ (đƣợc xây dựng trƣớc năm 1975) đều là công nghiệp vừa và
nhỏ, công nghệ sản xuất lạc hậu, một số cơ sở sản xuất có thiết bị lọc bụi, hầu nhƣ
chƣa có thiết bị xử lý khí thải độc hại. Nói chung, công nghiệp cũ không đạt tiêu
11
Đoàn Trung Dũng
Luận văn tốt nghiệp cao học
chuẩn về chất lƣợng môi trƣờng. Công nghiệp cũ lại rất phân tán, do q trình đơ thị
hố, phạm vi thành phố ngày càng mở rộng nên hiện nay phần lớn công nghiệp cũ
này nằm trong nội thành của nhiều thành phố. Ví dụ ở thành phố Hồ Chí Minh,
khơng kể các cơ sở thủ cơng nghiệp, có khoảng 500 xí nghiệp trong tổng số hơn
700 cơ sở công nghiệp nằm trong nội thành, ở thành phố Hà Nội có khoảng 200 xí
nghiệp trong tổng số khoảng 300 cơ sở công nghiệp nằm trong nội thành. Trong
các năm gần đây nguồn ô nhiễm từ hoạt động cơng nghiệp nằm trong nội thành có
phần giảm bớt do các tỉnh, thành đã tích cực thực hiện chỉ thị xử lý triệt để các cơ
sở gây ô nhiễm nghiêm trọng nằm xen kẽ trong các khu dân cƣ. Ví dụ nhƣ ở Hà Nội
đã đầu tƣ xây dựng kỹ thuật hạ tầng 10 cụm công nghiệp nhỏ ở các huyện ngoại
thành với tổng diện tích đất quy hoạch 2,573 ha để khuyến khích các xí nghiệp cũ ở
trong nội thành di dời ra các cụm công nghiệp đó. Đặc biệt, thành phố Hà Nội có
chế độ chính sách thƣởng tiến độ di chuyển sớm trong giai đoạn từ 2003 - 2004,
mức thƣởng từ 10 triệu đến 500 triệu đồng/đơn vị sản xuất. Cho đến nay Hà Nội đã
di chuyển đƣợc 10 cơ sở sản xuất gây ô nhiễm nặng ra ngoại thành nhƣ: Công ty Cổ
phần Dệt 10/10, Công ty Thuỷ tinh Hà Nội, Công ty Giầy Thụy Kh,... Hiện nay
có 6 cơng ty đang di chuyển là Công ty Nhựa Hà Nội, Dệt kim Hà Nội, Xe đạp xe
máy Đống Đa, Kỹ thuật điện thông, Dệt kim Thăng Long. Thành phố Hồ Chí Minh
đã đƣa ra chính sách thƣởng 500 triệu đồng (mức cao nhất) cho những doanh
nghiệp di dời trong năm 2002, mức thƣởng này chỉ còn 50% đối với các doanh
nghiệp di dời vào năm 2003 và chỉ còn 40% nếu di dời vào năm 2004. Tỉnh Bắc
Ninh và một số tỉnh khác cũng đã đầu tƣ kỹ thuật hạ tầng xây dựng một số cụm
công nghiệp nhỏ để tập trung các doanh nghiệp gây ô nhiễm môi trƣờng nặng nề ở
đô thị và làng nghề vào các cụm công nghiệp này,...
Hoạt động cơng nghiệp gây ơ nhiễm khơng khí cịn từ các khu, cụm công
nghiệp cũ, nhƣ các khu công nghiệp: Thƣợng Đình, Minh Khai - Mai Động (Hà
Nội), Thủ Đức, Tân Bình (thành phố Hồ Chí Minh), Biên Hồ I (Đồng Nai), Khu
Cơng nghiệp Việt Trì, Khu Gang thép Thái Ngun,... và ơ nhiễm khơng khí cục bộ
ở xung quanh các xí nghiệp, nhà máy xi măng (đặc biệt là xi măng lò đứng), các lò
12
Đồn Trung Dũng
Luận văn tốt nghiệp cao học
nung gạch ngói, xí nghiệp sản xuất đồ gốm, các nhà máy nhiệt điện đốt than và đốt
dầu FO, các nhà máy đúc đồng, luyện thép, các nhà máy sản xuất phân hoá học,...
Các chất ơ nhiễm khơng khí chính do cơng nghiệp thải ra là bụi, khí SO2, NO2, CO,
HF và một số hố chất khác.
Ơ nhiễm mơi trƣờng khơng khí ở nhiều làng nghề đã tới mức báo động, một số
bài báo đã đánh giá một cách đáng lo ngại là "sống giàu, nhƣng chết mịn" đối với
làng tái chế nilơng Minh Khai (Nhƣ Quỳnh, Hƣng n); "hít khói ăn tiền" ở xã Chỉ
Đạo (Văn Lâm, Hƣng Yên) - tái chế chì, hay là "những làn khói độc" ở làng gốm
Bát Tràng (Gia Lâm, Hà Nội). Ở rất nhiều làng nghề, đặc biệt là các làng nghề ở
vùng Đồng bằng Bắc Bộ, đang kêu cứu về ô nhiễm môi trƣờng không khí.
Cơng nghiệp mới: Phần lớn các cơ sở cơng nghiệp mới đƣợc đầu tƣ tập trung
vào 82 khu công nghiệp. Trƣớc khi xây dựng dự án đều đã tiến hành đánh giá tác
động môi trƣờng, nếu dự án thực hiện đầy đủ các giải pháp bảo vệ môi trƣờng đã
đƣợc trình bày trong báo cáo đánh giá tác động mơi trƣờng thì sẽ đảm bảo đạt tiêu
chuẩn chất lƣợng mơi trƣờng.
Tuy vậy, cịn nhiều xí nghiệp mới, đặc biệt là các nhà máy nhiệt điện đốt than,
chƣa xử lý triệt để các khí thải độc hại (SO2, NO2, CO), nên đã gây ra ơ nhiễm mơi
trƣờng khơng khí xung quanh
Cùng với q trình cơng nghiệp hố và đơ thị hố, phƣơng tiện giao thông cơ
giới ở nƣớc ta tăng lên rất nhanh, đặc biệt là ở các đô thị. Trƣớc năm 1980 khoảng
80 - 90% dân đô thị đi lại bằng xe đạp, ngày nay, ngƣợc lại khoảng 80% dân đô thị
đi lại bằng xe máy, xe ôtô. Nguồn thải từ giao thông vận tải đã trở thành một nguồn
gây ô nhiễm chính đối với môi trƣờng không khí ở đô thị, nhất là ở các đô thị lớn
nhƣ Hà Nội, thành phố Hồ Chí Minh, Hải Phịng, Đà Nẵng. Theo đánh giá của
chuyên gia môi trƣờng, ô nhiễm không khí ở đơ thị do giao thơng vận tải gây ra
chiếm tỷ lệ khoảng 70%.
Theo số liệu của Phòng Cảnh sát giao thơng Hà Nội, năm 1990 có 34.222 xe
ơtơ, năm 1995 có 60.231 xe, năm 2000 có 130.746 xe tham gia giao thông. Nhƣ vậy
sau 10 năm số lƣợng ôtô ở Hà Nội tăng lên gần 4 lần. Về xe máy ở Hà Nội năm
13
Đồn Trung Dũng
Luận văn tốt nghiệp cao học
1996 mới có khoảng 600.000 xe máy, năm 2001 gần 1 triệu, năm 2002 tăng tới hơn
1,3 triệu xe máy, bình quân khoảng 1 xe máy/2 ngƣời dân. Ở thành phố Hồ Chí
Minh năm 1997 mới có khoảng 1,2 triệu xe máy, năm 2001 gần 2 triệu xe, năm
2002 gần 2,5 triệu xe máy. Bình qn số lƣợng xe máy ở các đơ thị nƣớc ta mỗi
năm tăng khoảng 15 - 18%, số lƣợng xe ôtô mỗi năm tăng khoảng 8 - 10%.
Do số lƣợng xe máy tăng lên rất nhanh, không những làm tăng nhanh nguồn
thải gây ơ nhiễm khơng khí, mà cịn gây ra tắc nghẽn giao thơng ở nhiều đơ thị lớn.
Ở Hà Nội, thành phố Hồ Chí Minh có hàng chục điểm thƣờng xuyên bị ùn tắc giao
thông. Khi tắc nghẽn giao thông, mức độ ô nhiễm hơi xăng dầu có thể tăng lên 4 - 5
lần so với lúc bình thƣờng. Ở Việt Nam , khoảng 75% số lƣợng ôtô chạy bằng nhiên
liệu xăng, 25% số lƣợng ôtô chạy bằng dầu DO, 100% xe máy chạy bằng xăng. Ô
nhiễm khí CO và hơi xăng dầu (HC) thƣờng xảy ra ở các nút giao thông lớn, nhƣ là
ngã tƣ Cầu Giấy, ngã tƣ Kim Liên (Hà Nội), ngã tƣ Điện Biện Phủ - Đinh Tiên
Hồng, vịng xoay Hàng Xanh (thành phố Hồ Chí Minh), ngã tƣ Cầu Đất - Nguyễn
Đức Cảnh (thành phố Hải Phòng),... Trƣớc năm 2001 ở các nút giao thơng này cịn
bị ơ nhiễm chì (Pb).
Ở nƣớc ta hiện nay hoạt động xây dựng nhà cửa, đƣờng sá, cầu cống,... rất
mạnh và diễn ra ở khắp nơi, đặc biệt là ở các đô thị. Các hoạt động xây dựng nhƣ
đào lấp đất, đập phá cơng trình cũ, vật liệu xây dựng bị rơi vãi trong quá trình vận
chuyển, thƣờng gây ơ nhiễm bụi rất trầm trọng đối với mơi trƣờng khơng khí xung
quanh, đặc biệt là ô nhiễm bụi, nồng độ bụi trong không khí ở các nơi có hoạt động
xây dựng vƣợt trị số tiêu chuẩn cho phép tới 10 - 20 lần.
1.3. Tổng quan về khí CO
1.3.1. Đặc điểm lý hóa của khí cacbon monoxit
-
Cacbon monoxit có cơng thức phân tử là CO,
-
Khối lƣợng phân tử 44.
-
Công thức cấu tạo: C=O
-
Cacbon monoxit là một chất khí khơng màu, khơng mùi, nhẹ hơn khơng khí.
-
Nhiệt độ sôi: -191,5oC
14
Đồn Trung Dũng
-
Cháy trong khơng khí với ngọn lửa màu xanh sáng
-
Trọng lƣợng riêng: 1,25 g/l ở 0oC, 1atm
-
1,145g/l ở 25oC, 1atm
-
Tỷ trọng so với khơng khí : 0,967
-
Hịa tan trong nƣớc :
Luận văn tốt nghiệp cao học
ở 0oC, 1atm: 3,54ml/100ml
ở 25oC, 1atm: 2,14ml/100ml
ở 37oC, 1atm: 1,83ml/100ml
-
CO là một khí độc.
1.3.2. Tác hại của CO
Khí CO là loại khí khơng màu, không mùi và không vị, tạo ra do sự cháy
khơng hồn tồn của nhiên liệu chứa carbon. Con ngƣời đề kháng với CO rất khó
khăn. Những ngƣời mang thai và đau tim tiếp xúc với khí CO sẽ rất nguy hiểm vì ái
lực của CO với hemoglobin cao hơn gấp 200 lần so với oxy, cản trở oxy từ máu đến
mô cho nên phải mất nhiều máu đƣợc bơm đến để mang cùng một lƣợng oxy cần
thiết. Một số nghiên cứu trên ngƣời và động vật đã minh hoạ những cá thể tim yếu ở
điều kiện căng thẳng trong trạng thái dƣ CO trong máu, đặc biệt phải chịu những
cơn đau thắt ngực khi lƣợng CO bao quanh nâng lên. Ở nồng độ khoảng 5ppm CO
có thể gây đau đầu, chóng mặt. Ở những nồng độ từ 10ppm đến 250ppm có thể gây
tổn hại đến hệ thống tim mạch, thậm chí gây tử vong. Ngƣời tiếp xúc với CO trong
thời gian dài sẽ bị xanh xao, gầy yếu. Khí CO có thể bị oxy hố thành cacbon đioxyt
(CO2) nhƣng phản ứng này xảy ra rất chậm dƣới tác dụng của ánh sáng mặt trời. CO
có thể bị oxy hố và bám vào thực vật và chuyển dịch trong qúa trình diệp lục hố .
Các vi sinh vật trên mặt đất cũng có khả năng hấp thụ CO từ khí quyển. Tác hạicủa
khí CO đối với con ngƣời và động vật xảy ra khi nó hồ hợp thuận nghịch với
hemoglobin (Hb) trong máu. – Hemoglobin có ái lực hố học đối với CO mạnh hơn
đối với O2, khi CO và O2 có mặt bão hồ số lƣợng cùng với hemoglobin thí nồng độ
HbO2(oxi hemoglobin) và HbCO (caroxihemoglobin) có quan hệ theo đẳng thức
Haridene nhƣ sau :
15
Đoàn Trung Dũng
Luận văn tốt nghiệp cao học
Tài liệu tham khảo
Tài liệu tiếng Việt
1. Trần Ngọc Chấn (1999), Ô nhiễm khơng khí và xử lý khí thải tập 1, NXB khoa
học và kĩ thuật, Hà Nội.
2. Lƣu Minh Đại, Đào Ngọc Nhiệm, Vũ Thế Ninh, Phạm Ngọc Chức (2008),
“Tổng hợp NiFe2O4 kích thƣớc nanomet bằng phƣơng pháp bốc cháy gel ở
nhiệt độ thấp”, Tạp chí Hóa học, T.46 (4), 675 – 680.
3. Lƣu Minh Đại, Đào Ngọc Nhiệm, Vũ Thế Ninh, Phạm Ngọc Chức, Nguyễn Thị
Tố Loan (2008), “Tổng hợp NiO kích thƣớc nanomet bằng phƣơng pháp đốt
cháy gel”, Tạp chí Hóa học, T.46 (5), 614-618.
4. Lƣu Minh Đại, Đào Ngọc Nhiệm, Vũ Thế Ninh, Phạm Ngọc Chức (2009),
“Khảo sát các yếu tố ảnh hƣởng đến kích thƣớc hạt của oxit niken đƣợc điều
chế bằng quá trình tự bốc cháy gel”, Tạp chí Hóa học, T.47 (3), 333 - 337.
5. Đào Ngọc Nhiệm, Nguyễn Đức Văn, Đoàn Trung Dũng, Nguyễn Thị Hà Chi
(2013). “Nghiên cứu ảnh hƣởng của nhiệt độ nung, tỷ lệ mol kim loại Bi/Fe đến
sự hình thành pha perovskit BiFeO3 đƣợc tổng hợp bằng phƣơng pháp đốt cháy
gel polyvinil ancol”. Tạp chí hóa học T.51(3AB) 59-61.
6. Vũ Thế Ninh(2014), Nghiên cứu tổng hợp nano oxit hỗn hợp trên cơ sở niken
và thăm dò khả năng xúc tác oxi hóa, luận án Tiến sĩ Hóa học, Viện Hàn lâm
Khoa học và Công nghệ Việt Nam, Hà Nội
7. Hồ Sĩ Thoảng, Lƣu Cẩm Lộc (2006), Chuyển hóa hiđrocacbon và cacbon
monoxit trên các hệ xúc tác kim loại và oxit kim loại, NXB Viện Khoa học và
Công nghệ Việt Nam, Hà Nội.
8. Phan Văn Tƣờng (2007), Các phương pháp tổng hợp vật liệu gốm, NXB Đại
học Quốc gia hà nội, Hà Nội.
9. Nguyễn Hữu Phú (1998), Giáo trình hấp phụ và xúc tác trên bề mặt vật liệu vô
cơ mao quản, Nhà xuất bản Khoa học và Kĩ thuật, Hà Nội.
Tài liệu tiếng Anh
16
Đoàn Trung Dũng
Luận văn tốt nghiệp cao học
10. A. G. Merzhanov (1993), “Theory and Practice of SHS: Worldwide state of the
art and Newest Results”, International Journal of Self Propagating High
Temperature, vol.2 (2), 113 - 158.
11. A. G. Merzhanov (1995), “History and Recent Developments in SHS”,
Ceramics International, vol.21, 371 - 379.
12. Abadian, L., Malekzadeh, A., Khodadadi, A. A., & Mortazavi, Y. (2008).
“Effects of excess cobalt oxide nanocrystallites on LaCoO3 catalyst on lowering
the light off temperature of CO and hydrocarbons oxidation”. Iranian Journal
of Chemistry and Chemical Engineering (IJCCE), 27(4), 71-77.
13. B. Cornils, W.A. Herrmann, R. Schögl, C.H. Wong (2000), Catalysis from A to
Z, Wiley-VCH, Weinhheim.
14. Belessi V., Trikalitis P., Ladavos A., Bakas T. and Pomonis P. (1999),
"Structure and catalytic activity of La1- xFeO3 system (x= 0.00, 0.05, 0.10, 0.15,
0.20, 0.25, 0.35) for the NO + CO reaction", Applied Catalysis A, 177(1), pp.
53-68.
15. Beychok, Milton R. (1987). “A data base for dioxin and furan emissions from
refuse incinerators”. Atmospheric Environment 21 (1): 29–36.
16. C.P. Kashinath, S.T. Aruna, M. Tanu (2002), “Combustion synthesis: an
update”, Current Opinion in Solid State annd Materials Science, 6, 507 - 512.
17. Ciambelli, P., Cimino, S., De Rossi, S., Lisi, L., Minelli, G., Porta, P., & Russo,
G. (2001). “AFeO3 (A= La, Nd, Sm) and LaFe1-xMgxO3 perovskites as methane
combustion and CO oxidation catalysts: structural, redox and catalytic
properties”. Applied Catalysis B: Environmental, 29(4), 239-250.
18. Chen, C. S., You, J. H., Lin, J. H., Chen, C. R., & Lin, K. M. (2008). “The
effect of a nickel promoter on the reducibility of a commercial Cu/ZnO/Al2O3
catalyst for CO oxidation”. Catalysis Communications, 9(6), 1230-1234.
19. Chu C. M. and Wan C. C. (1993), "Effect of citric acid as a chelating agent on
anodic behavior of pure iron with potentiostatic polarization and cyclic
voltammetry methods", Materials chemistry and physics, 33(3-4), pp.189-196.
17
Đoàn Trung Dũng
20. Declaration
Luận văn tốt nghiệp cao học
of
the
United
Nations
Conference
on
the
Human
Environment,1972.
21. Dharanipragada, NVR Aditya, Maria Meledina, Vladimir V. Galvita, Hilde
Poelman, Stuart Turner, Gustaaf Van Tendeloo, Christophe Detavernier, and
Guy B. Marin (2016). "Deactivation Study of Fe2O3–CeO2 during Redox
Cycles for CO Production from CO2." Industrial & Engineering Chemistry
Research 55, no. 20 : 5911-5922.
22. Dulaurent, O., & Bianchi, D. (2001). “Adsorption model and heats of
adsorption for linear CO species adsorbed on ZrO2 and Pt/ZrO2 using FTIR
spectroscopy”. Applied Catalysis A: General, 207(1), 211-219.
23. Dulaurent, O., Chandes, K., Bouly, C., & Bianchi, D. (2000). “Heat of
adsorption of carbon monoxide on a Pd/Rh three-way catalyst and on a
Rh/Al2O3 solid”. Journal of Catalysis, 192(2), 262-272.
24. El-Shobaky, G. A., & Deraz, N. A. M. (2001). “Surface and catalytic properties
of cobaltic oxide supported on an active magnesia. Materials Letters”, 47(4),
231-240.
25. Environmental Performance Report (2001) (Transport, Canada wedsite page).
26. Ertl, Gerhard (1991). “Oscillatory Kinetics and Spatio-Temporal SelfOrganization in Reactions at Solid Surfaces”, Science,vol 254 (5039) 1750.
27. G.Will (2006), “Powder Diffraction - The Rietveld Method and the Two Stage
Method to Determine and Refine Crystal Structures from Powder Diffraction
Data”, Springer, Germany.
28. Gai, P. L., & Boyes, E. D. (2003).“Electron microscopy in heterogeneous
catalysis”. CRC P.
29. H.J. Kweon, D.G. Park, S.T. Kuk, H.B. Park, K. Kim (1996), “Synthesis of La1xSrxCoO3
(x ≤ 0,2) at low temperature from PVA-polymeric Gel Precursors”,
Bulletin of the Korean Chemical Society, 18 (12), 1249 - 1255.
18
Đoàn Trung Dũng
Luận văn tốt nghiệp cao học
30. Halim, K. A., Khedr, M. H., Nasr, M. I., & El-Mansy, A. M. (2007). “Factors
affecting
CO
oxidation
over
nanosized
Fe2O3”. Materials
research
bulletin,42(4), 731-741.
31. Heck, R. M., & Farrauto, R. J. (2002). Catalytic pollution control. WileyInterscience, New York.Chap. 6, pp. 69 – 129.
32. Hench, L. L., & West, J. K. (1990). “The sol-gel process”. Chemical
Reviews,90(1), 33-72.
33. Huizhi Bao, Xin Chen, Jun Fang, Zhiquan Jiang, Weixin Huang (2008) .
“Structure-activity Relation of Fe2O3–CeO2 Composite Catalysts in CO
Oxidation”. Catal Lett,125:160–167.
34. Hussain, G. (2009). “Oxidation of CO by 0; over ZnO Studied by FTIR
Spectroscopy”. J. Chem. Soc. Pak, 31(5), 719.
35. I. Chorkendorff, J.W. Niemantsverdriet (2003). Concepts of moderm Catalysis
and Kinetics, Wiley-VCH, , Weinheim.
36. Jacquin M., Jing Y., Taillades G., Jones D. J. and Roziere J. (2007), "Flash
Combustion Synthesis and Characterisation of Nanosized Proton Conducting
Yttria-doped Barium Cerate", Journal of new materials for electrochemical
systems, 10(4), pp. 243-248.
37. Kang, M., Song, M. W., & Lee, C. H. (2003). “Catalytic carbon monoxide
oxidation over CoOx/CeO2 composite catalysts”. Applied Catalysis A:
General, 251(1), 143-156.
38. Kweon H. J., Park D. G., Kuk S. T., Park H. B. and Kim K. (1996), "Synthesis
of La1-xSrxCoO3 (x≤0.2) at Low Temperature from PVA-polymeric Gel
Precursors", Bulletin of the Korean Chemical Society, 18(12), pp.1249-1255.
39. Lakeman, C. D., & Payne, D. A. (1994). “Sol-gel processing of electrical and
magnetic ceramics”. Materials Chemistry and Physics, 38(4), 305-324.
40. Langlet, M., Joubert, J. C., & Rao, C. N. R. (1993). “Chemistry of Advanced
Materials”. Blackwell Science, Oxford, England.
19
Đoàn Trung Dũng
Luận văn tốt nghiệp cao học
41. Lessing P. A. (1989), "Mixed-cation oxide powders via polymeric precursors",
American Ceramic Society bulletin, 68(5), pp.1002-1007.
42. Luo, J. Y., Meng, M., Li, X., Li, X. G., Zha, Y. Q., Hu, T. D., ... & Zhang, J.
(2008). “Mesoporous Co3O4–CeO2 and Pd/Co3O4–CeO2 catalysts: synthesis,
characterization and mechanistic study of their catalytic properties for lowtemperature CO oxidation”, Journal of Catalysis, 254(2), 310-324.
43. M.C.N. Thais. A.C. Rosemany, J.A.S. Paulo, M.B.Q. Ana, S.F. Javier (2008),
“The effect of the degree of hydrolysis of the PVA and the plasticizer
concentration on the color, opacity, and thermal and mechanical properties of
films based on PVA and gelatin blends”, Journal of Food Engineering, 87, 191
- 199.
44. M.R. Ammar, G. Legeay, A. Bulou, J.F. Bardeau (2009), “Adhesion
improvement of poly (vinyl alcohol) coating on silicon substrate”, Surfaace &
Coatings Technology, 203, 2202-2206.
45. Meyer, Randall, Sh K. Shaikhutdinov, and H-J. Freund (2004), "CO oxidation
on a Pd/Fe3O4 (111) model catalyst”,
Zeitschrift für Physikalische
Chemie/International journal of research in physical chemistry and chemical
physics 218.8/2004 : 905-914.
46. Niemantsverdriet, J. W. (2007), Spectroscopy in catalysis, John Wiley & Sons.
47. Patil K. C. and Aruna S. T. ( 2002), Redox methods in SHS practice in selfprop¬agating high temperature synthesis of materials, Taylor & Francis, New
York.
48. Patil, K. C., & Aruna, S. T. (2002), “Redox Methods in SHS Practice'. Selfpropagating high-temperature synthesis of materials”, Combustion Science &
Technology Book Series, 5, 189-201.
49. Pathak, A., & Pramanik, P. (2001), “Nano-particles of oxides through chemical
methods”, proceedings-indian national science academy part a, 67(1), 47-70.
20